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Abstract
In this work, bootstrapped Artificial Neural NetwkofANN) and quadratic Response Surface (RS)
empirical regression models are used as fast-ruprsarrogates of a thermal-hydraulic (T-H)
system code to reduce the computational burdencaged with the estimation of the functional
failure probability of a T-H passive system.
The ANN and quadratic RS models are built on fewa dapresentative of the input/output
nonlinear relationships underlying the T-H code.c®tuilt, these models are used for performing,
in reasonable computational time, the numerousesystesponse calculations required for failure
probability estimation. A bootstrap of the regressimodels is implemented for quantifying, in
terms of confidence intervals, the uncertaintiesoasted with the estimates provided by ANNs and
RSs.
The alternative empirical models are compared aase study of an emergency passive decay heat
removal system of a Gas-cooled Fast Reactor (GFR).



1 Introduction

All innovative reactor concepts make use of passafety features, to a large extent in combination
with active safety and operational systems (Maaiaal., 2008). According to the definitions of the
International Atomic Energy Agency (IAEA), a passigystem does not need external input
(especially energy) to operate (IAEA, 1991), whliey are expected to contribute significantly to
the safety of nuclear power plants thanks to theauliar characteristics of simplicity, reduction o
human interaction and reduction or avoidance afilvare failures (Mathews et al., 2008).

However, the uncertainties involved in the modeliamd functioning of passive systems are usually
larger than for active systems. This is due tah@ intrinsically random nature of several of the
physical phenomena involved in the functioning bé tsystem (aleatory uncertainty); ii) the
incomplete knowledge on the physics of some of éhphenomena (epistemic uncertainty)
(Apostolakis, 1990; Helton, 2004).

Due to these uncertainties, the physical phenonmetédved in the passive system functioning (e.qg.,
natural circulation) might develop in such a wayldad the system to fail its intended function,
even if safety margins are present. In fact, dewiatin the natural forces and in the conditions of
the underlying physical principles from the expdctaes can impair the function of the system
itself (Marqués et al., 2005; Patalano et al., 2008

The problem may be analytically framed by introdhgcihe concept of functional failure, whereby a
passive system may fail to perform its function tlmueleviations from its expected behavior which
lead the load imposed on the system to excee@jiaoity (Burgazzi, 2003; Burgazzi, 2007). This
concept has been exploited in a number of worksemted in the literature (Jafari et al., 2003;
Marqués et al., 2005; Pagani et al., 2005; BassiMarqués, 2008; Fong and Apostolakis, 2008;
Mackay et al., 2008; Mathews et al., 2008; Pataktral., 2008; Zio and Pedroni, 2009a and b), in
which the passive system is modeled by a detaieéchanistic T-H system code and the
probability of failing to perform the required furan is estimated based on a Monte Carlo (MC)
sample of code runs which propagate ¢pestemiq(state-of-knowledge) uncertainties in the model

and the numerical values of its parameters/varsable

Since the probabilities of functional failure ofsgave systems are generally very small (e.g., ®f th
order of 10%), a large number of samples is necessary for &aislepestimation accuracy (Schueller,
2007); given that the time required for each rumhef detailed, mechanistic T-H system code is of
the order of several hours (Fong and Apostolaki¥)82 the MC simulation-based procedure

typically requires considerable computational effor



A viable approach to overcome the computationadéarassociated to the analysis is that of
resorting to fast-running, surrogate regression efspdalso called response surfaces or meta-
models, to substitute the long-running T-H modealecdlrhe construction of such regression models
entails running the T-H model code a predeterminegisonably large but feasibly small, number of
times (e.g., of the order of 50-100) for specifiedues of the uncertain input parameters/variables
and recording the corresponding values of the dutpunterest; then, statistical techniques are
employed for fitting the response surface of thgression model to the input/output data generated.
Several kinds of surrogate meta-models have beeentlg applied to safety related nuclear,

structural and hydrogeological problems, includpadynomial Response Surfaces (RSs) (Bucher
and Most, 2008; Fong and Apostolakis, 2008; Gawvid #au, 2008; Liel et al., 2009), Gaussian

meta-models (Volkova et al., 2008; Marrel et aD0?) and learning statistical models such as
Artificial Neural Networks (ANNs), Radial Basis Fetions (RBFs) and Support Vector Machines

(SVMs) (Deng, 2006; Hurtado, 2007; Cardoso et2&l08; Cheng et al., 2008).

In this work, the possibility of using Artificial &ural Networks (ANNs) and quadratic Response
Surfaces (RSs) to reduce the computational burdeocated to the functional failure analysis of a
natural convection-based decay heat removal systenGas-cooled Fast Reactor (GFR) (Pagani et
al., 2005) is investigated. To keep the practipgliaability in sight, asmallset of input/output data

examples is considered available for constructiegANN and quadratic RS models: different sizes
of the (small) data sets are considered to showetfeets of this relevant practical aspect. The
comparison of the potentials of the two regressemhniques in the case at hand is made with
respect to the estimation of the"®percentile of the naturally circulating coolantngerature and

the functional failure probability of the passiwestem.

Actually, the use of regression models in safettycat applications like nuclear power plants still
raises concerns with regards to the control ofrthecuracy; in this paper, the bootstrap method is
used for quantifying, in terms abnfidence intervalsthe uncertainty associated to the estimates
provided by the ANNs and quadratic RSs (Efron ah@3hirani, 1993; Zio, 2006; Cadini et al.,
2008; Secchi et al., 2008; Storlie et al., 2008).

The paper organization is as follows. In Sectiom 8napshot on the functional failure analysis of
T-H passive systems is given. Section 3 is devitethe detailed presentation of the bootstrap-

based method for quantifying, in termsooihfidence intervalgshe model uncertainty associated to
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the estimates of safety parameters computed by ANN quadratic RS regression models. In
Section 4, the case study of literature concertimgg passive cooling of a GFR is presented. In
Section 5, the results of the application of baagted ANNs and quadratic RSs to the percentile
and functional failure probability estimations ammpared. Finally, conclusions are provided in the

last Section.

2 The quantitative steps of functional failure analyss of T-H passive
systems

The basic steps of the quantitative phase of thetional failure analysis of a T-H passive system
are (Marques et al., 2005):
1. Detailed modeling of the passive system responsedans of a deterministic, best-estimate
(typically long-running) T-H code.
2. Identification of the parameters/variables, modeld correlations (i.e., the inputs to the T-H
code) which contribute to thencertaintyin the results (i.e., the outputs) of the bestreste
T-H calculations.
3. Propagation of the uncertainties through the detestic, long-running T-H code in order to

estimate the functional failure probability of thassive system.

Step 3. above relies anultiple (e.g., many thousands) evaluations of the T-H dodelifferent
combinations of system inputs; this can renderagsociated computing cost prohibitive, when the
running time for each T-H code simulation takesesalvhours (which is often the case for T-H
passive systems).

The computational issue may be tackled by replattiedong-running, original T-H model code by
a fast-running, surrogate regression model (prgpaullt to approximate the output from the true
system model). In this paper, classical three-kyefeed-forward Artificial Neural Networks
(ANNS) (Bishop, 1995) and quadratic Response SesféRSs) (Liel et al., 2009) are considered for
this task. The accuracy of the estimates obtais@malyzed by computing a confidence interval by
means of the bootstrap method (Efron and ThibshiE03); a description of this technique is

provided in the following Section.



3 The bootstrap method for point value and confidenceinterval

estimation

3.1 Empirical regression modelling

As discussed in the previous Section, the compmutatiburden posed by uncertainty and sensitivity
analyses of T-H passive systems can be tackle@figaing the long-running, original T-H model
code by a fast-running, surrogate regression m@kslause calculations with the surrogate model
can be performed quickly, the problem of long sitioh times is circumvented.

Let us consider a generic meta-model to be builtpfErforming the task of nonlinear regression,
i.e., estimating the nonlinear relationship betwaerector of input variables = {xi, X, ..., X, ...,

X, } and a vector of output targeys= {y1, ¥, ..., }i, ..., ¥, }, on the basis of &nite (and possibly
smal) set of input/output data examples (i.e., patferm, ={(Xp,yp), p= lZ,...,Ntrain} (Zio,

2006). It can be assumed that the target vectsrrelated to the input vecter by an unknown

nonlinear deterministic functiop, (x) corrupted by a noise vecte(x), i.e.,

y(x) =, (x)+e(x). (1)
Notice that in the present case of T-H passiveesydtunctional failure probability assessment the
vector x contains the relevant uncertain system parameteiables, the nonlinear deterministic
function ,uy(x) represents the complex, long-running T-H mechanmsbdel code (e.g., RELAP5-
3D), the vectory(x) contains the output variables of interest for #malysis and the noisdx)

represents the errors introduced by the numerieghoads employed to calculapey(x) (Storlie et

al., 2008); for simplicity, in the following we asse e(x) =0 (Secchi et al., 2008).
The objective of the regression task is to estimatx) in (1) by means of a regression function

f(x, w) depending on a set of parameterso be properly determined on the basis of thelafizi
data seDyain; the algorithm used to calibrate the set of patars@ is obviously dependent on the
nature of the regression model adopted, but inrgéiteaims at minimizing the mean (absolute or

quadratic) error between the output targets obtiginal T-H codey, = #,(x,), p =1, 2, ... Nurain,

and the output vectors of the regression mogigk: f (xp,w*), p=1, 2, ...Nyan; for example, the

Root Mean Squared Error (RMSE) is commonly adoftdtiis purpose (Zio, 2006):

RMSE=—~—3'S°(y,, -9, ) )
Nygin O pLo TRl

train o p=l1=1



Once built, the regression mod¢k, w) can be used in place of the T-H code to calcualg
quantity of interesg, such as the 5percentile of a physical variable critical for thgstem under
analysis (e.g., the fuel cladding temperature)har functional failure probability of the passive
system.

In this work, the capabilities of quadratic Respoiurface (RS) and three-layered feed-forward
Artificial Neural Network (ANN) regression modelseacompared in the computational tasks
involved in the functional failure analysis of aHl'passive system. In extreme synthesis, quadratic
RSs are polynomials containing linear terms, squgeens and possibly two-factors interactions of
the input variables (Liel et al., 2009); the RS @tdhle parameters’ are usually calibrated by
straightforward least squares methods. ANNs arepatimg devices inspired by the function of the
nerve cells in the brain (Bishop, 1995). They apenposed of many parallel computing units
(called neurons or nodes) interconnected by weigloethections (called synapses). Each of these
computing units performs a few simple operationd @ammunicates the results to its neighbouring
units. From a mathematical viewpoint, ANNs consist set of nonlinear (e.g., sigmoidal) basis
functions with adaptable parametersthat are adjusted by a processrafning (on many different
input/output data examples), i.e., an iterativecpss of regression error minimization (Rumelhart et
al., 1986). The particular type of ANN employedtims paper is the classical three-layered feed-
forward ANN trained by the error back-propagatitgoathm.

The details of these two regression models argapuirted here for brevity: the interested reader

may refer to the cited references and the copitersiure in the field.

3.2 The bootstrap method

The approximation of the system output providedahyempirical regression model introduces an
additional source of uncertainty, which needs to dwaluated, particularly in safety critical
applications like those related to nuclear powanptechnology. One way to do this is by resorting
to bootstrapped regression models (Efron and Thinsih 1993), i.e., an ensemble of regression
models constructed on different data sets boogstidfrom the original one (Zio, 2006; Storlie et
al., 2008). The bootstrap method is a distribufree- inference method which requires no prior
knowledge about the distribution function of thederlying population (Efron and Thibshirani,
1993). The basic idea is to generate a sample tinenobserved data by sampling with replacement
from the original data set (Efron and Thibshirdri93). From the theory and practice of ensemble
empirical models, it can be shown that the estimgteen by bootstrapped regression models is in
general more accurate than the estimate of therbgsgssion model in the bootstrap ensemble of
regression models (Zio, 2006; Cadini et al., 2008).



In what follows, the steps of the bootstrap-basetitiique of evaluation of the so-called Bootstrap
Bias Corrected (BBC) point estima(A@BBC of a generic quantit®) (e.g., a safety parameter) by a

regression moddi(x, w'), and the calculation of the associated BBC Ceanmfig Interval (Cl) are
reported (Zio, 2006; Storlie et al., 2008):

1. Generate a sebD y4n Of input/output data examples by sampliNg.n independent input
parameters values, p = 1, 2, ... Nyain, and calculating the corresponding seNgfin output
vectorsy, = uy(Xp) through the mechanistic T-H system code. Plamioan sampling, Latin
Hypercube Sampling or other more sophisticated xgatal design methods can be
adopted to select the input vectggsp = 1, 2, ... Nyain (Gazut et al., 2008).

2. Build a regression modelf(x, w) on the basis of the entire data set

Dirain :{(xp, yp), p= lZ,...,Ntrain} (step 1. above) in order to obtain a fast-runrsngogate

of the T-H model code represented by the unknowrimear deterministic functioay(x) in
2).

3. Use the regression modék, w') (step 2. above), in place of the original T-H rabcbde, to

provide a point estimaté of the quantityQ, e.g., the 95 percentile of a system variable of
interest or the functional failure probability &t T-H passive system.
In particular, draw a sample dfy new input vectorsx, r = 1, 2, ...,Ny, from the
corresponding epistemic probability distributionsdafeed the regression modigk, w)
with them; then, use the corresponding output vegto= f(x,, W), r = 1, 2, ...,Ny, to
calculate the estimaté for Q (the algorithm for computin@ Is obviously dependent on
the meaning of the quantit®). Since the regression modik, w’) can be evaluated
quickly, this step is computationally costless eifeahe numbemNy of model estimations is
very high (e.g.Nr = 1 or 10).

4. Build an ensemble ofB (typically of the order of 500-1000) regression deis

{fb(x,w;),b:lz,...,B} by random sampling with replacement and use edchhe

bootstrapped regression modilx, w, ), b= 1, 2, ... B, to calculate an estima(éb, b=1,

2, ...,B, for the quantityQ of interest: by so doing, a bootstrap-based exgliprobability
distribution for the quantityQ is produced which is the basis for the constructd the
corresponding confidence intervals. In particutepeat the following steps ftw= 1, 2, ...,
B:



a. Generate a bootstrap data €2t . ={(Xp,b, yp,b)’ p= 1:21---’Ntrain}’ b=1,2 ..B,
by performing random sampling with replacement fréhe original data set
D,.in :{(xp,yp),p= lZ,...,Ntrain} of Niain input/output patterns (steps 1. and 2.

above). The data sdDy4n,n IS thus constituted by the same numlidgg, of
input/output patterns drawn among thos®igi, although, due to the sampling with
replacement, some of the patternsDip,i, will appear more than once Diain,b,
whereas some will not appear at all.

b. Build a regression modél(x, wy ), b = 1, 2, ... B, on the basis of the bootstrap data
set Dy :{(x ob ypyb), p= l2,...,Ntram} (step 3.a. above).

c. Use the regression modi(x, W, ) (step 4.b. above), in place of the original T-H

code, to provide a point estima@) of the quantity of intere<p. It is important to

note that for a correct quantification of the cdefice interval the estimaf.éD must

be based on the same input and output vectprandy,, r = 1, 2, ..., Ny,

respectively, obtained in step 3. above.
5. Calculate the so-called Bootstrap Bias CorrectdgiqBpoint estimateéBE}C forQ as
Qeac = 2Q ~ Quoor €))
WhereQ is the estimate obtained with the regression mifgel’) trained with the original

data seDyain (steps 2. and 3. above) a@oot is the average of tHg estimatesQID obtained

with theB regression model(x, Wy ), b=1, 2, ...B (step 4.c. above), i.e.,
1& 4

Qboot = _sz . (4)
Bta

The BBC estimatéﬁBBC in (3) is taken as the definitive point estimaie@.

The explanation for expression (3) is as followgain be demonstrated that if there is a bias
in the bootstrap average estimafng)ot in (4) compared to the estima@ obtained with the
single regression modé{x, w) (step 3. above), then the same bias exists insitngle
estimate@ compared to the true val@@of the quantity of interest (Baxt and White, 1995)
Thus, in order to obtain an appropriate, i.e. loiasected, estimaté}BBC for the quantity of
interestQ, the estimateé must be adjusted by subtracting the corresponbiiag @bom -

Q): as a consequence, the final, bias-correctematﬂiéBBC is QBBC =Q - (Qboot - Q) =

26 - éboot .



6. Calculate the two-sided Bootstrap Bias CorrecteBGR100-(1 -a)% Confidence Interval
(CI) for the BBC point estimate in (3) by performithe following steps:

a. Order the bootstrap estimat@), b=1, 2, ..B, (step 4.c. above) by increasing
values, such thaﬁ(i) = Qb forsomeb=1, 2, ...B, andQ(l) < Q(Z) <. <(§(b) <..<
Q(B)'

b. Identify the 100v/2" and 100-(1 -«/2)" quantiles of the bootstrapped empirical
probability distribution ofQ (step 4. above) as th®-f/2]" and B-(1 — «/2)]"

elementsé([m,zl) and Q([B@_a,z)]), respectively, in the ordered Iiét(l) < Q(Z) <..<
Q(b) <.. <(§(B); notice that the symbol [-] stands for “closeseger”.

c. Calculate the two-sided BBC-100-(&)% CI for QBBC as

A

I,QBBC - (Qboot - Q([Bm/z]) )’ QBBC + (é([B[Cl—a/Z)]) - éboot )J )

An important advantage of the bootstrap methodias it provides confidence intervals for a given
guantity Q without making any model assumptions (e.g., noity)ala disadvantage is that the
computational cost could be high when theBgg, and the number of adaptable parameterin
the regression models are large.

4 Case study

The case study considered in this work concernsgteral convection cooling in a Gas-cooled
Fast Reactor (GFR) under a post-Loss Of Coolantdéot (LOCA) condition (Pagani et al., 2005).
The reactor is a 600-MW GFR cooled by helium flogvitnrough separate channels in a silicon
carbide matrix core whose design has been the |ubjestudy in the past several years at the
Massachussets Institute of Technology (MIT) (Pagéiail., 2005).

A GFR decay heat removal configuration is shownesddtically in Figure 1; in the case of a
LOCA, the long-term heat removal is ensured by ratairculation in a given numbeMoops Of
identical and parallel loops; only one of tNgps loops is reported for clarity of the picture: the
flow path of the cooling helium gas is indicatedtbg black arrows. The loop has been divided into
Nsections = 18 sections for numerical calculation; technicgtails about the geometrical and
structural properties of these sections are nadrteg here for brevity: the interested reader may
refer to (Pagani et al., 2005).



In the present analysis, the average core powdretaemoved is assumed to be 18.7 MW,
equivalent to about 3% of full reactor power (600M)M to guarantee natural circulation cooling at
this power level, a pressure of 1650 kPa in th@das required in nominal conditions. Finally, the
secondary side of the heat exchanger (i.e., itenm E2gure 1) is assumed to have a nominal wall

temperature of 90 °C (Pagani et al., 2005).

10. Upper Heat
11. Hot Heat / Exchanger Riser
Exchanger Plenum
54281
12. Heat Ll —+—— coolant channels

Exchanger (¥, o; = 40 Tadial nodes)
13. Cold HX.
Plenum

14. Upper HX \\9. Lower Heat
Dovncomer Exchanger Riser,
15. Blower and

Check valves

16. Lower HX
Downcomer
8. Inner coaxial duct

17. Outer coaxial duct

Nions = 18 sections I

18. Upper Downcormer chimney

/ 1. Lower Downcomer
6. Lower chimney

8662 5. Top reflector

coolant thannels\_

(Vs = 40 radial nodes) [ 4.Core

Figure 1. Schematic representation of one loohef@00-MW GFR passive decay heat removal

system (Pagani et al., 2005)

4.1 Uncertainties

Uncertainties affect the modeling of passive systefmere are unexpected events, e.g. the failure
of a component or the variation of the geometrdialensions and material properties, which are
random in nature. This kind of uncertainty, oftenmed aleatory (NUREG-1150, 1990; Helton,
1998; USNCR, 2002), is not considered in this wdrkere is also incomplete knowledge on the
properties of the system and the conditions in Wwhie passive phenomena develop (i.e., natural
circulation). This kind of uncertainty, often terchepistemic, affects the model representation of
the passive system behaviour, in terms of botbde) uncertainty in the hypotheses assumed and
(parametey uncertainty in the values of the parameters efrtfodel (Cacuci and lonescu-Bujor,

2004; Helton et al., 2006; Patalano et al., 2008).

Only epistemic uncertainties are considered in thiskw@&pistemic parameter uncertainties are
associated to the reactor power level, the presauitee loops after the LOCA and the cooler wall
10



temperature; epistemic model uncertainties arecegsa to the correlations used to calculate the
Nusselt numbers and friction factors in the forcedxed and free convection regimes. The

consideration of these uncertainties leads to #imition of a vectox of nine uncertain inputs of

the modelx = {xj :j=12...,9}, assumed described by normal distributions of knoweans and

standard deviations (Table 1, Pagani et al., 2005).

Name Mean,u | Standard deviation,s (% of u)

Parameter Power (MW),x; 18.7 1%

_ Pressure (kPa, 1650 7.5%
uncertainty Cooler wall temperature (°Cyz 90 5%
Nusselt number in forced convectiog, 1 5%

Nusselt number in mixed convectiog, 1 15%

Model Nusselt number in free convectioq, 1 7.5%
uncertainty Friction factor in forced convectiory 1 1%
Friction factor in mixed convectiong 1 10%

Friction factor in free convectiony 1 1.5%

Table 1. Epistemic uncertainties considered forag@8-MW GFR passive decay heat removal
system of Figure 1 (Pagani et al., 2005)

4.2 Failure criteria of the T-H passive system

The passive decay heat removal system of Figusec@risidered failed when the temperature of the
coolant helium leaving the core (item 4 in Figujeekceeds either 1200 °C in the hot channel or
850 °C in the average channel: these values arecteg to limit the fuel temperature to levels

which prevent excessive release of fission gasdshah thermal stresses in the cooler (item 12 in

Figure 1) and in the stainless steel cross duataexiing the reactor vessel and the cooler (items

from 6 to 11 in Figure 1) (Pagani et al., 2005)nBing by T." (x) and T2 (x) the coolant

out,core out,core
outlet temperatures in the hot and average chamesigectively, the system failure evéntan be

written as follows:

F={x:mre (x)>120¢0{x T2, (x)>850. (6)

out,core out,core
According to the notation of the preceding SecBoi,"" (x) =yi(x) and T2 (x) = y,(X) are

out,core out,core

the two target outputs of the T-H model.

11



5 Functional failure probability estimation by bootstrapped ANNs
and quadratic RSs

In this Section, the results of the applicationbobtstrapped Artificial Neural Networks (ANNS)
and quadratic Response Surfaces (RSs) for theagimof the functional failure probability of the
600-MW GFR passive decay heat removal system iar€idj are illustrated. Some details about the
construction of the ANN and quadratic RS regressmmdels are given in Section 5.1; their use for
estimating the percentiles of the hot-channel average-channel coolant outlet temperatures is
shown in Section 5.2; the estimation of the prolitgbof functional failure of the system is
addressed in Section 5.3. The uncertainties agedcia the calculated quantities are estimated by

bootstrapping of the regression models, as explam&ection 3.

5.1 Building and testing the ANN and quadratic RS regrasion models

RS and ANN models have been built with trainingssé,,, ={(Xp,yp),p= 12,...,Ntram} of

input/output data examples of different sidgsi, = 20, 30, 50, 70, 100; this has allowed extensive
testing of the capability of the regression modelseproduce the outputs of the nonlinear T-H
model code, based on different (small) numbersxafrgle data. For each siki., of data set, a
Latin Hypercube Sample (LHS) of the 9 uncertairuisghas been drawrg = {X1p, Xop, ..., Xip, -,
%ot P=1, 2, .....Nvan (Zhang and Foschi, 2004). Then, the T-H model dwiebeen run with

each of the input vectors, p = 1, 2, ...,Nyain, to obtain the corresponding bidimensional output
vectorsyy = uy(Xp) = {Yip, Y20}, P =1, 2, ...,Nyain (in the present case study, the numiweof
outputs is equal to 2, i.e., the hot- and averdgaiel coolant outlet temperatures, as explained in

Section 4.2). The training data d8f,,, ={(Xp, yp), p= 12,...,Ntram} thereby obtained has been used

to calibrate the adjustable parametersof the regression models, for best fitting the Triddel
code data. More specifically, the straightforwaeddst squares method has been used to find the
parameters of the quadratic RSs (Bucher and M088)2and the common error back-propagation
algorithm has been appliedti@in the ANNs (Rumelhart et al., 1986). Note thairagle ANN can

be trained to estimate both outputs of the modes loé interest, whereas a specific quadratic RS
must be developed for each output to be estimated.

The choice of the ANN architecture is critical fbe regression accuracy. In particular, the number
of neurons in the network determines the numberdpistable parameters available to optimally fit
the complicated, nonlinear T-H model code resposisd#ace by interpolation of the available
training data. The number of neurons in the inpyet isn; = 9, equal to the number of uncertain
input parameters; the numby of outputs is equal to 2, the outputs of interést; numben;, of

12



nodes in the hidden layer is 4 fban = 20, 30, 70 and 100, whereas it is 5 Myn = 50,
determined by trial-and-error. In case of a netwwitk too few neurons (i.e., too few parameters),
the regression functiof(x, w) has insufficient flexibility to adjust its respsm surface to fit the
data adequately: this results in poor generalinapooperties of interpolation when new input
patterns are fed to the network to obtain the spwading output; on the opposite side, excessively
increasing the flexibility of the model by introdag too many parameters, e.g., by adding neurons,
may make the network overfit the training datadieg again to poor generalization performance
when interpolating new input data. A trade-offypitally sought by controlling the neural model
complexity, i.e., the number of parameters, and ttaning procedure, e.g., by adding a
regularizationterm in the error function or arly stoppinghe training, so as to achieve a good fit
of the training data with a reasonably smooth regjom function which is not over-fit to the data
and therefore capable of generalization when iotat;ng new input data (Bishop, 1995). In the
present work, early stopping is adopted: @&alidation input/output data set

D, :{(xp, yp), p= 12,...,Nva|} made of patterns different from those of the irajnsetDyain IS

used to monitor the accuracy of the ANN model dyrihe training procedure; in practice, the
RMSE (2) is computed ob,; at different iterative stages of the training mdare (Figure 2): at
the beginning of training, this value decreasedaes the RMSE computed on the trainingBgtn;
later in the training, if the ANN regression modgdrts overfitting the data, the RMSE calculated
on the validation sdD,, Starts increasing and training must be stoppesh@i, 1995). It is fair to
point out that the increased ANN generalizationatelty typically achieved by early stopping is
obtained at the expense M, additional code simulations, with an increasehi@ tomputational
cost for the training of the ANN model. In this Wothe sizeN,4 of the validation set is set to 20
for all sizesSNirin Of the data sdDy,in considered, which means 20 additional runs ofTd#ié model

code.

RMSE

Validation data set, D_,

Training data set, D_ .

T >

0 Stop Training iterations

Figure 2. Early stopping the ANN training to avaderfitting
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As measures of the ANN and RS model accuracy, tmanwnly adopted coefficient of

determinationR*> and RMSE have been computed for each ougpuit= 1, 2, on a new data set

D —{(xp,yp), p= lZ,...,NteSJ of size Nwst = 20, purposely generated ftestingthe regression

test —

models built (Marrel et al., 2009), and thus difier from those used during training and validation.

Table 2 reports the values of the coefficient dedminationR* and of the RMSE associated to the
estimates of the hot- and average- channel coddatiet temperaturesT, . and T3S .,

respectively, computed on the test Bet; by the ANN and quadratic RS models built on dats s
Dyrain Of different sizedNyain = 20, 30, 50, 70, 100; the number of adjustabtampatersy” included

in the two regression models is also reported éongarison purposes.

Artificial Neural Network (ANN)
R? RMSE [°C]

Nian | Nva | Nes | Number of adjustable parametersvt | Ty L socore e
20 20 20 50 0.8937 0.895¢6 38.5 18.8
30 20 20 50 0.9140 0.8982 34.7 18.6
50 20 20 62 0.9822 0.9779 15.8 8.7
70 20 | 20 50 0.9891 0.9833 12.4 6.8
100 | 20 | 20 50 0.9897 0.9866 12.0 6.3

Quadratic Response Surface (RS)
R? RMSE [°C]

Nian | Nva | Nes | Number of adjustable parametersvt | Ty T e e e
20 0 20 55 0.5971 0.7914 75.0 26.6
30 0 20 55 0.8075 0.9348 51.9 14.8
50 0 20 55 0.9280 0.9353 31.7 14.6
70 0 20 55 0.9293 0.9356 31.4 14.3
100 0 20 55 0.9305 0.9496 31.2 13.1

Table 2. Coefficient of determinatid® and RMSE associated to the estimates of the hdt- a

average-channel coolant outlet temperatufe$,... and .22 ., respectively, computed on the test

set Qs Of Size Nst= 20 by the ANN and quadratic RS models built atadets [.in of different
sizes Nain = 20, 30, 50, 70, 100; the number of adjustablepzetersy’ included in the two

regression models is also reported for comparisorppses

The ANN outperforms the RS in all the cases comsiltefor example, folNy.n = 100, the
coefficients of determinatioR® produced by the ANN and the quadratic RS modeigHe hot-
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channel coolant outlet temperatufy.,. are 0.9897 and 0.9305, respectively, whereas the

corresponding RMSEs are 12.0 °C and 31.2 °C, réispgc This result is due to the higher
flexibility in modeling complex nonlinear input/quit relationships offered by the ANN with
respect to the quadratic RS: the ANN structure n@de large number of adaptable connections
(i.e., the synapses) among nonlinear operatings Uinie., the neurons) allows fitting complex
nonlinear functions with an accuracy which is sigrdo that of a plain quadratic regression model.
Actually, if the original T-H model is not quadmtjwhich is often the case in practice), a second-
order polynomial RS cannot becansistentestimator, i.e., the quadratic RS estimates magme
converge to the true values of the original T-H elodutputs, even for a very large number of
input/output data examples, in the limit fdkan — . On the contrary, ANNs have been
demonstrated to be universal approximants coftinuous nonlinear functions (under mild
mathematical conditions) (Cybenko, 1989), i.e.,pinciple, an ANN modelwith a properly
selected architecturean be a consistent estimator of any continuoudimear function, e.g. any

nonlinear T-H code simulating the system of interes

5.2 Determination of the 95" percentiles of the coolant outlet temperatures

For illustration purposes, a configuration whthops = 3 loops is considered for the passive system

of Figure 1.

The 100s™ percentiles of the hot- and average-channel coaatiet temperatured,’> . and

T2  are defined as the valugs -2 andT.2%7 | respectively, such that

out,core t,core out,core?
P(TOI:J(t),tCOI'e S TOr:J(t),t(’Jgre) = a (7)
and
P(Tae < Ta9e )=q. (8)

Figure 3, left and right, shows the Probability BignFunction (PDF) and Cumulative Distribution
Function (CDF), respectively, of the hot-channeblaat outlet temperaturg,c. . obtained with

Nr = 250000 simulations of the original T-H model ea@olid lines); the PDF and CDF of the
average-channel coolant outlet temperafif¢ . are not shown for brevity. The same Figure also

shows the PDFs and CDFs constructed Wwith= 250000 estimations frof® = 1000 bootstrapped
ANNSs (dashed lines) and RSs (dot-dashed lines) by, = 100 input/output examples.

15
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Figure 3. Hot-channel coolant outlet temperaturep@ial PDFs (left) and CDFs (right)
constructed with N= 250000 estimations from the original T-H codelig lines) and from
bootstrapped ANNs (dashed lines) and RSs (dot-ddstes) built on M., = 100 data examples

Notice that the “true” (i.e., reference) PDF andFCef T." _ (Figure 3, solid lines) have been

out,core
obtained with a very large numhgf (i.e., Nt = 250000) of simulations of the original T-H codt,
provide a robust reference for the comparisonsudit, the T-H code here employed runs fast
enough to allow repetitive calculations (one code lasts on average 3 seconds on a Pentium 4
CPU 3.00GHz): the computational time required big tleference analysis is thus 250000-3 s =
750000 s 209 h.

The overall good match between the results fromotiginal T-H model code and those from the
bootstrapped ANNs and RSs regression models leatis assert that the accuracy in the estimates
can be considered satisfactory for the needs ofepéite estimation in the functional failure
analysis of the present T-H passive system. Alsoam be seen that the ANN estimates (dashed
lines) are much closer to the reference resuligd(Bnes) than the RS estimates (dot-dashed lines)
To quantify the uncertainties associated to thentpestimates obtained, bootstrapped ANNs and
guadratic RSs have been built to provide BootstBags Corrected (BBC) point estimates

TS and T for the 98" percentilesT*.%%° and T2¢%% of the hot- and average-

out,core,BBC out,core,BBC out,core out,core

channel coolant outlet temperatur€s . and T2 | respectively. Figure 4 shows the values

t,core out,core’

(dots) of the BBC point estimateEs'**,. . (top) and T%'*%,. . (bottom) obtained wittNr =

out,core,BBC

250000 estimations frorB = 1000 bootstrapped ANNs (left) and quadratic R&ht) built on
Niain = 20, 30, 50, 70 and 100 data examples; also anesponding Bootstrap Bias Corrected
(BBC) 95% Confidence Intervals (Cls) (bars) areorég.
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Again, notice that the “true” (i.e., reference)ues of the 98 percentiles (i.e.T,°\%% = 796.31 °C

ut,core

and T299% = 570.22 °C, shown as dashed lines in Figure 4 lha@en calculated with a very large

out,core
numberNy (i.e., Ny = 250000) of simulations of the original T-H cotle provide a robust reference
for the comparisons: the computational time requibg the analysis is 209 h.
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Figure 4. Bootstrap Bias Corrected (BBC) point estiesT®*® _  andT'%%___ (dots) and

out,core,BBC out,core,BBC

BBC 95% Confidence Intervals (Cls) (bars) for t#5& ®ercentilesT %% and T29%% of the hot-

out,core out,core

(top) and average- (bottom) channel coolant outtetperaturesT,™™ and T2 | respectively,

out,core out,core?

obtained with N = 250000 estimations from bootstrapped ANNs (ki RSs (right) built on M,
=20, 30, 50, 70 and 100 data examples; the “tr@ieg., reference) values (i.€T,"" % = 796.31

out,core

°C and T299% = 570.22 °C) are shown as dashed lines

out,core
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Bootstrapped ANNSs turn out to be qurtdiable androbust providing BBC point estimates very
close to the real values in all the cases congigleye the contrary, bootstrapped quadratic RSs
provide accurate estimates only féy,i, = 70 and 100. For example, fNkan = 20 the ANN and

ot 095

quadratic RS BBC point estimat@52' 2%, for T/°.%% = 796.31 °C are 813.50 °C and 849.98 °C,

out,core
respectively; on the contrary, fbk.in = 100 the same estimates become 796.70 °C an@81300,
respectively. The superior performance of the AN®s again be explained by the higher
flexibility in nonlinear modeling offered by themiti respect to RSs.

Moreover, the uncertainty associated to the bagipEd ANN estimates is significantly lower than
that associated to the quadratic RS estimatesem®mstrated by the width of the corresponding

confidence intervals: for example, fdkan = 100 the widths of the BBC 95% Cls produced by
bootstrapped ANNs and quadratic RSs TJf%®® are 21.40 °C and 78.00 °C, respectively. This

{ core
difference in performance is related to the probtEnoverfitting (Section 5.1) which can become
quite relevant in the bootstrap procedure for talewation of the BBC 95% Cls (Section 3). The
calculation requires tha bootstrap sampleBgainp, b = 1, 2, ...,B, be drawn at random with
replacement from the original sB,in of input/output data examples: by so doing, sorhée
patterns iDy.in Will appear more than once in the individual sagBpliainp, Whereas some will not
appear at all. As a consequence, the numbenigiue(i.e., differen) data in each bootstrap sample
Drrainp Will be typically lower than the numbéd.i, of “physical” data: this is particularly true if
Nirain IS low (e.g., equal to 20 or 30). Since during bboetstrap (step 4. in Section 3) the number of
adjustable parametevs in each “trained” regression model is fixed, &duently happens that the
number of adaptable parametevs is larger than the number ohique data in the individual
bootstrap sampléyainp: this typically causes the regression model torfavéhe bootstrap
“training” dataDy.in » With consequent degradation of estimation perforzealn the case of ANNS,
the early stopping method described in Sectioradlvs avoiding the overfitting; on the contrary,
to the best of the authors’ knowledge, no methothisfkind is available for polynomial RSs. This

explains the higher accuracy of ANN, which withire tbootstrap resampling procedure results in a
lower “dispersion” of the corresponding bootstreqlireates@b, b=1, 2, ..,B, and in a smaller

width of the produced confidence intervals (step #h. Section 3).

Finally, the computational times associated tocgieulation of the BBC point estimat@$® 2%, ..

and T10% _  for TMW9% and T299% and the corresponding BBC 95% Cls, are compavethé

out,core,BBC out,core out,core !
two bootstrapped regression models with refereadbd case oy, = 100, by way of example:
the overall CPU times required by the use of boapgted ANNs and RSs are on average 2.22 h and

0.43 h, respectively. These values include the teqeired for:
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i. generating theNpain + Nvai + Neest input/output examples, by running the T-H codes th
corresponding CPU times are on average (100 + 20)8 =420 s = 7 mir 0.12 h and
(100 + 0 + 20)-3 = 360 s = 6 m0.10 h for the ANNs and the RSs, respectively;

ii. training the bootstrapped ensembfeB = 1000 ANN and RS regression models by means
of the error back-propagation algorithm and thestlesquares method, respectively: the
corresponding CPU times are on average 2 h and 0.8y the ANNs and the RSs,
respectively;

iii. performingNy = 250000 evaluations @fachof theB = 1000 bootstrapped ANN and RS
regression models; the corresponding CPU timeomaraverage 6 min (i.e., 0.1 h) and 4.5
min (i.e., about 0.08 h) for the ANNs and the R8spectively.

The overall CPU times required by the use of boapgted ANNSs (i.e., on average 2.22 h) and
guadratic RSs (i.e., on average 0.43 h) is abouariD 480 times, respectively, lower than that
required by the use of the original T-H model c@d®, on average 209 h). The CPU time required
by the ANNs is about 5 times larger than that resliby the quadratic RSs, mainly due to the

elaborate training algorithm needed to build tmecstirally complex neural model.

5.3 Functional failure probability estimation

In this Section, the bootstrapped ANNs and quadi@fs are compared in the task of estimating
the functional failure probability of the 600-MW GRpassive decay heat removal system of Figure
1. The previous system configuration WiNRops = 3 is analyzed.

Figure 5 shows the values of the Bootstrap Biagsetted (BBC) point estimatel%(F)BBC (dots) of

the functional failure probabiliti?(F) obtained withiNt = 500000 estimations from the bootstrapped
ANNSs (left) and quadratic RSs (right) built &, = 20, 30, 50 ,70 and 100 data examples; the
corresponding Bootstrap Bias Corrected (BBC) 95%fidence Intervals (Cls) are also reported
(bars). Notice that the “true” (i.e., reference)ueaof the functional failure probability(F) (i.e.,
P(F) = 3.34-1d, shown as dashed lines in Figure 5) has beennettaiith a very large numbak
(i.e., Nt = 500000) of simulations of the original T-H caeprovide a robust term of comparison:
the computational time required by this referentaysis is thus 500000-3 s = 1500000417 h.
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Figure 5. Bootstrap Bias Corrected (BBC) point estiesP(F ). (dots) and BBC 95%

Confidence Intervals (CIs) (bars) for the functibfalure probability P(F) obtained with f\=
500000 estimations from bootstrapped ANNSs (left) R8s (right) built on N, = 20, 30, 50, 70
and 100 data examples; the “true” (i.e., referenvajue for P(F) (i.e., P(F) = 3.34-19 is shown
as a dashed line

It can be seen that as the size of the trainingpalNy,in increases, both the ANN and quadratic RS
provide increasingly accurate estimates of the fuietional failure probability?(F), as one would
expect. On the other hand, in the cases of snahitg sets (e.g.Ngain = 20, 30 and 50) the
functional failure probabilities are significantiynderestimated by both the bootstrapped ANN and

the quadratic RS models (e.g., the BBC point esm'mé(F)BBC for P(F) lie between 9.81-10and

2.45.10% and the associated uncertainties are quite léege, the widths of the corresponding
BBC 95% Cls are between 3.4718nd 7.91-16). Two considerations seem in order with respect
to these results. First, in these cases of smé#édl skets available the analyst would still be able t
correctly estimate the order of magnitude shzall failure probability (i.e.P(F) ~ 10%, in spite of
the low number of runs of the T-H code performed to geeett@eNy.in = 20, 30 or 50 input/output
examples; second, the accuracy of an estimatedheutvaluated in relation to the requirements of
the specific application; for example, although tbafidence interval provided by the bootstrapped
ANNs trained withNyain = 50 samples ranges from 8.03°10 4.27-1d, this variability might be
acceptable for demonstrating that the system stilie target safety goals.

Finally, it is worth noting that although bootstp@ol ANNs provide better estimates and lower
model uncertainties than quadratic RSs, the difiegein the performances of the two regression
models is less evident than in the case of peteesdtimation (Section 5.2). This may be due to the

fact that estimating the value of the functionaluf@ probability P(F) is a simpler task than
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estimating the exact values of the correspondirgacd outlet temperatures. For example, let the
true value of the hot channel coolant outlet terappge be 1250 °C and the corresponding estimate
by the regression model be 1500 °C: in such a theegstimate is absolutelyaccuratein itself,

but “exact for the purpose of functional failure probabiligstimation with respect to a failure
threshold of 1200 °C.

Finally, the computational times required for tiséiraation of the functional failure probability, &n
the corresponding confidence interval, in the cafs®l,n = 100 are 2.32 h and 0.50 h for the
bootstrapped ANNs and quadratic RSs, respectively.

6 Conclusions

In this paper, Artificial Neural Networks (ANNs) @muadratic Response Surfaces (RSs) have been
compared in the task of estimating, in a fast dfidient way, the probability of functional failure
of a T-H passive system. A case study involving ri&ural convection cooling in a Gas-cooled
Fast Reactor (GFR) after a Loss of Coolant Accide®CA) has been taken as reference. To allow
accurate comparison values based on a large nushbbepeated T-H-model code evaluations, the
representation of the system behavior has beetelintd a steady-state model.

ANN and quadratic RS models have been constructedebasis of sets of data of limited, varying
sizes, which represent examples of the nonlindatioaships between 9 uncertain inputs and 2
relevant outputs of the T-H model code (i.e., th&-hand average-channel coolant outlet
temperatures). Once built, such models have besth usplace of the original T-H model code, to:
compute the temperatures"dpercentiles of the hot-channel and average-chaengberatures of
the coolant gas leaving the reactor core; estirtitéunctional failure probability of the system by
comparison of the computed values with predefiraldire thresholds. In all the cases considered,
the results have demonstrated that ANNs outperfpradratic RSs in terms of estimation accuracy:
as expected, the difference in the performancéleotwo regression models is much more evident
in the estimation of the §5percentiles than in the (easier) task of estingattie functional failure
probability of the system. Due to their flexibility nonlinear modelling, ANNs have been shown to
provide more reliable estimates than quadratic B8N when they are trained with very low
numbers of data examples (e.g., 20, 30 or 50) thaoriginal T-H model code.

The bootstrap method has been employed to estic@tédence intervals on the quantities
computed: this uncertainty quantification is ofgrapunt importance in safety critical applications,
in particular when few data examples are usechiregard, bootstrapped ANNs have been shown
to producenarrower confidence intervals than bootstrapped quadrafs kh all the analyses

performed.
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On the basis of the results obtained, bootstragiéds can be considered more effective than
guadratic RSs in the estimation of the functiomdlufe probability of T-H passive systems (while
guantifying the uncertainty associated to the tej)ubecause they provide moaecurate (i.e.,
estimates are closer to the true values)medise(i.e., confidence intervals are narrower) estimate
than quadratic RSs; on the other hand, the compuotttime required by bootstrapped ANNS is
somewhat longer than that required by quadratic, R8e to the elaborate training algorithm for
building the structurally complex neural model.
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