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Abstract: The goal of prognosis on a structure, system or component (SSC) is to predict 

whether the SSC can perform its function up to the end of its life and in case it cannot, 

estimate the Time to Failure (TTF), i.e., the lifetime remaining between the present and 

the instance when it can no longer perform its function. Such prediction on the loss of 

functionality changes dynamically as time goes by and is typically based on 

measurements of parameters representative of the SSC state. Uncertainties from two 

different sources affect the prediction: randomness due to variability inherent in the SSC 

degradation behavior (aleatory uncertainty) and imprecision due to incomplete knowledge 

and information on the SSC failure mechanisms (epistemic uncertainty). Such 

uncertainties must be adequately represented and propagated in order for the prognostic 

results to have operational significance, e.g. in terms of maintenance and renovation 

decisions. This work addresses the problem of predicting the reliability and TTF of a SSC, 

as measurements of parameters representative of its state become available in time. The 

representation and propagation of the uncertainties associated to the prediction are done 

alternatively by a pure probabilistic method and an hybrid Monte Carlo and possibilistic 

method. A case study is considered, regarding a component which is randomly degrading 

in time according to a stochastic fatigue crack growth model of literature; the maximum 

level of degradation beyond which failure occurs is affected by epistemic uncertainty. 

               Keywords: Prognostics, reliability prediction, Time to failure prediction, uncertainty 

representation and propagation, probability, possibility, Monte Carlo simulation, fatigue 

crack growth. 

Nomenclature  

NPP   Nuclear Power Plant 

RAMS   Reliability, Availability, Maintenance, Safety  

SSC   Structure, System or Component 

TTF   Time to Failure 

TTR   Time to Repair 

UOD    Universe of Discourse 
x    Generic model variable 

X    Universe of discourse of variable x  

Pr    Probability function 

    Possibility function 

N    Necessity function 

 p x    Probability density function    
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 x    Possibility distribution 

 P X    Power set of X  

P      Probability family 

A    Subset of X  

A     -cut of A 

d    Infinitesimal probability 

A    Width of A  

,a a    Limits of A  

   ,F x F x   Bounding cumulative probability distributions 

 f     Output of the prognostic model 

jY    Uncertain input variable 1,...,j n  

i

jy    i -th realization of jY , 1,...,i m  

k    Number of aleatory variables 

 
jYp y   Probability density function of variable jY  

 
jY y   Possibilistic distribution of variable jY  

f

i    i -th possibilistic random realization of  f   

,
ii

f f 
   -cut of the i -th random realization 

f

i  

 Bel A                  Belief measure of A  

 Pl A    Plausibility measure of A  

u    Generic value of f  

h    Crack depth 

L    Load cycles 

,C     Constants related to material properties 

K    Stress intensity amplitude 

    Empirical constant 

 20,N     White Gaussian noise 

 h t    Degradation value at the time instant t  

maxH    Degradation upper threshold 

missT    Mission time 

dp    Degradation probability 

pH   Current degradation value 

pt   Current time value 
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SX   Uncertain Boolean variable 

1. Introduction 

Prognosis is an important and challenging task in Reliability, Availability, 

Maintainability and Safety (RAMS). The primary goal of a prognostic system is to 

indicate whether the structure, system or component (SSC) of interest can perform its 

function throughout its lifetime with reasonable assurance and, in case it cannot, to 

estimate its Time To Failure (TTF), i.e. the lifetime remaining before it can no longer 

perform its function. The prediction is more effective if informed by measurements of 

parameters representative of the state of the SSC during its life. 

The predictive task must adequately account for the uncertainty associated to the 

future behavior of the SSC under analysis. Sources of uncertainty derive from: (1) 

randomness due to inherent variability in the SSC degradation behavior (aleatory 

uncertainty) and (2) imprecision due to incomplete knowledge and information on the 

parameters used to model the degradation and failure processes (epistemic uncertainty).  

Two methods for the representation and propagation of these uncertainties are 

considered in this work: (1) a pure probabilistic method and (2) an hybrid Monte Carlo 

and possibilistic method. In the context of the pure probabilistic approach, both epistemic 

and aleatory uncertainties are represented in terms of probability distributions and a 

double-randomization Monte Carlo simulation is carried out in which epistemic variables 

are sampled in the outer loop and aleatory variables are sampled in the inner loop, to 

propagate the uncertainty through the model onto the prediction of the SSC reliability and 

TTF [1]. By so doing, the method obtains a different cumulative distribution of the 

reliability and TTF for each realization of the epistemic variables, thus maintaining 

separated the two types of uncertainty. In this way, all information on the uncertainty in 

the TTF is preserved, although its interpretation may not be straightforward in practical 

terms. Also, a probabilistic representation of the epistemic uncertainty may not be 

appropriate when sufficient data is not available for statistical analysis, even if one relies 

on expert judgments within a subjective view of probability [2], [3].  

Some of the limitations of the above pure probabilistic approach to uncertainty 

representation and propagation can be overcome by an hybrid method in which the 

aleatory uncertainties are properly represented by probability distributions while the 

epistemic uncertainties are represented by possibility distributions [2], [3]. Monte Carlo 

sampling of the random variables is repeatedly performed to process the aleatory 

uncertainty in the behavior of the SSC and possibilistic interval analysis is carried out at 

each sampling to process the epistemic uncertainty. The method leads to the computation 

of a possibilistic random distribution representing the SSC reliability or TTF for each 

considered realization of the aleatory variables. Finally, the obtained possibilistic random 

distributions can be combined (1) into a set of limiting cumulative distributions 

characterized by different degrees of confidence [2] or (2) accordingly to the Dempster-

Shafer Theory, into Belief and Plausibility measures that can be interpreted as “rational 

averages” of the above mentioned limiting cumulative distributions [3].  

For exemplification, the prognostics is carried out with reference to a case study 

regarding a component which is randomly degrading in time according to a stochastic 

fatigue crack growth model of literature [4]. This degradation process is typical of, for 

example, components in the pressure boundaries of a nuclear power plant (NPP) [5] and 

may initiate from the foundry flaws which are always present in large cast components 

subject to fatigue loading caused by allowed power variations or incidental transients; 

once initiated, the degradation process can propagate under stressful operating conditions, 
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up to limits threatening the components’ structural integrity [6]. The prediction of the 

reliability and remaining useful lifetime of the component is based on the knowledge of 

the value of a degradation parameter that is assumed to be measured at the present time. If 

the process is such to lead its value above a given limit, then the SSC fails. The maximum 

level of degradation beyond which structural integrity is lost is considered to be affected 

by epistemic uncertainty. 

The paper is organized as follows. Section 2 recalls the probabilistic and the 

possibilistic viewpoints for to the representation of epistemic uncertainty; little detail is 

given on the well known probabilistic view and its difficulty in representing epistemic 

uncertainty in cases of limited knowledge and information, whereas relatively more 

details are provided to illustrate the possibilistic view. In Section 3, the pure probabilistic 

method and the hybrid Monte Carlo and possibilistic method for uncertainty propagation 

are resumed. The case study of fatigue crack propagation is presented in Section 4 and the 

corresponding prognostic results are reported and commented in Section 5. Finally, some 

conclusions on the advantages and limitations of the two methods of uncertainty treatment 

are given in Section 6. 

2. Representing uncertainty in prognostic tasks 

When modeling the degradation and failure behavior of an SSC, uncertainty can be 

considered essentially of two different types: randomness due to inherent variability in the 

physical behavior and imprecision due to lack of knowledge and information on it. The 

former type of uncertainty is often referred to as objective, aleatory, stochastic whereas 

the latter is often referred to as subjective, epistemic, state-of-knowledge [7], [8]. 

The distinction between aleatory and epistemic uncertainty plays a relevant role in 

prognostics. The aleatory uncertainty affects the time evolution of the degradation process 

of the SSC, whereas epistemic uncertainty arises from incomplete knowledge of fixed but 

poorly known parameter values which enter the models used for the evaluation of the SSC 

reliability and remaining useful lifetime. 

While the aleatory uncertainty is appropriately represented by probability 

distributions, current scientific discussions dispute the advantages and disadvantages of 

two possible representations of the epistemic uncertainty, probabilistic and possibilistic 

[1], [3]. 

2.1. Probabilistic representation of the epistemic uncertainty 

In the current RAMS practice, epistemic uncertainty is often represented by means 

of probability distributions as is done for aleatory uncertainty. When sufficient data is not 

available for statistical analysis, one may adopt a subjective view of probability based on 

expert judgment. For example, in risk assessments and RAMS analyses it is common 

practice to represent by means of lognormal distributions the epistemic uncertainty on the 

parameters of the probability distributions of the TTF and time to repair (TTR) of a 

component [1]. 

However, there might be some limitations to the probabilistic representation of 

epistemic uncertainty under limited knowledge. Let us consider, for example, an extreme 

case in which the available information on a model parameter x  is only that its value is 

located somewhere between a value minx  and a value maxx . In this case, a uniform 

probability distribution between minx  and maxx ,   max min1/( )p x x x  ,  min max,x x x   

is typically assumed to represent the uncertainty on x  within a probabilistic scheme [8]. 

This choice of the uniform distribution appeals to i) Laplace principle of insufficient 
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reason according to which all that is equally plausible is equally probable and to ii) the 

maximum entropy approach [9]. On the other hand, it may be criticizable since the 

uniform distribution implies that the degrees of probability of the different values of x  

depend on the equal range min max,X x x   . Further, the uniform distribution results in 

the following relationship [8]: 

                               min maxPr , Pr ,mean meanx x x x x x          (1)  

with  min max / 2meanx x x  ; but, if no information is available to characterize the 

uncertainty under study, then no relation between   minPr , meanx x x  and 

  maxPr ,meanx x x  should be supported.  

From the above considerations, it seems that lack of knowledge may not be 

satisfactorily represented by specific functional choices of probability distributions, like 

the uniform, but it should somehow be expressed in terms of the full set of possible 

probability distributions on X  so that the probability of a value x X  is allowed to take 

any value in  0, 1 . 

2.2. Possibilistic representation of the epistemic uncertainty 

Due to the potential limitations associated to a probabilistic representation of 

epistemic uncertainty under limited information, a number of alternative representation 

frameworks have emerged, e.g. fuzzy set theory [10], evidence theory [11], possibility 

theory [12], interval analysis [13] and imprecise probability [28]. Possibility theory, in 

particular, is attractive for the prognostic task here of interest, because of its 

representation power and relative mathematical simplicity. It is similar to probability 

theory in that it is based on set functions but differs in that it relies on two cumulative 

functions, called possibility    and necessity  N  measures, instead of only one, to 

represent the uncertainty.  

The basic notion upon which the theory is founded is the possibility distribution of 

an uncertain variable (not necessarily random) which assigns to each real number x  in a 

range X  (Universe of Discourse, UOD) a degree of possibility    0,1x   of being the 

correct value [14].  

A possibility distribution is thus an upper, semi-continuous mapping from the real 

line to the unit interval describing what an analyst knows about the more or less plausible 

values x  of the uncertain variable ranging on .X  These values are mutually exclusive, 

since the uncertain variable can take on only one true value. This also gives the 

normalization condition: 

 : 1x X x    (2)  

which is a claim that at least one value is viewed as totally possible, a much weaker 

statement than   1p x  .  

The possibility and necessity measures  A ,  N A  for all subsets A  in the 

power set  P X  of X  are defined by the associated possibility distribution  x  

through the following maximization and minimization relationships, respectively: 

            sup
x A

A x


     (3)  
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             1 inf 1
x A

N A A x


     (4)  

The relation between the possibility distribution  x  of a continuous uncertain 

variable x  and the corresponding necessity and possibility measures of the set 

 ,A x   is illustrated in Figure 1. 

 
                                            (a)                         (b) 
Figure 1: Example of: (a) triangular possibilistic distribution and (b) corresponding possibility and 

necessity measures of the set  ,A x   

A necessity value   1N A   means that A  is certainly true and it implies that   1A  ; 

a possibility value   0A   means that A  is impossible, certainly false and it implies 

that   0N A  .   1A   means that A  is possible, that it is not surprising if A  occurs, 

whereas  N A  remains unconstrained;   0N A   means that A  is unnecessary, that it is 

not surprising if A  does not occur, whereas  A  remains unconstrained. 

A unimodal numerical possibility distribution may also be viewed as a set of nested 

confidence intervals A , which are the cuts   of  x  [3]. The degree of certainty that 

,a a    contains the value of the uncertain variable is  ,N a a   , which is equal to 

1   if  x  is continuous. Furthermore, the family of nested confidence intervals 

     1 1 2 2, , , , , ,m mA A A     , where  i iN A  , can be reconstructed from the 

possibility distribution  x  [14].  

Under this view, a pair  ,A   supplied by an expert is interpreted as stating that 

the subjective probability  p A  is at least equal to   [15]. In particular, the cut   of a 

continuous possibility distribution can be interpreted as the inequality 

 Pr uncertain variable , 1a a
     or equivalently as 

 uncertain variable ,p a a
    . 

Thus, we can interpret any pair of dual necessity/possibility functions as lower and 

upper probabilities induced from specific probability families: degrees of necessity are 

equated to lower probability bounds and degrees of possibility to upper probability 

bounds. 



                                                 Methods of Uncertainty Analysis in Prognostics                                                 311 

  

Formally, let   be a possibility distribution inducing a pair of necessity/possibility 

functions  ,N  . The probability family  P   is defined as [15]:  

           P , measurable : , measurable :p A N A p A p A p A A       

 

(5)  

In this case, the probability family  P   is entirely determined by the probability 

intervals it generates: 

   sup
p

p A A   (6)  

   inf
p

p A N A  (7)  

Similarly, suppose pairs  ,i iA   are supplied by an expert as subjective 

probabilities that  ip A  is at least equal to 
i , where 

iA  is a measurable set. The 

probability family  P   is defined as:  

    P , :i i ip A p A     (8)  

In this view, given a continuous uncertain variable x , it is possible to interpret 

 ,N x  and  , x   as the lower and upper limiting cumulative distributions  F x
 

and  F x , respectively [15]. 

To exemplify a case in which a possibilistic representation of the epistemic 

uncertainty may be useful, let us consider an uncertain parameter x  for whose definition 

we know that the parameter can take values only in the range  0.8,1.2  and the most likely 

value is 1 [16]. This case can be represented by the triangular possibility distribution 

reported in Figure 1(a) where to the most likely value is assigned a level of possibility 

equal to one while the certain interval  0.8,1.2  is the “support” of the possibility 

distribution, implying that values located outside the interval are considered impossible.  

Finally, let us return to the same case of “ignorance” discussed from a probabilistic 

point of view in the previous Section 2.1, and consider an uncertain model parameter x  

for which the only available information is that its true value is located between minx  and 

maxx . Within the possibilistic framework, the uncertainty on x  is represented by a 

possibility distribution   1x  ,  min max,x x x   and   0x  , otherwise. Such 

distribution simply describes the fact that any value  min max,x x x  is possible and for any 

set  A P X  with A X ,   0N A   while   1A  . Moreover, according to the 

interpretation of eq. (4), for any set  min max,A x x  the only information available is that 

 0 1P A  . 

From this example, it seems that imprecision or partial information can be 

adequately described in terms of possibility distributions representing families of 

probability distributions [14]. Actually, the connection between the possibility and 

probability theories could be very powerful in providing an integrated framework of 

representation and analysis of uncertainties of both the aleatory and epistemic type [3].  
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2.3. Transformation from a possibilistic distribution to a probabilistic distribution 

For the purposes of comparing probability and possibility representations of 

uncertainty, it is useful to consider a method for transforming a possibility distribution 

into a probability distribution. Obviously, it remains that the probabilistic and the 

possibilistic representations of uncertainty are not equivalent: the possibilistic 

representation is weaker than the probabilistic one because it explicitly handles 

imprecision (e.g. incomplete knowledge) and because its measures are based on an ordinal 

structure rather than an additive one [17]. Remembering this, given that a possibility 

measure encodes a family of probability measures, the transformation aims at finding the 

probability measure which preserves as much as possible of the uncertainty in the original 

possibility distribution.  

Considering the possibility distribution )(x  on ],[ maxmin xxX  , its 

transformation into the corresponding probability distribution )(xp  according to [18] is: 

 
 

0

x
d

p x
A






             min max,x x x     (9)  

where A  is the width of the  Acut , i.e. if ,A a a 
 
 

 then A a a 
  . 

Indeed, selecting   in  0,1  is done with infinitesimal probability d  and yields to the 

uniform density p  such that   1/p x A  . For x A  the infinitesimal probability of 

x  in A  is thus equal to /dx d A  [18].  

For instance, if the possibility-probability transformation is applied to the triangular 

possibility distribution of Figure 1(a) with support  1, 1   and modal value 0, then the 

probability density function    1/ 2p x Log x   is obtained [18], [19]. 

3. Uncertainty propagation 

Uncertainty in the input variables and parameters of a model must be adequately 

propagated to the output, to provide the relevant representation of its uncertainty.  

Let us consider a model whose output is a function  f   of n  uncertain variables 

, 1, ,jY j n , of which the first k  are affected by aleatory uncertainty and the last n k  

are affected by epistemic uncertainty. This Section briefly presents two methods for the 

propagation of such a mixed uncertain information: (1) a purely probabilistic method and 

(2) an hybrid Monte Carlo – Possibilistic method. 

3.1. The Purely Probabilistic Method of Uncertainty Propagation 

The uncertainty affecting both the aleatory variables 
jY , 1,...,j k  and the 

epistemic variables 
jY , 1,...,j k n   is represented by known probabilistic density 

functions  
iY ip y , 1,...,i n . 

The propagation of the uncertainty in the input variables through the function  f   

is based on a double-randomization Monte Carlo simulation built on two sampling loops 

[1]: (1) the epistemic variables are sampled in the outer loop and (2) the aleatory variables 

are sampled in the inner loop.  

The operative steps of the procedure are: 
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1. sample the 
ei -th realization  1,...,

e ei i

k ny y
 of the epistemic variables  1,...,k nY Y

 

from their respective distributions 
1 1( )

kY kp y
 

, …, ( )
nY np y ; 

2. sample the 
ai -th realization  , ,

1 ,...,e a e ai i i i

ky y  of the aleatory variables from their 

respective distributions 
1 1( )Yp y , …, ( )

kY kp y ; 

3. compute the output of the model corresponding to the 
ei -th realization of the 

epistemic variables and the 
ai -th realization of the aleatory variables: 

 , , ,

1 1,..., , ,...,e a e a e a e ei i i i i i i i

k k nu f y y y y ; 

4. repeat steps 2 and 3 
am  times. Then, the cumulative distribution  1,...,e e ei i i

k nF u y y  

of the output u  of the model, conditioned by the sampled values  1,...,
e ei i

k ny y
 of 

the epistemic variables, is estimated from 
,e ai i

u , 1,...,e ei m , 1,...,a ai m . 

5. repeat steps 2 to 4 
em  times to generate 

em  cumulative distributions 

 1,...,e e ei i i

k nF u y y  of the model output.  

Notice that the purely probabilistic method keeps separated the two types of 

uncertainty: the aleatory uncertainty is captured in the slope of the obtained cumulative 

distributions of u , the epistemic one is contained in the spectrum of different cumulative 

distributions of u . On the other hand, the interpretation of the set of cumulative 

distributions obtained may not be straightforward in practical terms given the difficulty of 

extracting concise information on the output uncertainty from such a representation. In 

this respect a possible way to represent the epistemic uncertainty is to fix a given 

percentile of the cumulative distributions  1,...,e e ei i i

k nF u y y , i.e. 95%, and then build the 

probabilistic distribution of this percentile from the different realizations of the epistemic 

variables. 

3.2. An hybrid Monte Carlo and possibilistic method for uncertainty propagation 

The hybrid Monte Carlo and possibilistic method for uncertainty propagation 

considers that the uncertainty on the k  random variables (aleatory uncertainty) is 

represented by the probability distributions  
jYp y  and the uncertainty on the n k  

possibilistic variables (epistemic uncertainty) is represented by the possibility 

distributions  
jY y  measuring the degree of possibility that the linguistic variables 

jY  be 

equal to y. For the propagation of such mixed uncertainty information, the Monte Carlo 

technique [20] can be combined with the possibility theory [21] by means of the following 

two main steps [3]: 

i. repeated Monte Carlo sampling of the random variables to process aleatory 

uncertainty; 
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Figure 2: The hybrid method for uncertainty propagation 

ii. possibilistic interval analysis to process the epistemic uncertainty. 

For the generic 
ai th  k tuple  of random values, 1,..., ,a ai m  sampled by 

Monte Carlo from the probability distributions of the aleatory variables, a possibilistic 

distribution 
a

f

i  estimate of ( )f Y  is constructed by fuzzy interval analysis. After 
am  

repeated samplings of the aleatory variables, the possibilistic set estimates 
a

f

i , 

1,...,a ai m  are combined to give an estimate of ( )f Y  as a random possibility 

distribution in the sense of [22]. 

The operative steps of the procedure are (Figure 2): 

1. sample the 
ai th  realization  1 , ,a ai i

ky y  of the probabilistic variable vector 

 1 , , kY Y ; 

2. select a possibility value  0,1   and the corresponding cuts   of 

1 ,...,k nY Y
A A 

  the possibility distributions  
1
, ,

k nY Y 


 as intervals of possible 

values of the possibilistic variables  1, ,k nY Y
; 
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3. compute the smallest and largest values of  1 1, , , , ,a ai i

k k nf y y Y Y
, denoted by 

aif


 and aif  respectively, considering the fixed values  1 , ,a ai i

ky y  sampled for 

the random variables  1 , , kY Y  and all values of the possibilistic variables 

 1, ,k nY Y
 in the cuts   1 ,...,k nY Y

A A 
  of their possibility distributions 

 
1
, ,

k nY Y 


. Then, take the extreme values aif


 and aif  as the lower and 

upper limits of the cut   of  1 1, , , , ,a ai i

k k nf y y Y Y
; 

4. return to step 2 and repeat for another α-cut; after having repeated steps 2-3 for 

all the m  α-cuts of interest, the fuzzy random realization (fuzzy interval) 
a

f

i  of 

 f Y  is obtained as the collection of the values 
i

f 


 and i

f 

 ; in other words, 

a

f

i  is defined by all its α-cut  intervals ,
a

a
ii

f f 

 
  

; 

5. return to step 1 to generate a new realization of the random variables. After 

having repeated steps 1-4 for 
am  times, exit. 

At the end of the procedure an ensemble of realizations of random possibility 

distributions is obtained, i.e.  1 , ...,
a

f f

m  . In this work, the information contained in the 

obtained random possibility distributions  1 ,...,
a

f f

m   are aggregated according to two 

different methods: (1) the joint aggregation method [3] and (2) the Ferson aggregation 

method [2]. 

3.2.1. The joint aggregation method 

First of all, for each set  A P X , at each realization of the aleatory variables 

1,...,a ai m  it is possible to obtain the possibility measure ( )
a

f

i A  and the necessity 

measure ( )
a

f

iN A  from the corresponding possibility distribution  
a

f

i u  obtained at the 

end of the previous Section by using eqs. (3) and (4). 

Then, the 
am  different realizations of possibility and necessity of measures 

 
a

f

iN A  and  
a

f

i A  can be combined to obtain the believe  Bel A  and the plausibility 

( )Pl A  measures by using, respectively [3]: 

   
a a

a

f

i i

i

Bel A p N A  
(10)  

   
a a

a

f

i i

i

Pl A p A   
(11)  

where 
ai

p  is the probability of sampling the 
ai th  realization  1 , ,a ai i

ky y  of the 

random variable vector  1 , , kY Y . 

For each set A , this technique thus computes the probability-weighted average of 

the possibility measures associated with each output fuzzy interval. Considering a generic 

value u  of  f Y , a pair of bounding, average cumulative distributions 
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      ,F u Bel f Y u   ,       ,F u Pl f Y u    can then be computed [3]. Let 

the core and the support of a possibilistic distribution ( )f u  be the crisp sets of all points 

of X such that ( )f u  is, respectively, equal to 1 and non zero.     , 1Pl f Y u    if 

and only if     , 1, 1, ,f

i f Y u i m      , i.e. for    * max inf f

i iu u core   . 

Similarly,     , 0Pl f Y u    if and only if     ,f

i f Y u    0, 1, ,i m   , 

i.e. for    * min inf f

i iu u support   . 

3.2.2. The Ferson aggregation method  

In [2], a different technique for the aggregation of the random possibility 

distributions 1 ,...,
a

f f

m   obtained in Section 3.2.1 is proposed.  

The procedure, called Ferson aggregation method, follows the next steps [2], [3]: 

(1) Select a possibility value   and consider the corresponding cut   

,
a

aa
iii

A f f 

 
  

 of the possibility distribution  
a

f

i u . 

(2) Define a new possibility distribution  
ai

u : 

 

 

1 if 

0 otherwise

a

a

a

i

i

i

u u A

u











  




 (12)  

(3) Compute the possibility and the necessity measures associated to 
ai

 ,  
ai

A  

and  
ai

N A
 respectively, for any set  ,A u   according to eqs. (3) and (4). 

From a practical point of view, this is equivalent to computing the possibility and 

the necessity measures as: 

  
1,  if 

,
0,  otherwise

a

a

i

i

u f
u 

 
   



 (13)  

   1, if 
,

0,  otherwise

a

a

i

i

u f
N u 

 
  



 (14)  

(4) Repeat steps 1-3 for all 1,...,a ai m  and finally compute an upper ( F ) and a 

lower ( F
) cumulative distributions for the  -cut chosen at step 1: 

    ,
a ia

a

i

i

F u p u

     
(15)  

    ,
a a

a

i i

i

F u p N u

    
(16)  

Notice that since 1 0
a a ai i i

A A A   then:  

        1 0, , ,
a a ai i iu u u         (17)  

        1 0, , ,
a a ai i iN u N u N u      (18)  
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and thus: 

     
1 0

a a ai i iF u F u F u


   (19)  

     1 0

a a ai i i
F u F u F u


   (20)  

This kind of representation captures the aleatory variability and epistemic 

imprecision of a random fuzzy interval in a parameterized way through the cuts   and 

displays extreme pairs of cumulative distributions F  and F
. The gap between F  and 

F
 represents the imprecision due to epistemic variables; the slopes of F  and F

 

characterize the variability of the results caused by the aleatory uncertainty. A confident 

user who assumes high precision would work with the cores of the fuzzy intervals 

( 1cut   ), whereas a cautious one may choose 0cut    to work with their supports. 

For a comparison between the Ferson and the joint aggregation methods (Section 

3.2.1), consider that the latter produces upper and lower cumulative distributions which 

span the ranges between 0F  and 1F  and between 
0

F  and 
1

F , respectively: 

      1 0,F u Pl u F u    (21)  

      0 1
,F u Bel u F u    (22)  

In particular, in [23] it is demonstrated that the plausibility and belief measures 

obtained by the joint aggregation method are the mean values of the upper and lower 

boundary cumulative distributions of the Ferson method, respectively: 

    
1

0

,Pl u F u d     (23)  

    
1

0

,Bel u F u d     (24)  

Finally notice that also the Ferson method treats aleatory and epistemic 

uncertainties separately as does the purely probabilistic method (Section 3.1). 

Nevertheless, it uses a probabilistic representation for the aleatory uncertainty and a 

possibilistic representation for the epistemic uncertainty. 

4. Case study 

Let us consider the process of crack growth in a component subject to fatigue. The 

common Paris-Erdogan model is adopted for describing the evolution of the crack depth 

h  as a function of the load cycles L  [24]: 

( )
dh

C K
dL

   (25)  

where C  and   are constants related to the material properties [25], [26], which can be 

estimated from experimental data [27] and K  is the stress intensity amplitude, roughly 

proportional to the square root of h  [26]: 

                                          K h   (26)  

where   is again a constant which may be determined from experimental data. 

The intrinsic stochasticity of the process may be inserted in the model by 

modifying eq. (26) as follows [26]: 
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                                    ( )
dh

e C h
dL

   
(27)  

where 2~ (0, )N    is a white Gaussian noise. For L  sufficiently small, the state-space 

model (30) can be discretized to give: 

                              
1 ( )k

k kh h e C K L
 

     (28)  

which represents a non-linear Markov process with independent, non-stationary 

degradation increments. 

This degradation process is typical of, for example, components in the pressure 

boundaries of a nuclear power plant [5] and may initiate from the foundry flaws which are 

always present in large cast components subject to fatigue loading caused by allowed 

power variations or incidental transients; once initiated, the degradation process can 

propagate under stressful operating conditions, up to limits threatening the components’ 

structural integrity [6]. 

In this work, it is assumed that the level of degradation affecting the component is 

indicated by the crack depth .h  At each time step, the degradation level can either remain 

constant or be incremented according to eq. (28). The probability 
dp  that the component 

degrades between two successive time instants is assumed to be known.  

The component is designed to accomplish its function for a certain time window, 

called mission time 
missT  and it is considered failed when the value of the degradation 

exceeds a certain threshold, 
maxH . With respect to the degradation threshold 

maxH , its 

value is affected by epistemic uncertainty due to limited information: according to an 

expert, 
maxH  lies between 9 and 11 with a most likely value of 10, in arbitrary units. 

Table 1 reports the values of the parameters defining the degradation process 

considered in this work.  

Table 1. Numerical values of the case study parameters 

Parameter Value 

k  (0,1.7)N  

C  0.005 

  1 
  1.3 

dp  0.25 

missT  500 time units 

maxH   9,11 , most likely value = 10 

5. Prognostic Results 

In this Section, the methods for uncertainty representation and propagation 

described in Section 3 are applied to the case study introduced in Section 4 to address the 

associated prognostic task of predicting the component performance during the mission 

time. The problem of estimating the component reliability, i.e. the probability that the 

component survives until the mission time, is firstly addressed in Section 5.1. Then, in 

Section 5.2, the problem of estimating the TTF, i.e. the remaining lifetime from the 

present instant until the component fails, is considered. Both estimations are performed 

assuming that at the present time 
pt  a measurement of the current degradation level is 
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available: this is given by the crack depth  ph t . The results that follow refer to the case 

 1 1h  , in arbitrary units. 

5.1. Reliability estimation 

Let us introduce an uncertain Boolean variable 
SX  indicating the state of the 

component at the mission time by 0 (failure) and 1 (success). Such variable depends on 

the crack depth at the mission time  missh T , which is affected by aleatory uncertainty, 

and on the failure threshold 
maxH , which is affected by epistemic uncertainty: 

  max

max

1       if     
( ( ), )

0       otherwise

miss

S miss

h T H
X f h T H

 
  


 (29)  

Assuming that no repairs are allowed on the component, the objective is to estimate 

the component reliability, i.e. the probability that the component has not failed prior to the 

mission time, i.e.  1Sp X  . 

5.1.1. Application of the hybrid Monte Carlo-possibilistic method 

Following the example of Section 2.2, the epistemic uncertainty associated to the 

available scarce information on the value of the threshold 
maxH  is represented by the 

triangular possibility distribution  maxH  of Figure 3(a) (dotted line); Figure 3(b) 

reports the corresponding limiting cumulative function.  

The hybrid procedure of Section 3.2 for the propagation of the uncertainty in the 

estimation of the component  1Sp X   is here followed step by step: 

1. with respect to the aleatory degradation process, 
410am   realizations have been 

simulated by Monte Carlo and the crack depths at the mission time ( )missh T  have 

been collected. Figure 4 reports an example of 4 simulated realizations of the 

degradation process. Then, for each simulated degradation process, steps 2-4 below 

have been performed; 

 
(a)      (b) 

Figure 3: (a) Possibilistic distribution of maxH  (dotted line) and its probabilistic transformation 

(continuous line); (b) corresponding necessity and possibility measures of the set  max, H  

(dotted line) and cumulative distribution function of maxH  considered by the purely probabilistic 

method (continuous line). 
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Figure 4: Four different realizations of degradation evolution 

2. with respect to the degradation threshold 
maxH , 21m   values of   have been 

considered  0,0.05,...,1  ; the cuts   maxmax
,H H

 
  

 of the possibilistic 

distribution of maxH  have been found and for each cut  , steps 3-5 below have 

been performed; 

3. for the 
ai th  simulation of the degradation evolution and the cut   of  maxH , 

the smallest aif


 and largest 
ai

f   values of the state 
max( ( ), )

aS i missX f h T H  of the 

component at the mission time have been computed considering the fixed value of 

( )
ai missh T  obtained in step 1 and all values of 

maxH  in the considered cut   intervals 

maxmax
,H H

 
  

. In particular, three cases may occur (Figure 5, first column): (1) 

max
( )

ai missh T H


  resulting in 1
a

a
ii

f f 
   (Figure 5, first row); (2) max( )

ai missh T H


  

resulting in 0
a

a
ii

f f 
   (Figure 5, fourth row); (3) maxmax

( )
ai missH h T H


   

resulting in aif


=0, 
ai

f  =1 (Figure 5, second and third rows);  

4. after repeating step 3 for all the 21m   cuts  , the possibilistic random 

distribution 
a

f

i  is constructed as the collection of its 21 cuts   ,
a

a

i
i

f f


 
  

. Figure 

5, second column, reports the 
a

f

i  obtained for the four simulated degradation 

evolutions of Figure 4:  

- the realization 1 (fourth row in Figure 5) ends with   13.74missh T   and thus 

corresponds to a failed component independently from the considered cut   of 

maxH ; this leads to a possibility distribution equal to a singleton in 0;  

- in the simulation of the second and third realizations (second and third rows of 

Figure 4), the state at the mission time depends on the considered cut   of maxH ; in 

particular, for small   the state is uncertain as represented by a possibility larger 



                                                 Methods of Uncertainty Analysis in Prognostics                                                 321 

  

than 0 of both success and failure, while for large values of   the state is of failure 

in the second realization simulation and success in the third one, which end with 

  9.88missh T   and 10.70 , respectively; 

- the realization 4 ends with a crack depth   6.37missh T   which corresponds to a 

success state independently of the considered cut   of 
maxH , i.e. to a possibility 

distribution which is singleton in 1; 

5. steps 2 to 4 have been repeated for 410am   realizations of the degradation process 

obtaining 410am   corresponding possibilistic random distributions 
a

f

i , 

41,...,10ai  ; 

6. the obtained 410  distributions 
a

f

i , 41,...,10ai   are aggregated by the joint 

aggregation or Ferson methods (Sections 3.2.1 and 3.2.2, respectively).  

According to the joint aggregation method (Section 3.2.1), the believe and 

plausibility are computed by simple averaging of the necessity N  and possibility   

measures (Figure 5, column 4 and 3, respectively) obtained in the different simulations, 

i.e.: 

   
 

1
1

a

a

a

m
f

i

i

S

a

N success

Bel success Bel X
m


  


 

 

Figure 5: Application of the hybrid method of uncertainty representation (columns 1-2) and joint 

aggregation method for the uncertainty propagation (column 3-4), with regards to the four 

realizations of the degradation process shown in Figure 4 
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   
 

1
1

a

a

a

m
f

i

i

S

a

success

Pl success Pl X
m





  


 

where the  
a

f

iN success  and the  
a

f

i success  are obtained by eqs. (3) and (4). 

From the 410am   simulations it turns out that   0.896Bel success   and 

  0.927Pl success  . This result merges the aleatory uncertainty represented by the 

different realizations of the stochastic degradation process with the epistemic uncertainty 

represented by the possibilistic random distributions 
a

f

i , 41,...,10 .ai   In line with the 

interpretation of the believe and plausibility functions as limiting probability values, one 

may say that the probability that the non-repairable component survives the degradation 

process up to the mission time is between 0.896 and 0.927. 

Alternatively, according to Ferson aggregation method (Section 3.2.2), firstly a new 

possibility distribution 
ai

  is obtained from 
a

f

i  using eq. (12), 41,...,10 .ai   With 

reference for example to the 0.95 cut  (dotted line in Figure 6, second column) the new 

possibility distributions 
0.95

ai
  for the four random realizations of the degradation process 

of Figure 4 are represented in Figure 6 third column. Notice that the first and second 

simulated degradation evolutions (first and second row of Figure 6) are characterized by a 

0.95 cut  of 
a

f

i  given only by 1SX  , thus leading to 0.95

1  and 0.95

2  being a singleton 

in 1SX  ; on the contrary, the third and fourth simulated degradation processes are 

characterized by a 0.95 cut  of 
a

f

i  formed only by 0SX  , thus leading to 0.95

3  and 

0.95

4  being a singleton in 0.SX    

The third and fourth columns of Figure 6 show the necessity and possibility 

measures corresponding to 
a

f

i .  

Finally, the lower and upper cumulative discrete distributions  0.95

SF X  and 

 
0.95

SF X  are obtained as means of the values of  0.95 0,
ai SN X  and  0.95 0,

ai SX  for the 4 

simulated degradation processes (last row of Figure 6). Notice that the limiting interval for 

the probability of 0SX   is    0 , 0F F 
 

 and thus the limiting interval for the 

probability of 1SX   is    1 0 ,1 0F F  
 

. 

Applying the Ferson aggregation method to all 410am   random possibility 

distributions  
a

f

i SX , 41,...,10ai   and considering all the 21 cuts   of  maxH  

 0,0.05,...,1  , the limiting bounds of the component reliability reported in Figure 7(a) 

are obtained. The ordinates report the values of   in correspondence of the upper and 

lower bounds of the component reliability values in abscissa. 

In this case, to interpret the results it is necessary to choose an cut   

maxmax
,H H

 
  

 of  maxH . In particular, the degree of certainty that maxmax
,H H

 
  
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contains the value of the uncertain value 
maxH  is maxmax

,N H H
  

    
, which is equal to 

 1  . In this view, the 0 cut  of  maxH  should be considered if one wants to be 

completely sure (i.e., with degree of certainty equal to 1) to include the correct value of 

maxH  in the propagation of the uncertainty, which gives rise to a component reliability 

between  0.873,0.940 . Otherwise, if the analyst wants to reduce the epistemic 

uncertainty on the component reliability, then he/she should reduce  1   (the degree of 

certainty). For example, considering a 0.95 cut , the reliability lies in the interval 

 0.912,0.916 . 

5.1.2. Application of the purely probabilistic method 

For applying the purely probabilistic method, firstly the probability distribution 

describing the epistemic uncertainty on maxH  is obtained by applying the transformation 

described in Section 2.3 to the triangular possibility distribution considered in the 

previous Section (Figure 3(a), dotted line). The obtained probability density function is 

shown in Figure 3(a) (continuous line) and the corresponding cumulative distribution 

function in Figure 3(b) (continuous line). The propagation of the uncertainty can then be 

performed according to the double-randomization method of Section 3.1 characterized by 

a separation between the epistemic uncertainty (outer randomization loop) and the 

aleatory uncertainty (inner randomization loop). Upon performing 
410am   simulations 

of the degradation process for each of the 
310em   values of maxH  sampled from the 

probability distribution of Figure 3, the obtained 
310  component reliabilities are used to 

build the cumulative function of Figure 7(b). 

For the interpretation of the results, it is possible to choose a level of confidence 

 
Figure 6: Application of the hybrid method of uncertainty representation (column 1) and Ferson 

aggregation method for the uncertainty propagation (column 2-4), with regards to the four 

realizations of the degradation process shown in Figure 4 
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   (a)         (b) 

Figure 7: Comparison of the results obtained with: (a) joint aggregation method (continuous line), 

Ferson aggregation method (asterisk) and (b) purely probabilistic method 

 1   and then provide the confidence interval given by the percentiles 
2

 
 
 

 and 

1
2

 
 

 
. For example for a confidence of  1 0.95  , the resulting confidence interval 

for the component reliability is  0.889,0.935 .  

5.1.3. Comparison of the results 

Let us first compare the representation of the available uncertain information given 

by the probabilistic and possibilistic methods. Figure 7(b) shows that while the 

possibilistic representation of the uncertainty on 
maxH  allows us to consider all the 

possible cumulative distributions lying between the believe and the plausibility measures 

of the set  0,A u , the probabilistic representation forces us to consider only one 

specific cumulative distribution, albeit conservatively the one containing as much 

uncertainty as possible (thanks to the transformation of Section 2.3). In this application 

characterized by a rather limited available information on the value of 
maxH , the 

probabilistic density function tends for this reason to force information in the 

representation. 

With respect to the uncertainty propagation and representation techniques, notice 

that both the purely probabilistic and the Ferson methods keep separate the epistemic 

uncertainty from the aleatory uncertainty whereas the hybrid aggregation method merges 

them. From a practical point of view, the interpretation of the results obtained by the 

hybrid method is straightforward (the component reliability is between [0.896,0.927]), 

while the purely probabilistic and the Ferson methods require to fix the level of 

confidence that the analyst wants in the estimation. Notice, however, that the 

interpretation of the parameter  1   of the Ferson method and the parameter  1   of 

the purely probabilistic method is different, the former indicating a degree of certainty that 

the interval of values of maxH  that is considered in the uncertainty propagation contains 

the true maxH , the latter being amenable of the classical interpretation of confidence level 
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in statistics. Hence, fixing  1   does not imply a choice on the interval of values of the 

epistemic variable that will be propagated further in the analysis, whereas fixing  1   

does not imply a choice on the probability that the obtained confidence interval of the 

success probability will contain its true value. Due to the different interpretation of the 

parameters, fixing a confidence level, for example    1 1 0.95     , leads to 

different intervals for the component reliability, i.e. [0.875,0.940] for the Ferson method 

and [0.889,0.935] for the purely probabilistic method. 

5.2. Time To Failure estimation 

If the reliability prediction made at time 
pt  on the basis of the crack depth 

measurement  ph t  is not satisfactory because the probability that the component fails to 

perform its function up to 
missT  is too low, then one should proceed to the estimation of 

the component TTF in order to establish a proper maintenance intervention or component 

replacement. Given that in the case study considered in Section 4 a component is 

functioning until the value of its degradation  h t  exceeds the value of the failure upper 

threshold 
maxH , the TTF is a function of the crack depth time evolution  h t , of the value 

of the failure threshold 
maxH  and of the present time value 

pt  at which the crack depth 

measurement  ph t is collected: 

      max max, , , where minp e p eTTF f h t H t t t t t h t H      (30)  

5.2.1.  Application of the hybrid Monte Carlo-possibilistic method 

Considering as before the triangular possibility distribution  maxH  of Figure 3(a) 

for representing the epistemic uncertainty associated to the information on the value of the 

threshold 
maxH  and the measurement of crack depth  1 1h  , the hybrid procedure of 

Section 3.2 for the propagation of the uncertainty in the estimation of the 

max( ( ), , )pTTF f h t H t  proceeds along the same sequence of computational steps 1-6 

illustrated in Section 5.1 for the estimation of the component reliability. 

Figure 8, first column, reports the 
a

f

i  of the TTF obtained for the four simulated 

degradation evolutions of Figure 4. 

 By the joint aggregation method of Section 3.2.1, the believe and plausibility 

functions are again obtained by simple averaging of the necessity N  and possibility   

measures obtained in the different 410am   simulations (Figure 9(a)).  

For a confidence of 0.95  , given that   0,962 0.95Pl   and 

  0,1015 0.95Bel  , it is possible to conclude that the upper limit of the 95% one sided-

confidence interval of the TTF is between  962,1015 . Notice that the width of this 

interval is caused by the epistemic uncertainties on the parameters maxH , i.e. if maxH  were 

perfectly known, then   0,Bel t  and   0,Pl t  would coincide. Furthermore, the analyst 

has to choose only a confidence parameter related to the aleatory uncertainty, i.e. the  
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Figure 8: Application of the hybrid method of uncertainty representation (column 1) and joint 

aggregation method for the uncertainty propagation (columns 2-3), with regards to the four 

realizations of the degradation process shown in Figure 4 

 
(a)      (b) 

Figure 9: Comparison of the results obtained with: (a) joint aggregation method, (b) Ferson 

aggregation method 

 
confidence level  , whereas he/she is not asked to provide a confidence level on the 

epistemic uncertainty. 

Alternatively, with the Ferson aggregation method of Section 3.2.2 and a 0.95 cut  

(dotted line in Figure 10, first column) the possibility distributions 
0.95

ai
  represented in 

Figure 10, second column are obtained for the four random realizations of the degradation 
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process of Figure 4. The third and fourth columns of Figure 10 show the necessity 
0.95

ai
N  

and possibility 
0.95

ai
  measures corresponding to the 0.95 cut  of the  maxH . 

Finally, the lower and upper cumulative distributions  0.95
F t  and  

0.95

F t  are 

obtained as means of the values of 
0.95

ai
N  and 

0.95

ai
  for the 4 simulated degradation 

processes (last row of Figure 10). 

 
Figure 10: Application of the hybrid method of uncertainty representation (column 1) and Ferson 

aggregation method for the uncertainty propagation (columns 2-4), with regards to the four 

realizations of the degradation process shown in Figure 4. 

As before, applying the Ferson aggregation method to all 410am   random 

possibility distributions  
a

f

i TTF , 41,...,10ai  , 21 pairs of limiting cumulative 

distributions of the TTF for the considered 21 cuts   of  maxH , 0,0.05,...,1  , are 

obtained. For example, Figure 9(b) reports the cumulative boundary distributions obtained 

for the 0 cut , 0.5 cut  and 1 cut . To be completely sure (i.e. with degree of certainty 

equal to 1) of including the correct value of 
maxH  in the propagation of the uncertainty 

then the 0 cut  of  maxH  should be considered, which gives rise to the two bounding 

cumulative distribution functions reported in Figure 9(b). Figure 11 reports the limiting 

bounds of the upper limit of the 95% one-sided confidence level of the TTF function of 

the cut  . For example, considering a 0.95 cut , at 95% confidence the upper limit for 

the TTF lies in the interval  983,988  (dotted line in Figure 11). Notice that the analyst in 

this case should provide two confidence values,   for the epistemic uncertainty affecting 

maxH  and   for the aleatory uncertainties in the degradation process. 
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Figure 11:Limiting bounds of the upper limit of the 95% one sided confidence level of the TTF 

computed with the Ferson aggregation method 

5.2.2. Application of the purely probabilistic method 

Upon performing 410am   simulations of the degradation process for each of the 

310em   values of 
maxH  sampled from the probability distribution of Figure 3, 310  

cumulative distributions are obtained. Figure 12(a) reports, as example, 10 of the resulting 

cumulative distributions. 

If one accepts to merge the epistemic and aleatory uncertainties for a synthetic 

representation of the results, considering that each of the obtained cumulative distributions 

is the conditional probability of the TTF given a certain value of 
maxH , it is possible to 

compute the cumulative distribution of the TTF (Figure 12(b)) by: 

       max max maxPr |F t TTF t F t H g H dH     (31)   

where  maxg H  is the probability density function of 
maxH  (Figure 5(a), 

continuous line). For the interpretation of the results, it is possible to choose a level of 

confidence   and then provide the upper limit of the one-sided confidence level of the 

TTF. For example for a confidence level 0.95   (dotted line in Figure 12), the resulting 

upper limit is 988, which means that with 95% probability the TTF is lower or equal than 

988. 

On the other side there are several reasons, both from a practical and mathematical 

point of view [1, 29], that suggest to keep separate the epistemic and aleatory 

uncertainties. The main advantage is that the separation of uncertainty permits to 

understand the causes of the uncertainty in the results. In this respect, a possible way to 

represent separately the uncertainty is to fix a given percentile of the cumulative 

distributions  max
e ei i

F TTF H , and then build the probabilistic distribution of this 

percentile from the different realizations of the epistemic variables. Figure 13 reports the 

cumulative distribution of the  =0.95 percentile of  max
e ei i

F TTF H .  

For the interpretation of the obtained distribution it is possible to choose, also in 

this case, an additional level of confidence 1   connected with the epistemic uncertainty 
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and then provide the confidence interval for the 95% percentile of the TTF given by the 

percentiles  / 2  and  1 / 2 . For example, for a confidence  1 0.95   with 

respect to the epistemic uncertainty the 95% percentile of the TTF is between [939,1020]. 

5.2.3. Comparison of the results 

Let us first compare the representation of the available uncertain information given 

by the probabilistic and possibilistic methods. Figure 9 shows that while the possibilistic 

representation of the uncertainty on 
maxH  allows us to consider all the possible 

cumulative distributions lying between the believe and the plausibility measures of the set 

 0,A u , the probabilistic representation, Figure 12(b) and Figure 13, forces us to 

consider only one specific cumulative distribution, albeit conservatively the one 

containing as much uncertainty as possible (thanks to the transformation of Section 2.3). 

In this application characterized by a rather limited available information on the value 

of
maxH , the probabilistic density function tends for this reason to force information in the 

representation. 

With respect to the uncertainty propagation and representation techniques, notice 

that the interpretation of the results obtained by all proposed methods, possibilistic and 

probabilistic, requires to fix the level of confidence β that the analyst wants in the 

estimation, i.e. the classical confidence level in statistics. Furthermore, the Ferson method 

requires an additional level of trust on the value of 
maxH , i.e. the parameter  1   

indicating a degree of certainty that the interval of values of 
maxH  that are considered in 

the uncertainty propagation contains the true 
maxH . Also the interpretation of the results 

obtained with the purely probabilistic method, maintaining separate the uncertainty, 

requires a supplementary parameter, representing the confidence level on the 95% 

percentile of the TTF. 

                      

(a)                                   (b) 

Figure 12: Results obtained with the pure probabilistic method: (a) 10 conditional cumulative 

probability distributions; (b) total cumulative probability distribution 

 

Table 2 reports the confidence intervals obtained for the TTF by the different 

methods fixing the levels of confidence   and   to 0.95. Notice that the hybrid method 

combined with the Ferson aggregation method finds a larger confidence interval than the 

purely probabilistic method in the case in which the epistemic and aleatory uncertainties  
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Figure 13: Cumulative distribution of the 0.95   percentile of the TTF 

Table 2. Synthesis of the results 

   1   Confidence interval 

Hybrid method and joint aggregation method 0.95 - [962, 1015] 

Hybrid method and Ferson aggregation 

method 
0.95 0.95 [930, 1039] 

Purely probabilistic method – merging 

aleatory and epistemic uncertainties 
0.95 - 988 

Purely probabilistic method – keeping 

aleatory and epistemic uncertainties separate 
0.95 0.95 [939, 1020] 

 

are kept separated. This is due to the different interpretation of the parameter  1   of 

the Ferson method and of the purely probabilistic method, the former indicating a degree 

of certainty that the interval of values of 
maxH  that are considered in the uncertainty 

propagation contains the true 
maxH , the latter being amenable of the classical 

interpretation of confidence level in statistics. Hence, fixing  1   in the probabilistic 

method does not imply a choice on the interval of values of the epistemic variable that 

will be propagated further in the analysis, whereas in the Ferson method it does not imply 

a choice on the probability that the obtained confidence interval of the success probability 

will contain its true value. 

6.     Conclusions 

In this paper, the problems of the representation and propagation of uncertainty in 

prognostic models have been addressed by investigating a purely probabilistic method and 

a hybrid Monte Carlo and possibilistic method. 

In the pure probabilistic approach, both epistemic and aleatory uncertainties are 

represented in terms of probability distributions and a double-randomization Monte Carlo 

simulation is carried out in which epistemic variables are sampled in the outer loop and 

aleatory variables are sampled in the inner loop, to propagate the uncertainty through the 

model. On the other side in the hybrid Monte Carlo and possibilistic method, Monte Carlo 

sampling of the random variables is repeatedly performed to process the aleatory behavior 

and possibilistic distribution analysis is carried out at each sampling to process the 

epistemic uncertainty in the epistemic variables. 
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The investigation of the two methods has been carried out with reference to a case 

study regarding the prediction of component reliability and time to failure, knowing at the 

current time the value of the degradation parameter of a component which is randomly 

degrading in time according to a stochastic fatigue crack growth model of literature. 

With respect to the representation of the uncertainties affecting the parameters of 

the degradation process (epistemic uncertainty), possibilistic distributions seem to provide 

a more satisfactory characterization of the uncertainties than probability distributions in 

the common case of incomplete information or knowledge on the parameters values, 

whereas the randomness due to the inherent variability in the system behavior (aleatory 

uncertainty) is appropriately represented by probability distributions. 

For what concerns the propagation of the uncertainties in the input variables and 

parameters to the output of the degradation model, the purely probabilistic method results 

in a family of cumulative distribution functions. The information contained in these 

distributions has been aggregated in two different ways: i) by merging the epistemic and 

aleatory uncertainties affecting the reliability or TTF distribution onto one single 

cumulative distribution ii) by maintaining them separated. Although in the former case it 

is possible to obtain a synthetic value of the reliability or of a given percentile of the TTF 

whereas in the latter case one can only build a probabilistic distribution of the reliability 

or of a percentile of the TTF from the different realizations of the epistemic variables, it 

seems more useful for the interpretation of the results to keep the uncertainties separated 

providing to the analyst the possibility of understanding the causes of the uncertainty. In 

this respect, notice that the epistemic uncertainty affecting the results, represented by the 

spread of the probabilistic distribution of the percentile, can be theoretically reduced by 

acquiring new information on the parameters of the degradation process. 

The hybrid Monte Carlo - Possibilistic method has proven effective for jointly 

propagating the aleatory and epistemic uncertainties through the model. The possibilistic 

random distributions obtained by this method can be combined into a set of limiting 

cumulative distributions characterized by different degrees of confidence (Ferson 

Aggregation Method) or, accordingly to the Dempster-Shafer Theory, into Belief and 

Plausibility measures that can be interpreted as “rational averages” of the above 

mentioned limiting cumulative distributions (joint aggregation method). The interpretation 

of the results in the form of limiting cumulative distributions (Ferson aggregation method) 

requires the introduction of a degree of confidence directly connected with the confidence 

on the value of the epistemic parameters. On the contrary, the joint aggregation method 

provides average information on the limiting cumulative distributions without requiring to 

the analyst the definition of confidence levels, giving in this way a more synthetic, albeit 

less informative, representation of uncertainty in the prediction of the reliability or TTF. 

Finally, the hybrid Monte Carlo - Possibilistic method for the prognosis of the 

reliability or TTF of a degrading component seems more appropriate in case of lack of 

information or knowledge on the degradation model parameters given that it does not 

force information into the model and it is able to joint-propagate epistemic and aleatory 

uncertainties. 
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