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Abstract 
In this work, bootstrapped Artificial Neural Network (ANN) and quadratic Response Surface (RS) 

empirical regression models are used as fast-running surrogates of a thermal-hydraulic (T-H) 

system code to reduce the computational burden associated with the estimation of the functional 

failure probability of a T-H passive system. 

The ANN and quadratic RS models are built on few data representative of the input/output 

nonlinear relationships underlying the T-H code. Once built, these models are used for performing, 

in reasonable computational time, the numerous system response calculations required for failure 

probability estimation. A bootstrap of the regression models is implemented for quantifying, in 

terms of confidence intervals, the uncertainties associated with the estimates provided by ANNs and 

RSs. 

The alternative empirical models are compared on a case study of an emergency passive decay heat 

removal system of a Gas-cooled Fast Reactor (GFR). 
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1 Introduction 

All innovative reactor concepts make use of passive safety features, to a large extent in combination 

with active safety and operational systems (Mackay et al., 2008). According to the definitions of the 

International Atomic Energy Agency (IAEA), a passive system does not need external input 

(especially energy) to operate (IAEA, 1991), while they are expected to contribute significantly to 

the safety of nuclear power plants thanks to their peculiar characteristics of simplicity, reduction of 

human interaction and reduction or avoidance of hardware failures (Mathews et al., 2008). 

However, the uncertainties involved in the modelling and functioning of passive systems are usually 

larger than for active systems. This is due to: i) the intrinsically random nature of several of the 

physical phenomena involved in the functioning of the system (aleatory uncertainty); ii) the 

incomplete knowledge on the physics of some of these phenomena (epistemic uncertainty) 

(Apostolakis, 1990; Helton, 2004). 

Due to these uncertainties, the physical phenomena involved in the passive system functioning (e.g., 

natural circulation) might develop in such a way to lead the system to fail its intended function, 

even if safety margins are present. In fact, deviations in the natural forces and in the conditions of 

the underlying physical principles from the expected ones can impair the function of the system 

itself (Marquès et al., 2005; Patalano et al., 2008). 

The problem may be analytically framed by introducing the concept of functional failure, whereby a 

passive system may fail to perform its function due to deviations from its expected behavior which 

lead the load imposed on the system to exceed its capacity (Burgazzi, 2003; Burgazzi, 2007). This 

concept has been exploited in a number of works presented in the literature (Jafari et al., 2003; 

Marquès et al., 2005; Pagani et al., 2005; Bassi and Marquès, 2008; Fong and Apostolakis, 2008; 

Mackay et al., 2008; Mathews et al., 2008; Patalano et al., 2008; Zio and Pedroni, 2009a and b), in 

which the passive system is modeled by a detailed, mechanistic T-H system code and the 

probability of failing to perform the required function is estimated based on a Monte Carlo (MC) 

sample of code runs which propagate the epistemic (state-of-knowledge) uncertainties in the model 

and the numerical values of its parameters/variables. 

 

Since the probabilities of functional failure of passive systems are generally very small (e.g., of the 

order of 10-4), a large number of samples is necessary for acceptable estimation accuracy (Schueller, 

2007); given that the time required for each run of the detailed, mechanistic T-H system code is of 

the order of several hours (Fong and Apostolakis, 2008), the MC simulation-based procedure 

typically requires considerable computational efforts. 
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A viable approach to overcome the computational burden associated to the analysis is that of 

resorting to fast-running, surrogate regression models, also called response surfaces or meta-

models, to substitute the long-running T-H model code. The construction of such regression models 

entails running the T-H model code a predetermined, reasonably large but feasibly small, number of 

times (e.g., of the order of 50-100) for specified values of the uncertain input parameters/variables 

and recording the corresponding values of the output of interest; then, statistical techniques are 

employed for fitting the response surface of the regression model to the input/output data generated. 

Several kinds of surrogate meta-models have been recently applied to safety related nuclear, 

structural and hydrogeological problems, including polynomial Response Surfaces (RSs) (Bucher 

and Most, 2008; Fong and Apostolakis, 2008; Gavin and Yau, 2008; Liel et al., 2009), Gaussian 

meta-models (Volkova et al., 2008; Marrel et al., 2009) and learning statistical models such as 

Artificial Neural Networks (ANNs), Radial Basis Functions (RBFs) and Support Vector Machines 

(SVMs) (Deng, 2006; Hurtado, 2007; Cardoso et al., 2008; Cheng et al., 2008). 

 

In this work, the possibility of using Artificial Neural Networks (ANNs) and quadratic Response 

Surfaces (RSs) to reduce the computational burden associated to the functional failure analysis of a 

natural convection-based decay heat removal system of a Gas-cooled Fast Reactor (GFR) (Pagani et 

al., 2005) is investigated. To keep the practical applicability in sight, a small set of input/output data 

examples is considered available for constructing the ANN and quadratic RS models: different sizes 

of the (small) data sets are considered to show the effects of this relevant practical aspect. The 

comparison of the potentials of the two regression techniques in the case at hand is made with 

respect to the estimation of the 95th percentile of the naturally circulating coolant temperature and 

the functional failure probability of the passive system. 

 

Actually, the use of regression models in safety critical applications like nuclear power plants still 

raises concerns with regards to the control of their accuracy; in this paper, the bootstrap method is 

used for quantifying, in terms of confidence intervals, the uncertainty associated to the estimates 

provided by the ANNs and quadratic RSs (Efron and Thibshirani, 1993; Zio, 2006; Cadini et al., 

2008; Secchi et al., 2008; Storlie et al., 2008). 

 

The paper organization is as follows. In Section 2, a snapshot on the functional failure analysis of 

T-H passive systems is given. Section 3 is devoted to the detailed presentation of the bootstrap-

based method for quantifying, in terms of confidence intervals, the model uncertainty associated to 
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the estimates of safety parameters computed by ANN and quadratic RS regression models. In 

Section 4, the case study of literature concerning the passive cooling of a GFR is presented. In 

Section 5, the results of the application of bootstrapped ANNs and quadratic RSs to the percentile 

and functional failure probability estimations are compared. Finally, conclusions are provided in the 

last Section. 

2 The quantitative steps of functional failure analysis of T-H passive 

systems 

The basic steps of the quantitative phase of the functional failure analysis of a T-H passive system 

are (Marquès et al., 2005): 

1. Detailed modeling of the passive system response by means of a deterministic, best-estimate 

(typically long-running) T-H code. 

2. Identification of the parameters/variables, models and correlations (i.e., the inputs to the T-H 

code) which contribute to the uncertainty in the results (i.e., the outputs) of the best estimate 

T-H calculations. 

3. Propagation of the uncertainties through the deterministic, long-running T-H code in order to 

estimate the functional failure probability of the passive system. 

 

Step 3. above relies on multiple (e.g., many thousands) evaluations of the T-H code for different 

combinations of system inputs; this can render the associated computing cost prohibitive, when the 

running time for each T-H code simulation takes several hours (which is often the case for T-H 

passive systems). 

The computational issue may be tackled by replacing the long-running, original T-H model code by 

a fast-running, surrogate regression model (properly built to approximate the output from the true 

system model). In this paper, classical three-layered feed-forward Artificial Neural Networks 

(ANNs) (Bishop, 1995) and quadratic Response Surfaces (RSs) (Liel et al., 2009) are considered for 

this task. The accuracy of the estimates obtained is analyzed by computing a confidence interval by 

means of the bootstrap method (Efron and Thibshirani, 1993); a description of this technique is 

provided in the following Section. 
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3 The bootstrap method for point value and confidence interval 

estimation 

3.1 Empirical regression modelling 

As discussed in the previous Section, the computational burden posed by uncertainty and sensitivity 

analyses of T-H passive systems can be tackled by replacing the long-running, original T-H model 

code by a fast-running, surrogate regression model. Because calculations with the surrogate model 

can be performed quickly, the problem of long simulation times is circumvented. 

Let us consider a generic meta-model to be built for performing the task of nonlinear regression, 

i.e., estimating the nonlinear relationship between a vector of input variables x = {x1, x2, ..., xj, ..., 

inx } and a vector of output targets y = {y1, y2, ..., yl, ..., 
ony }, on the basis of a finite (and possibly 

small) set of input/output data examples (i.e., patterns), ( ){ }trainpptrain NpD ...,,2,1,, == yx  (Zio, 

2006). It can be assumed that the target vector y is related to the input vector x by an unknown 

nonlinear deterministic function ( )xµy  corrupted by a noise vector ( )xε , i.e., 

( ) ( ) ( )xεxµxy y += . (1) 

Notice that in the present case of T-H passive system functional failure probability assessment the 

vector x contains the relevant uncertain system parameters/variables, the nonlinear deterministic 

function ( )xµy  represents the complex, long-running T-H mechanistic model code (e.g., RELAP5-

3D), the vector y(x) contains the output variables of interest for the analysis and the noise ( )xε  

represents the errors introduced by the numerical methods employed to calculate ( )xµy  (Storlie et 

al., 2008); for simplicity, in the following we assume ( )xε  = 0 (Secchi et al., 2008). 

The objective of the regression task is to estimate ( )xµy  in (1) by means of a regression function 

f(x, w*) depending on a set of parameters w* to be properly determined on the basis of the available 

data set Dtrain; the algorithm used to calibrate the set of parameters w* is obviously dependent on the 

nature of the regression model adopted, but in general it aims at minimizing the mean (absolute or 

quadratic) error between the output targets of the original T-H code, yp = ( )pxµy , p = 1, 2, ..., Ntrain, 

and the output vectors of the regression model, ( )*,wxfy pp = , p = 1, 2, ..., Ntrain; for example, the 

Root Mean Squared Error (RMSE) is commonly adopted to this purpose (Zio, 2006): 

( )∑∑
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Once built, the regression model f(x, w*) can be used in place of the T-H code to calculate any 

quantity of interest Q, such as the 95th percentile of a physical variable critical for the system under 

analysis (e.g., the fuel cladding temperature) or the functional failure probability of the passive 

system. 

In this work, the capabilities of quadratic Response Surface (RS) and three-layered feed-forward 

Artificial Neural Network (ANN) regression models are compared in the computational tasks 

involved in the functional failure analysis of a T-H passive system. In extreme synthesis, quadratic 

RSs are polynomials containing linear terms, squared terms and possibly two-factors interactions of 

the input variables (Liel et al., 2009); the RS adaptable parameters w* are usually calibrated by 

straightforward least squares methods. ANNs are computing devices inspired by the function of the 

nerve cells in the brain (Bishop, 1995). They are composed of many parallel computing units 

(called neurons or nodes) interconnected by weighed connections (called synapses). Each of these 

computing units performs a few simple operations and communicates the results to its neighbouring 

units. From a mathematical viewpoint, ANNs consist of a set of nonlinear (e.g., sigmoidal) basis 

functions with adaptable parameters w* that are adjusted by a process of training (on many different 

input/output data examples), i.e., an iterative process of regression error minimization (Rumelhart et 

al., 1986). The particular type of ANN employed in this paper is the classical three-layered feed-

forward ANN trained by the error back-propagation algorithm. 

The details of these two regression models are not reported here for brevity: the interested reader 

may refer to the cited references and the copious literature in the field. 

3.2 The bootstrap method 

The approximation of the system output provided by an empirical regression model introduces an 

additional source of uncertainty, which needs to be evaluated, particularly in safety critical 

applications like those related to nuclear power plant technology. One way to do this is by resorting 

to bootstrapped regression models (Efron and Thibshirani, 1993), i.e., an ensemble of regression 

models constructed on different data sets bootstrapped from the original one (Zio, 2006; Storlie et 

al., 2008). The bootstrap method is a distribution-free inference method which requires no prior 

knowledge about the distribution function of the underlying population (Efron and Thibshirani, 

1993). The basic idea is to generate a sample from the observed data by sampling with replacement 

from the original data set (Efron and Thibshirani, 1993). From the theory and practice of ensemble 

empirical models, it can be shown that the estimates given by bootstrapped regression models is in 

general more accurate than the estimate of the best regression model in the bootstrap ensemble of 

regression models (Zio, 2006; Cadini et al., 2008). 



 7

 

In what follows, the steps of the bootstrap-based technique of evaluation of the so-called Bootstrap 

Bias Corrected (BBC) point estimate BBCQ̂  of a generic quantity Q (e.g., a safety parameter) by a 

regression model f(x, w*), and the calculation of the associated BBC Confidence Interval (CI) are 

reported (Zio, 2006; Storlie et al., 2008): 

1. Generate a set D train of input/output data examples by sampling Ntrain independent input 

parameters values xp, p = 1, 2, ..., Ntrain, and calculating the corresponding set of Ntrain output 

vectors yp = µy(xp) through the mechanistic T-H system code. Plain random sampling, Latin 

Hypercube Sampling or other more sophisticated experimental design methods can be 

adopted to select the input vectors xp, p = 1, 2, ..., Ntrain (Gazut et al., 2008). 

2. Build a regression model f(x, w*) on the basis of the entire data set 

( ){ }trainpptrain NpD ...,,2,1,, == yx  (step 1. above) in order to obtain a fast-running surrogate 

of the T-H model code represented by the unknown nonlinear deterministic function µy(x) in 

(1). 

3. Use the regression model f(x, w*) (step 2. above), in place of the original T-H model code, to 

provide a point estimate Q̂  of the quantity Q, e.g., the 95th percentile of a system variable of 

interest or the functional failure probability of the T-H passive system. 

In particular, draw a sample of NT new input vectors xr, r = 1, 2, …, NT, from the 

corresponding epistemic probability distributions and feed the regression model f(x, w*) 

with them; then, use the corresponding output vectors yr = f(xr, w
*), r = 1, 2, …, NT, to 

calculate the estimate Q̂  for Q (the algorithm for computing Q̂  is obviously dependent on 

the meaning of the quantity Q). Since the regression model f(x, w*) can be evaluated 

quickly, this step is computationally costless even if the number NT of model estimations is 

very high (e.g., NT = 105 or 106). 

4. Build an ensemble of B (typically of the order of 500-1000) regression models 

( ){ }Bbbb ...,,2,1,, * =wxf  by random sampling with replacement and use each of the 

bootstrapped regression models fb(x, wb
*), b = 1, 2, ..., B, to calculate an estimate bQ̂ , b = 1, 

2, ..., B, for the quantity Q of interest: by so doing, a bootstrap-based empirical probability 

distribution for the quantity Q is produced which is the basis for the construction of the 

corresponding confidence intervals. In particular, repeat the following steps for b = 1, 2, ..., 

B: 
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a. Generate a bootstrap data set ( ){ }trainbpbpbtrain NpD ...,,2,1,, ,,, == yx , b = 1, 2, ..., B, 

by performing random sampling with replacement from the original data set 

( ){ }trainpptrain NpD ...,,2,1,, == yx  of Ntrain input/output patterns (steps 1. and 2. 

above). The data set Dtrain,b is thus constituted by the same number Ntrain of 

input/output patterns drawn among those in Dtrain although, due to the sampling with 

replacement, some of the patterns in Dtrain will appear more than once in Dtrain,b, 

whereas some will not appear at all. 

b. Build a regression model fb(x, wb
*), b = 1, 2, ..., B, on the basis of the bootstrap data 

set ( ){ }trainbpbpbtrain NpD ...,,2,1,, ,,, == yx  (step 3.a. above). 

c. Use the regression model fb(x, wb
*) (step 4.b. above), in place of the original T-H 

code, to provide a point estimate bQ̂  of the quantity of interest Q. It is important to 

note that for a correct quantification of the confidence interval the estimate bQ̂  must 

be based on the same input and output vectors xr and yr, r = 1, 2, …, NT, 

respectively, obtained in step 3. above. 

5. Calculate the so-called Bootstrap Bias Corrected (BBC) point estimate BBCQ̂  for Q as 

 bootBBC QQQ ˆˆ2ˆ −=  (3) 

where Q̂  is the estimate obtained with the regression model f(x, w*) trained with the original 

data set Dtrain (steps 2. and 3. above) and bootQ̂  is the average of the B estimates bQ̂  obtained 

with the B regression models  fb(x, wb
*), b = 1, 2, ..., B (step 4.c. above), i.e., 

 ∑
=

=
B

b
bboot Q

B
Q

1

ˆ1
. (4) 

The BBC estimate BBCQ̂  in (3) is taken as the definitive point estimate for Q. 

The explanation for expression (3) is as follows. It can be demonstrated that if there is a bias 

in the bootstrap average estimate bootQ̂  in (4) compared to the estimate Q̂  obtained with the 

single regression model f(x, w*) (step 3. above), then the same bias exists in the single 

estimate Q̂  compared to the true value Q of the quantity of interest (Baxt and White, 1995). 

Thus, in order to obtain an appropriate, i.e. bias-corrected, estimate BBCQ̂  for the quantity of 

interest Q, the estimate Q̂  must be adjusted by subtracting the corresponding bias ( bootQ̂  - 

Q̂ ): as a consequence, the final, bias-corrected estimate BBCQ̂  is BBCQ̂  = Q̂  - ( bootQ̂  - Q̂ ) = 

2Q̂  - bootQ̂ . 
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6. Calculate the two-sided Bootstrap Bias Corrected (BBC)-100·(1 - α)% Confidence Interval 

(CI) for the BBC point estimate in (3) by performing the following steps: 

a. Order the bootstrap estimates bQ̂ , b = 1, 2, ..., B, (step 4.c. above) by increasing 

values, such that bi QQ ˆˆ
)( =  for some b = 1, 2, ..., B, and )1(Q̂  < )2(Q̂  < ... < )(

ˆ
bQ  < ... < 

)(
ˆ

BQ . 

b. Identify the 100·α/2th and 100·(1 – α/2)th quantiles of the bootstrapped empirical 

probability distribution of Q (step 4. above) as the [B·α/2]th and [B·(1 – α/2)]th 

elements [ ]( )2/
ˆ

α⋅BQ  and ( )[ ]( )2/1
ˆ

α−⋅BQ , respectively, in the ordered list )1(Q̂  < )2(Q̂  < ... < 

)(
ˆ

bQ  < ... < )(
ˆ

BQ ; notice that the symbol [·] stands for “closest integer”. 

c. Calculate the two-sided BBC-100·(1 - α)% CI for BBCQ̂  as 

 [ ]( )( ) ( )[ ]( )( )[ ]bootBBBCBbootBBC QQQQQQ ˆˆˆ,ˆˆˆ
2/12/ −+−− −⋅⋅ αα . (5) 

 

An important advantage of the bootstrap method is that it provides confidence intervals for a given 

quantity Q without making any model assumptions (e.g., normality); a disadvantage is that the 

computational cost could be high when the set Dtrain and the number of adaptable parameters w* in 

the regression models are large. 

4 Case study 

The case study considered in this work concerns the natural convection cooling in a Gas-cooled 

Fast Reactor (GFR) under a post-Loss Of Coolant Accident (LOCA) condition (Pagani et al., 2005). 

The reactor is a 600-MW GFR cooled by helium flowing through separate channels in a silicon 

carbide matrix core whose design has been the subject of study in the past several years at the 

Massachussets Institute of Technology (MIT) (Pagani et al., 2005). 

A GFR decay heat removal configuration is shown schematically in Figure 1; in the case of a 

LOCA, the long-term heat removal is ensured by natural circulation in a given number Nloops of 

identical and parallel loops; only one of the Nloops loops is reported for clarity of the picture: the 

flow path of the cooling helium gas is indicated by the black arrows. The loop has been divided into 

Nsections = 18 sections for numerical calculation; technical details about the geometrical and 

structural properties of these sections are not reported here for brevity: the interested reader may 

refer to (Pagani et al., 2005). 
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In the present analysis, the average core power to be removed is assumed to be 18.7 MW, 

equivalent to about 3% of full reactor power (600 MW): to guarantee natural circulation cooling at 

this power level, a pressure of 1650 kPa in the loops is required in nominal conditions. Finally, the 

secondary side of the heat exchanger (i.e., item 12 in Figure 1) is assumed to have a nominal wall 

temperature of 90 °C (Pagani et al., 2005). 

 

 

Figure 1. Schematic representation of one loop of the 600-MW GFR passive decay heat removal 

system (Pagani et al., 2005) 

4.1 Uncertainties 

Uncertainties affect the modeling of passive systems. There are unexpected events, e.g. the failure 

of a component or the variation of the geometrical dimensions and material properties, which are 

random in nature. This kind of uncertainty, often termed aleatory (NUREG-1150, 1990; Helton, 

1998; USNCR, 2002), is not considered in this work. There is also incomplete knowledge on the 

properties of the system and the conditions in which the passive phenomena develop (i.e., natural 

circulation). This kind of uncertainty, often termed epistemic, affects the model representation of 

the passive system behaviour, in terms of both (model) uncertainty in the hypotheses assumed and 

(parameter) uncertainty in the values of the parameters of the model (Cacuci and Ionescu-Bujor, 

2004; Helton et al., 2006; Patalano et al., 2008). 

 

Only epistemic uncertainties are considered in this work. Epistemic parameter uncertainties are 

associated to the reactor power level, the pressure in the loops after the LOCA and the cooler wall 
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temperature; epistemic model uncertainties are associated to the correlations used to calculate the 

Nusselt numbers and friction factors in the forced, mixed and free convection regimes. The 

consideration of these uncertainties leads to the definition of a vector x of nine uncertain inputs of 

the model x = { }9...,,2,1: =jx j , assumed described by normal distributions of known means and 

standard deviations (Table 1, Pagani et al., 2005). 

 

 Name Mean, µ Standard deviation, σ (% of µ) 

Parameter 

uncertainty 

Power (MW), x1 18.7 1% 

Pressure (kPa), x2 1650 7.5% 

Cooler wall temperature (°C), x3 90 5% 

Model 

uncertainty 

Nusselt number in forced convection, x4 1 5% 

Nusselt number in mixed convection, x5 1 15% 

Nusselt number in free convection, x6 1 7.5% 

Friction factor in forced convection, x7 1 1% 

Friction factor in mixed convection, x8 1 10% 

Friction factor in free convection, x9 1 1.5% 

Table 1. Epistemic uncertainties considered for the 600-MW GFR passive decay heat removal 

system of Figure 1 (Pagani et al., 2005) 

4.2 Failure criteria of the T-H passive system 

The passive decay heat removal system of Figure 1 is considered failed when the temperature of the 

coolant helium leaving the core (item 4 in Figure 1) exceeds either 1200 °C in the hot channel or 

850 °C in the average channel: these values are expected to limit the fuel temperature to levels 

which prevent excessive release of fission gases and high thermal stresses in the cooler (item 12 in 

Figure 1) and in the stainless steel cross ducts connecting the reactor vessel and the cooler (items 

from 6 to 11 in Figure 1) (Pagani et al., 2005). Denoting by ( )xhot
coreoutT ,  and ( )xavg

coreoutT ,  the coolant 

outlet temperatures in the hot and average channels, respectively, the system failure event F can be 

written as follows: 

( ){ } ( ){ }850:1200: ,, >∪>= xxxx avg
coreout

hot
coreout TTF . (6) 

According to the notation of the preceding Section 3, ( )xhot
coreoutT ,  = y1(x) and ( )xavg

coreoutT ,  = y2(x) are 

the two target outputs of the T-H model. 
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5 Functional failure probability estimation by bootstrapped ANNs 

and quadratic RSs 

In this Section, the results of the application of bootstrapped Artificial Neural Networks (ANNs) 

and quadratic Response Surfaces (RSs) for the estimation of the functional failure probability of the 

600-MW GFR passive decay heat removal system in Figure 1 are illustrated. Some details about the 

construction of the ANN and quadratic RS regression models are given in Section 5.1; their use for 

estimating the percentiles of the hot-channel and average-channel coolant outlet temperatures is 

shown in Section 5.2; the estimation of the probability of functional failure of the system is 

addressed in Section 5.3. The uncertainties associated to the calculated quantities are estimated by 

bootstrapping of the regression models, as explained in Section 3. 

5.1 Building and testing the ANN and quadratic RS regression models 

RS and ANN models have been built with training sets ( ){ }trainpptrain NpD ...,,2,1,, == yx  of 

input/output data examples of different sizes Ntrain = 20, 30, 50, 70, 100; this has allowed extensive 

testing of the capability of the regression models to reproduce the outputs of the nonlinear T-H 

model code, based on different (small) numbers of example data. For each size Ntrain of data set, a 

Latin Hypercube Sample (LHS) of the 9 uncertain inputs has been drawn, xp = {x1,p, x2,p, …, xj,p, …, 

9,px }, p = 1, 2, …., Ntrain (Zhang and Foschi, 2004). Then, the T-H model code has been run with 

each of the input vectors xp, p = 1, 2, …, Ntrain, to obtain the corresponding bidimensional output 

vectors yp = µy(xp) = {y1,p, y2,p}, p = 1, 2, …, Ntrain (in the present case study, the number no of 

outputs is equal to 2, i.e., the hot- and average-channel coolant outlet temperatures, as explained in 

Section 4.2). The training data set ( ){ }trainpptrain NpD ...,,2,1,, == yx  thereby obtained has been used 

to calibrate the adjustable parameters w* of the regression models, for best fitting the T-H model 

code data. More specifically, the straightforward least squares method has been used to find the 

parameters of the quadratic RSs (Bucher and Most, 2008) and the common error back-propagation 

algorithm has been applied to train the ANNs (Rumelhart et al., 1986). Note that a single ANN can 

be trained to estimate both outputs of the model here of interest, whereas a specific quadratic RS 

must be developed for each output to be estimated. 

The choice of the ANN architecture is critical for the regression accuracy. In particular, the number 

of neurons in the network determines the number of adjustable parameters available to optimally fit 

the complicated, nonlinear T-H model code response surface by interpolation of the available 

training data. The number of neurons in the input layer is ni = 9, equal to the number of uncertain 

input parameters; the number no of outputs is equal to 2, the outputs of interest; the number nh of 
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nodes in the hidden layer is 4 for Ntrain = 20, 30, 70 and 100, whereas it is 5 for Ntrain = 50, 

determined by trial-and-error. In case of a network with too few neurons (i.e., too few parameters), 

the regression function f(x, w*) has insufficient flexibility to adjust its response surface to fit the 

data adequately: this results in poor generalization properties of interpolation when new input 

patterns are fed to the network to obtain the corresponding output; on the opposite side, excessively 

increasing the flexibility of the model by introducing too many parameters, e.g., by adding neurons, 

may make the network overfit the training data, leading again to poor generalization performance 

when interpolating new input data. A trade-off is typically sought by controlling the neural model 

complexity, i.e., the number of parameters, and the training procedure, e.g., by adding a 

regularization term in the error function or by early stopping the training, so as to achieve a good fit 

of the training data with a reasonably smooth regression function which is not over-fit to the data 

and therefore capable of generalization when interpolating new input data (Bishop, 1995). In the 

present work, early stopping is adopted: a validation input/output data set 

( ){ }valppval NpD ...,,2,1,, == yx  made of patterns different from those of the training set Dtrain is 

used to monitor the accuracy of the ANN model during the training procedure; in practice, the 

RMSE (2) is computed on Dval at different iterative stages of the training procedure (Figure 2): at 

the beginning of training, this value decreases as does the RMSE computed on the training set Dtrain; 

later in the training, if the ANN regression model starts overfitting the data, the RMSE calculated 

on the validation set Dval starts increasing and training must be stopped (Bishop, 1995). It is fair to 

point out that the increased ANN generalization capability typically achieved by early stopping is 

obtained at the expense of Nval additional code simulations, with an increase in the computational 

cost for the training of the ANN model. In this work, the size Nval of the validation set is set to 20 

for all sizes Ntrain of the data set Dtrain considered, which means 20 additional runs of the T-H model 

code. 

 

Figure 2. Early stopping the ANN training to avoid overfitting 
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As measures of the ANN and RS model accuracy, the commonly adopted coefficient of 

determination 2R  and RMSE have been computed for each output yl, l = 1, 2, on a new data set 

( ){ }testpptest NpD ...,,2,1,, == yx  of size Ntest = 20, purposely generated for testing the regression 

models built (Marrel et al., 2009), and thus different from those used during training and validation. 

Table 2 reports the values of the coefficient of determination 2R  and of the RMSE associated to the 

estimates of the hot- and average- channel coolant outlet temperatures hot
coreoutT ,  and avg

coreoutT , , 

respectively, computed on the test set Dtest by the ANN and quadratic RS models built on data sets 

Dtrain of different sizes Ntrain = 20, 30, 50, 70, 100; the number of adjustable parameters w* included 

in the two regression models is also reported for comparison purposes. 

 

Artificial Neural Network (ANN) 

  R2 RMSE [°C] 

Ntrain Nval Ntest Number of adjustable parameters w* hot
coreout,T  avg

coreout,T  hot
coreout,T  avg

coreout,T  

20 20 20 50 0.8937 0.8956 38.5 18.8 

30 20 20 50 0.9140 0.8982 34.7 18.6 

50 20 20 62 0.9822 0.9779 15.8 8.7 

70 20 20 50 0.9891 0.9833 12.4 6.8 

100 20 20 50 0.9897 0.9866 12.0 6.3 

Quadratic Response Surface (RS) 

  R2 RMSE [°C] 

Ntrain Nval Ntest Number of adjustable parameters w* hot
coreout,T  avg

coreout,T  hot
coreout,T  avg

coreout,T  

20 0 20 55 0.5971 0.7914 75.0 26.6 

30 0 20 55 0.8075 0.9348 51.9 14.8 

50 0 20 55 0.9280 0.9353 31.7 14.6 

70 0 20 55 0.9293 0.9356 31.4 14.3 

100 0 20 55 0.9305 0.9496 31.2 13.1 

Table 2. Coefficient of determination 2R  and RMSE associated to the estimates of the hot- and 

average-channel coolant outlet temperatures hot
coreoutT ,  and avg

coreoutT , , respectively, computed on the test 

set Dtest of size Ntest = 20 by the ANN and quadratic RS models built on data sets Dtrain of different 

sizes Ntrain = 20, 30, 50, 70, 100; the number of adjustable parameters w* included in the two 

regression models is also reported for comparison purposes 

 

The ANN outperforms the RS in all the cases considered: for example, for Ntrain = 100, the 

coefficients of determination R2 produced by the ANN and the quadratic RS models for the hot-
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channel coolant outlet temperature hot
coreoutT ,  are 0.9897 and 0.9305, respectively, whereas the 

corresponding RMSEs are 12.0 °C and 31.2 °C, respectively. This result is due to the higher 

flexibility in modeling complex nonlinear input/output relationships offered by the ANN with 

respect to the quadratic RS: the ANN structure made of a large number of adaptable connections 

(i.e., the synapses) among nonlinear operating units (i.e., the neurons) allows fitting complex 

nonlinear functions with an accuracy which is superior to that of a plain quadratic regression model. 

Actually, if the original T-H model is not quadratic (which is often the case in practice), a second-

order polynomial RS cannot be a consistent estimator, i.e., the quadratic RS estimates may never 

converge to the true values of the original T-H model outputs, even for a very large number of 

input/output data examples, in the limit for Ntrain → ∞. On the contrary, ANNs have been 

demonstrated to be universal approximants of continuous nonlinear functions (under mild 

mathematical conditions) (Cybenko, 1989), i.e., in principle, an ANN model with a properly 

selected architecture can be a consistent estimator of any continuous nonlinear function, e.g. any 

nonlinear T-H code simulating the system of interest. 

5.2 Determination of the 95th percentiles of the coolant outlet temperatures 

For illustration purposes, a configuration with Nloops = 3 loops is considered for the passive system 

of Figure 1. 

The 100·αth percentiles of the hot- and average-channel coolant outlet temperatures hot
coreoutT ,  and 

avg
coreoutT ,  are defined as the values α,

,
hot

coreoutT  and α,
,

avg
coreoutT , respectively, such that 

( ) αα =≤ ,
,,

hot
coreout

hot
coreout TTP  (7) 

and 

( ) αα =≤ ,
,,

avg
coreout

avg
coreout TTP . (8) 

 

Figure 3, left and right, shows the Probability Density Function (PDF) and Cumulative Distribution 

Function (CDF), respectively, of the hot-channel coolant outlet temperature hot
coreoutT ,  obtained with 

NT = 250000 simulations of the original T-H model code (solid lines); the PDF and CDF of the 

average-channel coolant outlet temperature avg
coreoutT ,  are not shown for brevity. The same Figure also 

shows the PDFs and CDFs constructed with NT = 250000 estimations from B = 1000 bootstrapped 

ANNs (dashed lines) and RSs (dot-dashed lines) built on Ntrain = 100 input/output examples. 
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Figure 3. Hot-channel coolant outlet temperature empirical PDFs (left) and CDFs (right) 

constructed with NT = 250000 estimations from the original T-H code (solid lines) and from 

bootstrapped ANNs (dashed lines) and RSs (dot-dashed lines) built on Ntrain = 100 data examples 

 

Notice that the “true” (i.e., reference) PDF and CDF of hot
coreoutT ,  (Figure 3, solid lines) have been 

obtained with a very large number NT (i.e., NT = 250000) of simulations of the original T-H code, to 

provide a robust reference for the comparisons. Actually, the T-H code here employed runs fast 

enough to allow repetitive calculations (one code run lasts on average 3 seconds on a Pentium 4 

CPU 3.00GHz): the computational time required by this reference analysis is thus 250000·3 s = 

750000 s ≈ 209 h. 

The overall good match between the results from the original T-H model code and those from the 

bootstrapped ANNs and RSs regression models leads us to assert that the accuracy in the estimates 

can be considered satisfactory for the needs of percentile estimation in the functional failure 

analysis of the present T-H passive system. Also, it can be seen that the ANN estimates (dashed 

lines) are much closer to the reference results (solid lines) than the RS estimates (dot-dashed lines). 

To quantify the uncertainties associated to the point estimates obtained, bootstrapped ANNs and 

quadratic RSs have been built to provide Bootstrap Bias Corrected (BBC) point estimates 

95.0,
,,

ˆ hot
BBCcoreoutT  and 95.0,

,,
ˆ hot

BBCcoreoutT  for the 95th percentiles 95.0,
,

hot
coreoutT  and 95.0,

,
avg

coreoutT  of the hot- and average-

channel coolant outlet temperatures hot
coreoutT ,  and avg

coreoutT , , respectively. Figure 4 shows the values 

(dots) of the BBC point estimates 95.0,
,,

ˆ hot
BBCcoreoutT  (top) and 95.0,

,,
ˆ hot

BBCcoreoutT  (bottom) obtained with NT = 

250000 estimations from B = 1000 bootstrapped ANNs (left) and quadratic RSs (right) built on 

Ntrain = 20, 30, 50, 70 and 100 data examples; also the corresponding Bootstrap Bias Corrected 

(BBC) 95% Confidence Intervals (CIs) (bars) are reported. 
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Again, notice that the “true” (i.e., reference) values of the 95th percentiles (i.e., 95.0,
,

hot
coreoutT  = 796.31 °C 

and 95.0,
,

avg
coreoutT  = 570.22 °C, shown as dashed lines in Figure 4) have been calculated with a very large 

number NT (i.e., NT = 250000) of simulations of the original T-H code, to provide a robust reference 

for the comparisons: the computational time required by the analysis is 209 h. 
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Figure 4. Bootstrap Bias Corrected (BBC) point estimates 95.0,
,,

ˆ hot
BBCcoreoutT  and 95.0,

,,
ˆ hot

BBCcoreoutT  (dots) and 

BBC 95% Confidence Intervals (CIs) (bars) for the 95th percentiles 95.0,
,

hot
coreoutT  and 95.0,

,
avg

coreoutT  of the hot- 

(top) and average- (bottom) channel coolant outlet temperatures hot
coreoutT ,  and avg

coreoutT , , respectively, 

obtained with NT = 250000 estimations from bootstrapped ANNs (left) and RSs (right) built on Ntrain 

= 20, 30, 50, 70 and 100 data examples; the “true” (i.e., reference) values (i.e., 95.0,
,

hot
coreoutT  = 796.31 

°C and 95.0,
,

avg
coreoutT  = 570.22 °C) are shown as dashed lines 
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Bootstrapped ANNs turn out to be quite reliable and robust, providing BBC point estimates very 

close to the real values in all the cases considered; on the contrary, bootstrapped quadratic RSs 

provide accurate estimates only for Ntrain = 70 and 100. For example, for Ntrain = 20 the ANN and 

quadratic RS BBC point estimates 95.0,
,,

ˆ hot
BBCcoreoutT  for 95.0,

,
hot

coreoutT  = 796.31 °C are 813.50 °C and 849.98 °C, 

respectively; on the contrary, for Ntrain = 100 the same estimates become 796.70 °C and 800.81 °C, 

respectively. The superior performance of the ANNs can again be explained by the higher 

flexibility in nonlinear modeling offered by them with respect to RSs. 

Moreover, the uncertainty associated to the bootstrapped ANN estimates is significantly lower than 

that associated to the quadratic RS estimates, as demonstrated by the width of the corresponding 

confidence intervals: for example, for Ntrain = 100 the widths of the BBC 95% CIs produced by 

bootstrapped ANNs and quadratic RSs for 95.0,
,

hot
coreoutT  are 21.40 °C and 78.00 °C, respectively. This 

difference in performance is related to the problem of overfitting (Section 5.1) which can become 

quite relevant in the bootstrap procedure for the calculation of the BBC 95% CIs (Section 3). The 

calculation requires that B bootstrap samples Dtrain,b, b = 1, 2, …, B, be drawn at random with 

replacement from the original set Dtrain of input/output data examples: by so doing, some of the 

patterns in Dtrain will appear more than once in the individual samples Dtrain,b, whereas some will not 

appear at all. As a consequence, the number of unique (i.e., different) data in each bootstrap sample 

Dtrain,b will be typically lower than the number Ntrain of “physical” data: this is particularly true if 

Ntrain is low (e.g., equal to 20 or 30). Since during the bootstrap (step 4. in Section 3) the number of 

adjustable parameters w* in each “trained” regression model is fixed, it frequently happens that the 

number of adaptable parameters w* is larger than the number of unique data in the individual 

bootstrap sample Dtrain,b: this typically causes the regression model to overfit the bootstrap 

“training” data Dtrain,b with consequent degradation of estimation performance. In the case of ANNs, 

the early stopping method described in Section 5.1 allows avoiding the overfitting; on the contrary, 

to the best of the authors’ knowledge, no method of this kind is available for polynomial RSs. This 

explains the higher accuracy of ANN, which within the bootstrap resampling procedure results in a 

lower “dispersion” of the corresponding bootstrap estimates bQ̂ , b = 1, 2, …, B, and in a smaller 

width of the produced confidence intervals (step 4.c. in Section 3). 

Finally, the computational times associated to the calculation of the BBC point estimates 95.0,
,,

ˆ hot
BBCcoreoutT  

and 95.0,
,,

ˆ hot
BBCcoreoutT  for 95.0,

,
hot

coreoutT  and 95.0,
,

avg
coreoutT , and the corresponding BBC 95% CIs, are compared for the 

two bootstrapped regression models with reference to the case of Ntrain = 100, by way of example: 

the overall CPU times required by the use of bootstrapped ANNs and RSs are on average 2.22 h and 

0.43 h, respectively. These values include the time required for: 
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i. generating the Ntrain + Nval + Ntest input/output examples, by running the T-H code: the 

corresponding CPU times are on average (100 + 20 + 20)·3 = 420 s = 7 min ≈ 0.12 h and 

(100 + 0 + 20)·3 = 360 s = 6 min ≈ 0.10 h for the ANNs and the RSs, respectively; 

ii.  training the bootstrapped ensemble of B = 1000 ANN and RS regression models by means 

of the error back-propagation algorithm and the least squares method, respectively: the 

corresponding CPU times are on average 2 h and 0.25 h for the ANNs and the RSs, 

respectively; 

iii.  performing NT = 250000 evaluations of each of the B = 1000 bootstrapped ANN and RS 

regression models; the corresponding CPU times are on average 6 min (i.e., 0.1 h) and 4.5 

min (i.e., about 0.08 h) for the ANNs and the RSs, respectively. 

 

The overall CPU times required by the use of bootstrapped ANNs (i.e., on average 2.22 h) and 

quadratic RSs (i.e., on average 0.43 h) is about 90 and 480 times, respectively, lower than that 

required by the use of the original T-H model code (i.e., on average 209 h). The CPU time required 

by the ANNs is about 5 times larger than that required by the quadratic RSs, mainly due to the 

elaborate training algorithm needed to build the structurally complex neural model. 

5.3 Functional failure probability estimation 

In this Section, the bootstrapped ANNs and quadratic RSs are compared in the task of estimating 

the functional failure probability of the 600-MW GFR passive decay heat removal system of Figure 

1. The previous system configuration with Nloops = 3 is analyzed. 

Figure 5 shows the values of the Bootstrap Bias Corrected (BBC) point estimates ( )BBCFP̂  (dots) of 

the functional failure probability P(F) obtained with NT = 500000 estimations from the bootstrapped 

ANNs (left) and quadratic RSs (right) built on Ntrain = 20, 30, 50 ,70 and 100 data examples; the 

corresponding Bootstrap Bias Corrected (BBC) 95% Confidence Intervals (CIs) are also reported 

(bars). Notice that the “true” (i.e., reference) value of the functional failure probability P(F) (i.e., 

P(F) = 3.34·10-4, shown as dashed lines in Figure 5) has been obtained with a very large number NT 

(i.e., NT = 500000) of simulations of the original T-H code to provide a robust term of comparison: 

the computational time required by this reference analysis is thus 500000·3 s = 1500000 s ≈ 417 h. 
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Figure 5. Bootstrap Bias Corrected (BBC) point estimates ( )BBCFP̂  (dots) and BBC 95% 

Confidence Intervals (CIs) (bars) for the functional failure probability P(F) obtained with NT = 

500000 estimations from bootstrapped ANNs (left) and RSs (right) built on Ntrain = 20, 30, 50, 70 

and 100 data examples; the “true” (i.e., reference) value for P(F) (i.e., P(F) = 3.34·10-4) is shown 

as a dashed line 

 

It can be seen that as the size of the training sample Ntrain increases, both the ANN and quadratic RS 

provide increasingly accurate estimates of the true functional failure probability P(F), as one would 

expect. On the other hand, in the cases of small training sets (e.g., Ntrain = 20, 30 and 50) the 

functional failure probabilities are significantly underestimated by both the bootstrapped ANN and 

the quadratic RS models (e.g., the BBC point estimates ( )BBCFP̂  for P(F) lie between 9.81·10-5 and 

2.45·10-4) and the associated uncertainties are quite large (e.g., the widths of the corresponding 

BBC 95% CIs are between 3.47·10-4 and 7.91·10-4). Two considerations seem in order with respect 

to these results. First, in these cases of small data sets available the analyst would still be able to 

correctly estimate the order of magnitude of a small failure probability (i.e., P(F) ~ 10-4), in spite of 

the low number of runs of the T-H code performed to generate the Ntrain = 20, 30 or 50 input/output 

examples; second, the accuracy of an estimate should be evaluated in relation to the requirements of 

the specific application; for example, although the confidence interval provided by the bootstrapped 

ANNs trained with Ntrain = 50 samples ranges from 8.03·10-5 to 4.27·10-4, this variability might be 

acceptable for demonstrating that the system satisfies the target safety goals. 

Finally, it is worth noting that although bootstrapped ANNs provide better estimates and lower 

model uncertainties than quadratic RSs, the difference in the performances of the two regression 

models is less evident than in the case of percentile estimation (Section 5.2). This may be due to the 

fact that estimating the value of the functional failure probability P(F) is a simpler task than 
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estimating the exact values of the corresponding coolant outlet temperatures. For example, let the 

true value of the hot channel coolant outlet temperature be 1250 °C and the corresponding estimate 

by the regression model be 1500 °C: in such a case, the estimate is absolutely inaccurate in itself, 

but “exact” for the purpose of functional failure probability estimation with respect to a failure 

threshold of 1200 °C. 

Finally, the computational times required for the estimation of the functional failure probability, and 

the corresponding confidence interval, in the case of Ntrain = 100 are 2.32 h and 0.50 h for the 

bootstrapped ANNs and quadratic RSs, respectively. 

6 Conclusions 

In this paper, Artificial Neural Networks (ANNs) and quadratic Response Surfaces (RSs) have been 

compared in the task of estimating, in a fast and efficient way, the probability of functional failure 

of a T-H passive system. A case study involving the natural convection cooling in a Gas-cooled 

Fast Reactor (GFR) after a Loss of Coolant Accident (LOCA) has been taken as reference. To allow 

accurate comparison values based on a large number of repeated T-H-model code evaluations, the 

representation of the system behavior has been limited to a steady-state model. 

ANN and quadratic RS models have been constructed on the basis of sets of data of limited, varying 

sizes, which represent examples of the nonlinear relationships between 9 uncertain inputs and 2 

relevant outputs of the T-H model code (i.e., the hot- and average-channel coolant outlet 

temperatures). Once built, such models have been used, in place of the original T-H model code, to: 

compute the temperatures 95th percentiles of the hot-channel and average-channel temperatures of 

the coolant gas leaving the reactor core; estimate the functional failure probability of the system by 

comparison of the computed values with predefined failure thresholds. In all the cases considered, 

the results have demonstrated that ANNs outperform quadratic RSs in terms of estimation accuracy: 

as expected, the difference in the performances of the two regression models is much more evident 

in the estimation of the 95th percentiles than in the (easier) task of estimating the functional failure 

probability of the system. Due to their flexibility in nonlinear modelling, ANNs have been shown to 

provide more reliable estimates than quadratic RSs even when they are trained with very low 

numbers of data examples (e.g., 20, 30 or 50) from the original T-H model code. 

The bootstrap method has been employed to estimate confidence intervals on the quantities 

computed: this uncertainty quantification is of paramount importance in safety critical applications, 

in particular when few data examples are used. In this regard, bootstrapped ANNs have been shown 

to produce narrower confidence intervals than bootstrapped quadratic RSs in all the analyses 

performed. 
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On the basis of the results obtained, bootstrapped ANNs can be considered more effective than 

quadratic RSs in the estimation of the functional failure probability of T-H passive systems (while 

quantifying the uncertainty associated to the results) because they provide more accurate (i.e., 

estimates are closer to the true values) and precise (i.e., confidence intervals are narrower) estimates 

than quadratic RSs; on the other hand, the computational time required by bootstrapped ANNs is 

somewhat longer than that required by quadratic RSs, due to the elaborate training algorithm for 

building the structurally complex neural model. 
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