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Abstract
The estimation of the functional failure probalyildaf a thermal-hydraulic (T-H) passive system can
be done by Monte Carlo (MC) sampling of the epigtamcertainties affecting the system model
and the numerical values of its parameters, folldwg the computation of the system response by a
mechanistic T-H code, for each samplee computational effort associated to this apploaan
be prohibitive because a large number of lengthy dede simulations must be performed (one for
each sample) for accurate quantification of thectional failure probability and the related
statistics.
In this paper, the computational burden is redutgdreplacing the long-running, original T-H
code by a fast-running, empirical regression modelparticular, an Artificial Neural Network
(ANN) model is considered. It is constructed onlihsis of a limited-size set of data representing
examples of the input/output nonlinear relationshymderlying the original T-H code; once the
model is built, it is used for performing, in ancaptable computational time, the numerous system
response calculations needed for an accurate failyrobability estimation, uncertainty
propagation and sensitivity analysis.
The empirical approximation of the system respgmewided by the ANN model introduces an
additional source of (model) uncertainty, which d&e€o be evaluated and accounted for. A
bootstrapped ensemble of ANN regression modelseie built for quantifying, in terms of
confidence intervals, the (model) uncertaintiesoasded with the estimates provided by the ANNSs.
For demonstration purposes, an application to tbactional failure analysis of an emergency
passive decay heat removal system in a simple yst&ate model of a Gas-cooled Fast Reactor
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(GFR) is presented. The functional failure probapilof the system is estimated together with
global Sobol sensitivity indices. The bootstrapp&NN regression model built with low

computational time on few (e.g., 100) data exameshown capable of providing reliable (very
near to the true values of the quantities of ind€reand robust (the confidence intervals are

satisfactorily narrow around the true values of theantities of interest) point estimates.

1 Introduction

Passive systems (IAEA, 1991) are expected to daririsignificantly to the safety of future nuclear
power plants by combining their peculiar charastas of simplicity, reduction of human
interaction (Prosek and Cepin, 2008) and reduatioavoidance of hardware failures (Mathews et
al., 2008). On the other hand, the uncertaintis®@ated to their actual operation and modelling
are usually larger than in active systems.

Two different sources of uncertainties are usuedlysidered in safety analyses: randomness due to
intrinsic variability in the behavior of the systgaleatory uncertainty) and imprecision due to lack
of data on some underlying phenomena (e.g., natin@lation) and to scarce or null operating
experience over the wide range of conditions entyad during operation (epistemic uncertainty)
(Apostolakis, 1990; Helton, 2004).

Due to these uncertainties, there is a nonzeroghibty that the physical phenomena involved in
the operation of a passive system do not occukpected, thus leading to the failure of performing
the intended safety function even if safety mardiage been dimensioned (Marques et al., 2005;
Patalano et al., 2008).

Various methodologies have been proposed in the lifgeature to quantify the probability that T-
H passive systems fail to perform their functiohe reader is referred to (Burgazzi, 2007; Zio and
Pedroni, 2009a) for a review. A reasonable apprdactake is that founded on the concept of
functional failuresin the framework of reliability physics and loadpacity exceedance probability
(Burgazzi, 2003). In this view, a passive systeils ta perform its function due to deviations from
its expected behavior which lead the load imposedhe system (e.g., the peak value of the fuel
cladding temperature during a LOCA transient) t@rceme its capacity (e.g., a threshold value
imposed by regulating authorities or by the meatenproperties of structural materials). This
concept is at the basis of many works of litergtumeluding (Jafari et al., 2003; Marqués et al.,
2005; Pagani et al., 2005; Bassi and Marqueés, 2d@8kay et al., 2008; Mathews et al., 2008 and
2009; Patalano et al., 2008; Fong et al., 2009;afid Pedroni, 2009a and b); in these works, the
passive system is modeled by a detailed, mechanisti system code and the probability of not

performing the required function is estimated baseda Monte Carlo (MC) sample of code runs
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which propagate thepistemic (state-of-knowledge) uncertainties in the modescdbing the
system and the numerical values of its parametaiahles; because of these uncertainties, the

system may not accomplish its mission, even if a@vare failure occurs.

MC simulation allows a realistic assessment ofTtHé system functional failure probability, thanks
to its flexibility and indifference to the compléxiof the T-H model. This, however, is paid in
terms of the high computational efforts requiretided, a large number of Monte Carlo-sampled
T-H model evaluations must generally be carriedfoutan accurate estimation of the functional
failure probability. Since the number of simulasarquired to obtain a given accuracy depends on
the magnitude of the failure probability to be mstied, with the computational burden increasing
with decreasing functional failure probability (Seller, 2007), this poses a significant challenge
for the typically quite small (e.g., less than*L@robabilities of functional failure of T-H passiv
safety systems. In particular, the challenge is tdule time required for each run of the detailed,
mechanistic T-H system code which can take severals (one code run is required for each
sample of values drawn from the uncertainty distidns of the input parameters/variables to the
T-H code) (Fong et al., 2009). Thus, alternativéhods must be sought to tackle the computational

burden associated to the analysis.

To tackle the computational issue, efficient sangptiechniques can be adopted for obtaining robust
estimations with a limited number of input sampleschniques like Importance Sampling (IS) (Au
and Beck, 2003; Schueller et al., 2004), Stratifs@inpling (Helton and Davis, 2003; Cacuci and
lonescu-Bujor, 2004) and Latin Hypercube Samplingg) (Helton and Davis, 2003) have been
widely used in reliability analysis and risk asseeant (Helton 1998). Recently, advanced sampling
methods such as Subset Simulation (SS) (Au and ,B2@81; Au and Beck, 2003) and Line
Sampling (LS) (Koutsporelakis et al., 2004; Pradtemaet al., 2005) have been proposed for
structural reliability assessment and subsequepfied to the estimation of the functional failure
probability of a T-H passive system (Zio and Pegr@009a and B) These methods have been
shown to improve the computational efficiency altbb there is no indication yet that the number
of model evaluations can be reduced to below aliandreds, which may be mandatory in the

presence of computer codes requiring several lourm a single simulation.

! Apart from efficient MC techniques, there existthuels based on nonparametric order statistics @\Vill042) that
propagate uncertainties through mechanistic T-Hesaslith reduced computational burden, especialbnlf one- or
two-sided confidence intervals are needed for galet statistics (e.g., the 9%Percentile) of the outputs of the code.
For example, the so-callambverage(Guba et al., 2003; Makai and Pal, 2006) hratketing(Nutt and Wallis, 2004)
approaches can be used to identify phecisenumber of sample code runs required to obtainvangionfidencdevel
on the estimates of prescribed statistics of the autputs.
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In such cases, the only viable alternative seenas tfi resorting to fast-running, surrogate
regression models, also called response surfacegeta-models, to approximate the input/output
function implemented in the long-running T-H modelde, and then substitute it in the passive
system functional failure analysis. The construttod such regression models entails running the
T-H model code a predeterminedducednumber of times (e.g., 50-100) for specified valokthe
uncertain input parameters/variables and collectimg corresponding values of the output of
interest; then, statistical techniques are empldgeditting the response surface of the regression
model to the input/output data generated in theipus step. Several examples can be found in the
open literature concerning the application of sgate meta-models in reliability problems. In
(Bucher and Most, 2008; Gavin and Yau, 2008; Ltehdle 2008), polynomial Response Surfaces
(RSs) are employed to evaluate the failure proliglof structural systems; in (Arul et al., 2009;
Fong et al., 2009; Mathews et al., 200@)ear and quadratic polynomial RSs are employed for
performing the reliability analysis of T-H passisgstems in advanced nuclear reactors; in (Deng,
2006; Hurtado, 2007; Cardoso et al., 2008; Chera).eR008), learning statistical models such as
Artificial Neural Networks (ANNSs), Radial Basis Fetions (RBFs) and Support Vector Machines
(SVMs) are trained to provide local approximatiaristhe failure domain in structural reliability
problems; in (Volkova et al., 2008; Marrel et 2009), Gaussian meta-models are built to calculate
global sensitivity indices for a complex hydrogeptal model simulating radionuclide transport in

groundwater.

In this work, Artificial Neural Networks (ANNs) amonsidered to reduce the computational burden
associated to uncertainty propagation in the foneti failure analysis of a natural convection-based
decay heat removal system of a Gas-cooled Fasti®&FR) (Pagani et al., 2005).l#nited-size

set of input/output data examples is used to coasthe ANN regression model; once the model is
built, it is used to perform, in a negligible congtional time, the functional failure analysis bét
T-H passive system: in particular, the functionailure probability of the system is estimated
together with global sensitivity indices of theunally circulating coolant temperature.

The use of regression models in safety criticaliappons like nuclear power plants raises concerns
with regards to thenodelaccuracy, which must be not only verified but adg@mntified; in this
paper, we resort to the bootstrap method for gfyamg, in terms ofconfidence intervalgshe model
uncertainty associated to the estimates provided\Nis (Efron and Thibshirani, 1993). Some
examples of the application of the bootstrap metlmd the evaluation of the uncertainties
associated to the output of regression models fatyseelated problems can be found in the

literature: in (Zio, 2006), bootstrapped ANNs amarted to predict nuclear transients processes; in
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(Cadini et al., 2008; Secchi et al., 2008), the ehathcertainty, quantified in terms ofstandard
deviation is used to “correct” the ANN output in order toopide conservative estimates for
important safety parameters in nuclear reactoes, fpercentiles of the pellet cladding temperature)
finally, in (Storlie et al., 2008), the bootstrapopedure is combined with different regression
techniques, e.g. Multivariate Adaptive Regressigiin® (MARS), Random Forest (RF) and
Gradient Boosting Regression (GBR), to calculat&idence intervals for global sensitivity indices
of the computationally demanding model of a nucleaste repository.

The main objective of the present study is to sttmpossibility of:

» limiting the computational burden associated to uheertainty propagation and sensitivity
analyses underpinning a quantitative functiondufaianalysis of a T-H passive system; to
this aim, ANN regression models trained on a smath set are used for the first time for
the estimation of:

= the functional failure probability of the passiwstem;

= first-order global Sobol sensitivity indices detammg the contribution of the
individual uncertain parameters (i.e., the inpotghe T-H code) to the uncertainty in
the coolant temperature (i.e., the output of thel Tede) and consequently to the
probability of functional failure of the passivestgm;

e quantifying, in terms ofconfidence intervalsthe model uncertainty associated to the
estimates of the functional failure probability aBdbol indices provided by the ANN
models. To the best of the authors’ knowledge, igseie of quantification of model
uncertainty in the regression estimates has not bddressed in the literature regarding the
functional failure analysis of T-H passive systefAsul et al., 2009; Fong et al., 2009;
Mathews et al., 2009); in the present work, boapgied ANNs are used to the purpose.

The paper organization is as follows. In Sectioth2,concepts of functional failure analysis for T-
H passive systems are synthetically summarizedidde® briefly presents the problem of empirical
regression modeling by means of ANNs and providesapshot on the bootstrap method for the
guantification of the ANN (model) uncertainty. lle@&ion 4, the case study of literature concerning
the passive cooling of a GFR is presented. In 8echB, the results of the application of
bootstrapped ANNSs to the functional failure anaysf the T-H passive system of Section 4 are
reported. Conclusions are provided in the lasti@ectFinally, algorithmic details about the

bootstrap-based method for quantifying, in termsaffidence intervalsthe model uncertainty



associated to the estimates of safety parametenputed by ANN regression models are reported

in the Appendix at the end of the paper.

2 Functional failure analysis of T-H passive systems

Since a comprehensive functional failure analy$ia @-H passive system is beyond the scope of

this work, only the essential steps for the congaptlevelopment of the analysis are briefly

reported below (Marqués et al., 2005):

1.
2.
3.

5.

Define the failure criteria of the passive system.

Build a deterministic, best-estimate T-H modelitaldate the passive system behavior.
Identify and characterize by proper probabilitytdimitions the factors afincertaintyin the
results of the best estimate T-H calculations. he tpresent work, onlyepistemic
uncertainties are considered, due to the limitedwkadge on some phenomena and
processes (e.g., models, parameters and corredatgad in the T-H analysis).

Propagate by Monte Carlo Simulation (MCS), the tepnsc uncertainties associated to the
identified relevant parameters, models and coioglat (step 3. above) through the
deterministic, long-running T-H code in order tdirate the functional failure probability
of the passive system conditional on the currestesbf knowledge about the phenomena
involved (step 3. above) (Bassi and Marques, 200&;kay et al.,, 2008; Mathews et al.,
2008; Patalano et al., 2008). Formally, fet= {x, Xz, ..., X, ..., X, } be the vector of the

relevant uncertain system parameters/variablég,) be a scalar indicator variable of the
performance of the passive system (e.g., the feaekladding temperature) ang a
threshold value defining the corresponding failargerion (e.g., a limit value imposed by
regulating authorities). For illustrating purposést, us assume that the passive system
operates as long a4 x) < ay. The MCS procedure for estimating the functioralufre
probability entails that large numberNy of samples of the values of the system parameters

X be drawn from the corresponding probability dmsitions and used to evaluatéx) by
running the T-H code. An estimaﬂé(F) of the probability of failureP(F) can then be

computed by dividing the number of times tiax ) > ay by the total number of samples
Nr.

Perform a sensitivity study to determine the cdwiiion of the individual uncertain
parameters (i.e., the inputs to the T-H code) éoutcertainty in the outputs of the T-H code
and consequently to the functional failure probgbdf the T-H passive system. As is true
for uncertainty propagation (step 4. above), sefitgit analysis relies onmultiple

evaluations of the code for different combinatiohsystem inputs.



The computational burden posed by the uncertairdgagation and sensitivity analysis of steps 4.
and 5. above may be tackled by replacing the lamging, original T-H model code by a fast-
running, surrogate regression model properly lailapproximate the output from the true system
model. In this paper, Artificial Neural Networks NNs) (Bishop, 1995) are used. A confidence
interval is evaluated by means of the bootstraphotet(Efron and Thibshirani, 1993); a brief
description of this latter technique is given ire tfollowing Section, whereas the relevant
algorithmic details can be found in the Appendixhat end of the paper.

3 Bootstrapped Artificial Neural Networks for empiric al regression
modelling

As discussed in the previous Section, the compmutatiburden posed by uncertainty and sensitivity
analyses of T-H passive systems can be tackleedgaing the long-running, original T-H model
code by a fast-running, surrogate regression md@kglause calculations with the surrogate model
can be performed quickly, the problem of long siatioh times is circumvented.

Let us consider a generic meta-model to be burltpfErforming the task of nonlinear regression,
i.e., estimating the nonlinear relationship betwaerector of input variables = {x;, X2, ..., %, ...,

X, } and a vector of output targeys= {y1, ¥, ..., }i, ..., ¥, }, on the basis of &nite (and possibly
reduced set of input/output data examples (i.e., paterig,;, ={(xp, yp), p= lZ,...,Nt,ain} (Zio,

2006). It can be assumed that the target vecisrrelated to the input vector by an unknown

nonlinear deterministic functiop, (x) corrupted by a noise vecte(x), i.e.,

y(x) =, (x)+(x). (1)
Notice that in the present case of T-H passiveesydtinctional failure probability assessment the
vector x contains the relevant uncertain system parameteiables, the nonlinear deterministic
function yy(x) represents the complex, long-running T-H mechanimsbdel code (e.g., RELAP5-
3D), the vectory(x) contains the output variables of interest for #malysis and the noise(x)
represents the errors introduced by the numeriethoads employed to calculapey(x) (Storlie et
al., 2008); for simplicity, in the following we asme £(x) =0 (Secchi et al., 2008).

The objective of the regression task is to estinm}é() in (1) by means of a regression function

f(x, w) depending on a set of parameterso be properly determined on the basis of thelalii
data seDyain; the algorithm used to calibrate the set of patars@ is obviously dependent on the

nature of the regression model adopted, but inrgéiteaims at minimizing the mean (absolute or
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quadratic) error between the output targets ofathginal T-H code.y, = yy(xp), p=1, 2, ..,

Nwain, @and the output vectors of the regression mo@gl,: f(xp,w*), p=1 2, ...,Nqin; for

example, the Root Mean Squared Error (RMSE) is contynadopted to this purpose (Zio, 2006):
1 Nyain N

RMSE-= Ty pzl ;( % - )

(@)

Once built, the regression modét, w) can be used as a simplified, quick-running suate@f the
original, long-running T-H model code for signifiddy reducing the computational burden
associated to the accurate estimation and epistenuertainty propagation steps of the functional
failure analysis of T-H passive systems. In palicuthe regression modk, w') can be used in
place of the T-H code to calculate any quantityntérestQ, e.g. the functional failure probability
of the passive system, confidence intervals andajlsensitivity indices, etc.

In this work, three-layered feed-forward Artificidleural Network (ANN) regression models are
considered. In extreme synthesis, ANNs are comgutavices inspired by the function of the nerve
cells in the brain (Bishop, 1995). They are comdost many parallel computing units (called
neurons or nodes) interconnected by weighed coiomsct(called synapses). Each of these
computing units performs a few simple operationd @ammunicates the results to its neighbouring
units. From a mathematical viewpoint, ANNs consista set of nonlinear (e.g., sigmoidal) basis
functions with adaptable parametersthat are adjusted by a processrafning (on many different
input/output data examples), i.e., an iterativecpss of regression error minimization (Rumelhart et
al., 1986). The details about ANN regression modedsnot reported here for brevity, the interested
reader may refer to the cited references and thmugs literature in the field. The particular typle
ANN employed in this paper is the classical thiegeted feed-forward ANN trained by the error

back-propagation algorithm.

When using the approximation of the system outpovided by an ANN empirical regression
model, an additional source of uncertainty is idtrced which needs to be evaluated, particularly in
safety critical applications like those relatechtaclear power plant technology. One way to do this
by resorting to bootstrapped ANN regression modg&fon and Thibshirani, 1993), i.e., an
ensemble of ANN regression models, constructed ifereht data sets bootstrapped from the
original one (Zio, 2006; Storlie et al., 2008). Tiheotstrap method is a distribution-free inference
method which requires no prior knowledge about dngribution function of the underlying
population (Efron and Thibshirani, 1993). The badea is to generate a sample from the observed
data by sampling with replacement from the origiaaia set (Efron and Thibshirani, 1993). From

the theory and practice of ensemble empirical ngdekcan be shown that the estimates given by
8



bootstrapped ANN regression models is in generakraocurate than the estimate of the best ANN
regression model in the bootstrap ensemble of ABdtassion models (Zio, 2006; Cadini et al.,
2008).

A bootstrap-based estimation technique is here @&yepl for the evaluation of the so-called
Bootstrap Bias Corrected (BBC) point estime(A@gBC of a generic quantityQ (e.g., a safety

parameter) by an ANN regression modét, w) and the calculation of the associated BBC
Confidence Interval (Cl) (Zio, 2006; Storlie et,&008). The complete algorithm is not reported
here for brevity; some details can be found inAbpendix at the end of the paper.

4 Case study: functional failure analysis of a T-H pasive system

The case study considered in this work concernsgteral convection cooling in a Gas-cooled
Fast Reactor (GFR) under a post-Loss Of Coolantdéot (LOCA) condition (Pagani et al., 2005).
The reactor is a 600-MW GFR cooled by helium flogvitnrough separate channels in a silicon
carbide matrix core whose design has been the |ubjestudy in the past several years at the
Massachussets Institute of Technology (MIT) (Pagéiail., 2005).

In these studies, the possibility of using nataredulation to remove the decay heat in case of an
accident is demonstrated. In particular, in theecaka LOCA, the long-term heat removal is
ensured by natural circulation in a given numiigs,s of identical and parallel loops.

A GFR decay heat removal configuration is showresddtically in Figure 1; only one of tiyops
loops is reported for clarity of the picture: thew path of the cooling helium gas is indicated by
the black arrows; the loop has been divided Migiions= 18 sections for numerical calculation;
technical details about the geometrical and stratforoperties of these sections are not reported

here for brevity: the interested reader may reddPtagani et al., 2005).
Figure 1 here

In the present analysis, the average core powdsetaemoved is assumed to be 18.7 MW,
equivalent to about 3% of full reactor power (600M)M to guarantee natural circulation cooling at
this power level, a pressure of 1650 kPa is requimenominal conditions. Finally, the secondary
side of the heat exchanger (i.e., item 12 in Figyrs assumed to have a nominal wall temperature
of 90 °C (Pagani et al., 2005).

The model describes the quasi-steady-state naturallation cooling that takes place after the
LOCA transient has occurred. The associated simoglibns introduced in the modeling allow

relatively fast calculations, which enable to obteeference values for comparison of the estimates
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obtained by the ANN models developed. From a $fritiathematical point of view, obtaining a
steady-state solution amounts to dropping the teywgendent terms in the energy and momentum
conservation equations. In practice, the T-H maxbele balances the pressure losses around the
loops so that friction and form losses are compexasay the buoyancy term, while at the same time
maintaining the heat balance in the heater (he.réactor core, item 4 in Figure 1) and coole (i.
the heat exchanger, item 12 in Figure 1); a thdnadgscription of the deterministic T-H model is
not given here for brevity: the interested readay mefer to (Pagani et al., 2005) for details.

4.1 Uncertainties in the T-H model

Uncertainties affect the actual operation of passiystems and its modeling. On the one side, there
are phenomena, like the occurrence of unexpectedt®wand accident scenarios, e.g. the failure of
a component or the variation of the geometrical etisions and material properties, which are
random in nature. This kind of uncertainty in thedal description of the system behavior is
termed aleatory (NUREG-1150, 1990; Helton, 1998NBE, 2002). In this work, as well as in the
reference paper by (Pagani et al., 2005), aleatocgrtainties are not considered for the estimation
of the functional failure probability of the T-H gsive system of Figure 1.

An additional contribution of uncertainty comesnrdhe incomplete knowledge on the properties
of the system and the conditions in which the phssma occur (i.e., natural circulation). This
uncertainty is often termed epistemic and affdotsmhodel representation of the system behaviour,
in terms of bothrfode) uncertainty in the hypotheses assumed padafmete) uncertainty in the
values of the parameters of the model (Cacuci amescu-Bujor, 2004; Helton et al., 2006;
Patalano et al., 2008).

Model uncertainty arises because mathematical modet simplified representations of real
systems and, therefore, their outcomes may betatfelay errors or bias. It may, for example,
involve the correlations adopted to describe thid phenomena, which are subject to errors of
approximation. Such uncertainties may for examgeadpresented by a multiplicative model (Zio
and Apostolakis, 1996; Patalano et al., 2008):

z=m(x)[{, (3)
wherez is the real value of the parameter to be corréléeg., heat transfer coefficients, friction
factors, Nusselt numbers or thermal conductivitgficients), m(-) is the mathematical model of

the correlationx is the vector of correlating variables afidis a multiplicative error factor. Hence,

the uncertainty in the output quantitys translated into an uncertainty in the multigtice error

factor ¢ , commonly classified as representmgdeluncertainty.
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Uncertainty affects also the values of gaameteraused in the model (e.g., power level, pressure,
cooler wall temperature, material conductivity, .e)g. owing to errors in their measurement or
insufficient data and information. As a consequenhe values of such parameters are usually
known only to a certain level of precision, i.epistemic uncertainty is associated with them
(Pagani et al., 2005).

In this work, only epistemic (i.e., model and parameter) uncertanaee represented and

propagated through the deterministic T-H code (Riaga al., 2005; Bassi and Marques, 2008;
Mackay et al., 2008; Mathews et al., 2008; Patalah@l., 2008). Parameter uncertainties are
associated to the reactor power level, the presauitee loops after the LOCA and the cooler wall
temperature. Model uncertainties are associatethe¢ocorrelations used to calculate the Nusselt

numbers and friction factors in the forced, mixed dree convection regimes. The corresponding

nine uncertain inputs of the mod{a-j(j 2 ] :1,2,...,9} are assumed to be distributed according to

normal distributions of known meanand standard deviatian taking values in the range { 4o, u
+ 4o0] (Table 1, Pagani et al., 2005). The practical emaceptual reasons underpinning the values in
Table 1 are described in (Pagani et al., 2005).

Table 1 here

4.2 Failure criteria of the T-H passive system

The passive decay heat removal system of Figusecbnsidered failed whenever the temperature
of the coolant helium leaving the core (item 4 igufe 1) exceeds either 1200 °C in the hot channel
or 850 °C in the average channel: these valuegxgected to limit the fuel temperature to levels

which prevent excessive release of fission gasdshah thermal stresses in the cooler (item 12 in
Figure 1) and in the stainless steel cross duatsexiing the reactor vessel and the cooler (items
from 6 to 11 in Figure 1) (Pagani et al., 2005).

Indicating by x the vector of the 9 uncertain system parameterBabfe 1 (Section 4.1) and by

Tt (x) and T2 (x) the coolant outlet temperatures in the hot andramee channels,

out,core out,core
respectively, the failure evehtcan be written as follows:

F={x:T" (x)>120d40{x:T29, (x)>850. 4

out,core out,core

Notice that, in the notation of the preceding SBt8, T (x) = yi(x) and T29_ (x) = yx(x) are

7 "out,core out,core

the two target outputs of the T-H model.

The failure evenFE in (4) can be condensed into a single performardieatorY(x) (Section 2) as
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1200 850 1200’ 850

v()= ma{m?fm(x) | Toizim(x)} _ max{ pALY yz(x)} )

so that the failure eveltbecomes specified as:
F={x:Y(x)>1}. (6)

In the notation of Section 2, the failure thresholds then equal to one.

5 Results of the application of bootstrapped ANNs fothe functional
failure analysis of the T-H passive system of Secti 4

In this Section, the results of the applicatiorbobtstrapped Artificial Neural Networks (ANNSs) for
the quantitative functional failure analysis of 8@0-MW GFR passive decay heat removal system
in Figure 1 are illustrated. First, few details abthe construction of the ANN regression model are
given in Section 5.1; then, this is used to estinthé probability of functional failure of the sgst
(Section 5.2); finally, the sensitivity of the hatannel coolant outlet temperature to the uncertain
input parameters is studied by computing first-oi8ebol indices (Section 5.3). Notice that at each
estimation step, the model uncertainties associtdethe above mentioned quantities are also
estimated by bootstrapping the ANN regression neo¢e Section 3 and the Appendix).

5.1 Building and testing the ANN regression model
The ANN model used in this work is built using a g8}, :{(xp,yp),p=l2,...,Ntram} of

input/output data examples of sikgain = 100; this is done to test the capability of #EN
regression model to reproduce the outputs of thdimezar T-H model code on the basis of a
relatively small number of runs from the original T-H code. A Laktypercube Sample (LHS) of

the inputs is drawn to give the vectogs= {Xip, Xop, -..s Xjps -+ xmp}, p=1, 2, .....Nwain (Zhang

and Foschi, 2004). Then, the original T-H modetvaluated on the input vectotg p = 1, 2, ...,
Nirain, to Obtain the corresponding output vectys uy(Xp) = {Y1p Y2p, - Yips s Yo ob P=1, 2,

s Nirain, @nd build the data s&@,,, ={(X,, ¥, ) p= 12....,N,| - Finally, the adjustable parameters

w’ of the ANN regression model are calibrated tdHé& generated data: in particular, the common
error back-propagation algorithm is implementetramn the ANN (Rumelhart et al., 1986).

In the present case study, the numiyesf inputs to the ANN regression model is equa®tf.e.,

the number of uncertain inputs in Table 1 of Sectidl), whereas the numh®yof outputs is equal

to 2 (i.e., the number of system variables of eggrthe hot- and average-channel coolant outlet
temperatures, as reported in Section 4.2). The rumibnodes, in the hidden layer has been set

equal to 4 by trial and error.
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7 Yval

A validationdata setD,, ={(xp, yp), p=12,..N = 2}) (different from the training S@y,in) is

used to monitor the accuracy of the ANN model dyrihe training procedure: in practice, the
RMSE (2) is computed oD, at different phases of the training procedureth&t beginning, the
RMSE computed on the validation $8f, typically decreases together with the RMSE congbute
on the training seDy.in; then, when the ANN regression model starts ottendj the data, the
RMSE calculated on the validation 48§, starts increasing: this is the time to stop tlaéning
algorithm.

For a realistic measure of the ANN model accurdoy widely adopted coefficient of determination

R®> and the RMSE have been computed for each owplit= 1, 2, ...,n,, on a new data set

D —{(xp, yp), p=12...,N,.f also of sizéNist= 20, not used during training (Marrel et al., 20

test —

Table 2 reports the values of the coefficient dedminationR* and of the RMSE associated to the

estimates of the hot- and average- channel codbaiiet temperaturesT® — and T2

out,core out,core ?
respectively, computed on the test Bet; of sizeNist = 20 by the ANN model witim, = 4 hidden
neurons, built on a data SBf4in Of SizeNyain = 100; the number of adjustable parameters (ANN

weights)w' in the ANN regression model is also reported.
Table 2 here

The large values of the coefficient of determinafi, i.e., 0.9897 and 0.9866, and the small values
of 12 °C and 6.3 °C for the RMSEs produced by tiN\NAor the hot- and average-channel coolant

outlet temperature3"® _and T2 | respectively, lead us to assert that the accushtye ANN

out,core out,core ”
model can be considered satisfactory for the negdstimating the functional failure probability of
the present T-H passive system.

Finally, in order to demonstrate that the trial-aamtbr selected ANN architecture withy, = 4

hidden neurons is suitable for the present apphicatTable 2 contains also the values of the

coefficient of determinationR’> and of the RMSE associated to the estimates ofhtte and

average- channel coolant outlet temperatdifs,,, and T2, respectively, obtained on the test

ore out,core ”
setDiest by two additional ANN topologies: in particularNA regression models with, = 3 and 5
hidden neurons are considered. It can be seenhibatlues of the coefficient of determinatigh
obtained by the ANN architecture witlh = 3 hidden neurons are 0.9821 and 0.9763 (i.eero
than those produced by the ANN with = 4 hidden neurons), while the values of the RM&kes
16.0 °C and 8.5 °C (i.e., larger than those produmethe ANN withn, = 4 hidden neurons) for the

13



hot- and average-channel coolant outlet tempersaf[gt% and T2 | respectively. The values

core out,core ?

of the coefficient of determinatiod® obtained by the ANN architecture with = 5 hidden neurons
are 0.9891 and 0.9860 (again, lower than thoseugemtiby the ANN witm, = 4 hidden neurons),
while the values of the RMSEs are 13.4 °C and T.§d&gain, larger than those produced by the

ANN with n, = 4 hidden neurons) for the hot- and average-aflacoolant outlet temperatures

Th andT29 ., respectively.

out,core out,core’

5.2 Functional failure probability estimation

In this Section, the bootstrapped ANNs are usedeftimating the functional failure probability,
and associated confidence interval of the 600-MWRG#fassive decay heat removal system of

Figure 1. The previous system configuration Wkyps = 3 is analyzed.

Table 3 reports the value of the Bootstrap Biageted (BBC) estimat®(F ),,. of the functional
failure probability (per demandp(F) obtained withN: = 500000 estimations frorB = 1000
bootstrapped ANNSs built oNy,.i, = 100 data examples; the corresponding Bootstrap Gorrected
(BBC)-95% Confidence Interval (ClI) is also reported “true” value of the functional failure
probability P(F) is also reported in Table 3 for reference (iF) = 3.34-10f); this has been
obtained with a very large numbif (i.e., Nr = 500000) of simulations of the original T-H code,
which actually runs fast enough to allow repetitoadculations (one code run lasts on average 3
seconds on a Pentium 4 CPU 3.00GHz): the computdttome required by this reference analysis
is thus 500000-3 s = 1500008 417 h.

Table 3 here

It can be seen that bootstrapped ANNs are quli@ble because the value of the BBC point
estimateI5(F)BBC (i.e., 3.59-10) is quite close to the “true” value (i.e., 3.34%10f the functional

failure probabilityP(F). In spite of the small value of the failure prbbigy (i.e., P(F) ~ 10%) this is
done by resorting to quitelew number of runs of the T-H code (i.e., oMyain + Nyai + Neest = 100

+ 20 + 20 = 140 input/output examples for trainimglidating and testing the bootstrapped ANN
model).

In addition, the BBC-95% CI produced by the boafspred ANNs provides a measure of the
(model) uncertainty associated to the ANN poinineste I5(F)BBC: this information is particularly

interesting when very few data are used to buidlibotstrapped ANN models and, consequently,

14



the confidence of the analyst in the obtained BB)@]tpestimatels(F)BBC is poor. In this respect,

the upper bound of the BBC-95% ClI (in this cas&24L0%) can be used to provide a slightly
conservativeestimate of the corresponding functional failurebability P(F). Note that the BBC-
95% CI includes the “true” value d#(F) (i.e., 3.34-10) and it is quitenarrow around it: this
confirms therobustnessof the estimates produced by the trained boots&@pANN regression
models in the present application.

Finally, a computational time of about 2 hours ssaxiated to the calculation of the BBC point
estimateP(F ), for P(F) and the corresponding BBC-95% CI (Table 3); thitue includes the

time required for i) generating tM&ain + Nyal + Niest= 100 + 20 + 20 = 140 input/output examples,
by running the T-H code (i.e., on average 140-3 428 s = 7 m= 0.12 h), ii) training the
bootstrapped ensembdé B = 1000 ANN models by means of an error back-prapag algorithm
(i.e., on average 2 h) and iii) performifdy = 500000 evaluations agach of the B = 1000
bootstrapped ANN models (i.e., on average 6 minatésl h). The overall CPU time required by
the use of bootstrapped ANNSs (i.e., on average B)28 about 180 times lower than that required

by the use of the original T-H model code (i.e.average 417 h).

5.3 Global sensitivity analysis based on first-order Saol indices

In the functional failure analysis of a T-H passeystem, sensitivity analysis is a useful tool for
identifying the uncertain parameters (i.e., theautain inputs to the T-H code) that contribute most
to the variability of the model outputs (i.e., th@olant outlet temperatures). In the followingstir

order Sobol sensitivity indices are computed omly the hot-channel coolant outlet temperature

T by way of example (Sobol, 1993).

out,core
By definition, the first-order Sobol sensitivitydexS',j =1,2,..n,1 =1, 2, ...ny, quantifies the
proportion of the variance of the outputl = 1, 2, ...,n,, that can be attributed to the variance of
the uncertain input variabbe along i.e., withouttaking into accouninteractionswith other input

variables. It is formally defined as

S _ Y [E\*/[(;]' | )SH i=12,.0 =121, (7)

whereV[y] is the variance of the model outpyt! = 1, 2, ...,n,, obtained when all model input

parameters;, j = 1, 2, ...,n, are sampled over their variation range, ={x1, >(2,...,>g_l,>§+1,...,>r§i}
is a vector containing all the uncertain input abkes excep; and V, [Ex,j (yI | )g)} is the
expected variancef y; obtained when the input parameter of intergsis fixed and all the
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remaininginput variables are sampled over their variatianges; a thorough description of this
sensitivity measure goes far beyond the scopei®fbrk: further details can be found in (Saltelli,
2002a).

As pointed out in (Saltelli, 2002b), the sensifivindex (7) has the advantage of bemglgbal
because the effect of thentire distribution of the parameter whose uncertaintypontance is
evaluated, is considered; moreover, this sengitiuitdex is also “model free” because its
computation is independent from assumptions aldmitmodel form, such as linearity, additivity
and so on. The drawback of this approach reliethén computational burden associated to its

calculation. Actually, ifN samples (i.e., T-H model code evaluations) are tsealculate both the

expected valuek, (y, | >g) and the variance/, [Ex (yI | 4)} in (7) by crude Monte Carlo

sampling, then the total numbigf of samples required to compute (7Nis= N for eachoutputy;

of interest] = 1, 2, ...,n, (Saltelli et al., 2008): for example,Nf= 10 + 10°, thenN; = 1¢* + 10,
rendering impracticable the associated analysis. total numbeN; of samples can be reduced to
N(ni + 2) by resorting to an efficient algorithm propdsy (Saltelli, 2002b): in this caseNf= 1

+ 10° andn; = 9 (like in the present problem), tha=1.1-16 + 1.1-10, leading to a reduction of
one or two orders of magnitude in the number obiregl T-H code simulations; details about these

algorithms can be found in the cited references.

In this work, the hot channel coolant outlet terapere T =y, is chosen as output of interest

out,core
for the analysis and the algorithm proposed bytéBal2002b) has been implemented with=
10000 andh; = 9 (i.e.,Nr = 110000) to obtain the “true” (i.e., referenc@lues of the first-order

Sobol sensitivity indice§} for the input variables;, ] = 1, 2, ..., 9. The reference ranking of the

uncertain input variables obtained witlhh = 110000 runs of the original T-H model code sarted

in the left column of Table 4 together with the responding values of the first-order Sobol

sensitivity indicesS!, j = 1, 2, ..., 9 (in parentheses) The Table also shinsranking of the

uncertain input parametexsj = 1, 2, ..., 9, based on the BBC point estimaéﬁgec,j =12, ..,

9, obtained witiNy = 110000 estimations froB = 1000 bootstrapped ANN models built N, =
100 input/output data examples (right column); lfinahe computational time (in hours) associated
to both analyses (i.e., on average 92 h and 2.X2spectively) is also reported, on a Pentium 4
CPU 3.00GHz.

Table 4 here
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It can be seen that the ranking provided by baapgied ANNSs is exactly the same as the reference
one (i.e., the one obtained by running the originél model code a large numhét of times): this
results confirms the good estimation accuracy eftthined bootstrapped ANNs and the possibility
to use this regression model for sensitivity analya T-H passive system functional failure
assessment. It is interesting to note that theamads of the probability distributions of the fifisie
uncertain input parameters/variables in the rankimg, Xz, Xs, Xs, X3 andx;) accounts for about the
96% of the total variance of the probability distiiion of the hot channel coolant outlet

temperatureT’®  =vy,: actually, S} + St + St + S + S| = 0.9645. This outcome provides two

out,core
important insights. On the one side, the analyable to identify those parameters/variables whose
epistemic uncertainty plays a major role in deteing the functional failure of the T-H passive
system: consequently, his/her research effortsbeafocused on increasing the state-of-knowledge
only on these important parameters/variables aaddlated physical phenomena (for example, the
collection of experimental data could lead to amprovement in the state-of-knowledge on the
correlations used to model the heat transfer peogesatural convection); on the other side, the
analyst is allowed to identify those parametersalides (in this caseg, Xo, X4 andx;) that are not
important so that they may be excluded from théyars thereby simplifying the T-H model.

In addition, it is worth recalling that in the pees case these insights are obtained at the expénse
only Ngain + Nvai + Niest = 100 + 20 + 20 = 140 runs of the original T-H rabdode instead of the
many thousands that are required by the crude madt dpplication of the algorithm in (Saltelli,
2002b) to the original, long-running T-H model code

Finally, Table 5 reports the Bootstrap Bias Coedc{BBC)-95% Confidence Intervals (CIs)
associated to the BBC point estima@"’%BC of Table 4 =1, 2, ..., 9. The information conveyed
by these intervals is important when few data aeduto train the bootstrapped ANNs and the
consequent confidence of the analyst on the SatmEx point estimateéjlyBBC is poor. In this

respect, it is interesting to note that tie&tive width of the Cls of Sobol indices very close teon
(i.e., those associated to very important inputaldes) is much lower with respect to those very
close to zero (i.e., those associated to non irapbmput variables): for example, the relative thid
of the BBC-95% CI of the first variable in the ram, i.e. X, (pressure), is (0.8324 —
0.7949)/0.8105 = 0.0463, whereas that of the foudhable in the ranking, i.exz (cooler wall
temperature), is (0.0479 — 0.0352)/0.0303 = 0.42A8lexpected, theobustnes®f the estimates of
Sobol indices very close to zero is much lower ttimse of Sobol indices very close to one.

Table 5 here
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6 Conclusions

In this paper, Artificial Neural Networks (ANNSs) V& been considered for performing a fast and
efficient functional failure analysis of a T-H pag&s system. A case study involving the natural
convection cooling in a Gas-cooled Fast ReactoR)Gditer a Loss of Coolant Accident (LOCA)
has been taken as reference. For simplicity, tipeesentation of the system behavior has been
limited to a steady-state model.

An ANN model has been constructed on the basis lohided-size set of data which represent
examples of the nonlinear relationships betweenc®rain inputs and 2 relevant outputs of the T-
H model code (i.e., the hot- and average-channelanb outlet temperatures). Once built, such
model has been used as fast-running surrogateeobrilginal, long-running T-H model code to
perform the functional failure analysis of the Tg#éssive system. First, a functional failure
probability as small as 0has been estimated; then, the sensitivity of thesipe system
performance to the uncertain system input paramdtas been studied by calculating first-order
Sobol sensitivity indices. In both analyses, theultis have demonstrated that although the ANN
regression model has been built on few (i.e., H#@a examples, the point estimates provided are
reliable, because they are very near to the true valudgeajuantities of interest.

Moreover, a bootstrap of ANN regression models besn considered to produce confidence
intervals for the estimates of the above mentiosatety quantities: this (model) uncertainty
guantification is of paramount importance in saf&ijical applications, in particular when few data
examples are used to build the surrogate modelscandequently, the confidence of the analyst in
the obtained estimates is poor. With respect tg tha bootstrapped ANNs have been shown to be
quite robust because the produced confidence intervals arsfaetrily narrow around the true
values of the quantities of interest.

The results obtained show that the applied proeedireffective in reducing the computational
burden associated to the functional failure analysfeT-H passive systems, while quantifying the
uncertainty in the results. Although the T-H modséd in this work to describe the behaviour of
the natural circulation-based T-H passive systera &eady-state (thus, simplified) model, it is
expected that even more significant benefits beeghiwith respect to more detailed thermal-
hydraulic models (e.g., RELAP5-3D), provided thHa number of code runs to train and validate
the bootstrapped ANN regression model is smalh éise proposed procedure.

A final remark is also in order with respect to thassibility of using bootstrapped ANNSs in the
analysis of a&completeaccident sequence involving a T-H passive systatead obnly one phase
of the sequence (as it is done in the present wdmnkjhis view, two issues must be taken into

account: i) the behavior of a T-H passive systeobiously dependent on the boundary conditions
18



of operation which depend on their turn on theipaldr phase of the accident sequence considered
and on the “history” of the accident sequencefitslelis, possiblydifferentANN regression models
should be built for use idifferent phase®f the accident scenarios considered; ii) the @hjod
uncertainty associated to the estimates of the Adli¥ession model have to be propagated through
the accident sequence: to this aim, the creationbadtstrap-basecempirical probability
distributionsfor the physical quantities of interest (e.g., thelant temperature, the passive system
failure probability and so on) offers a possibleywa tackle this problem. Both issues i) and ii)

above will be subject of future researches andiegibns.
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Appendix
The bootstrap algorithm for bias-corrected point ard confidence

interval estimation in ANN empirical regression mogkling
In what follows, the steps of the procedure for #waluation of the so-called Bootstrap Bias
Corrected (BBC) point estimal(éBBC of a generic quantit® (e.g., a safety parameter) by an ANN
regression moddi(x, w) and the calculation of an associated BBC Confidemterval (Cl) are
reported in detail (Zio, 2006; Storlie et al., 2D08
1. Generate a seD yan Of input/output data examples by sampliNg.n independent input
parameters values, p = 1, 2, ... Nyain, and calculating the corresponding seNgfi» output
vectorsy, = uy(Xp) through the mechanistic T-H system code. Plamioan sampling, Latin
Hypercube Sampling or other more sophisticated rex@atal design methods can be
adopted to select the input vectggsp = 1, 2, ... Nyain (Gazut et al., 2008).
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2. Build an ANN regression modef(x, w) on the basis of the entire data set

D,.in :{(xp, yp), p= 12,...,Ntram} (step 1. above) in order to obtain a fast-runréngogate

of the T-H model code represented by the unknowrimear deterministic functioay(x) in
(2).

3. Use the ANN regression modik, w) (step 2. above), in place of the T-H model cdde,
provide a point estimaté of the quantityQ, e.g., the functional failure probability of the T
H passive system or a sensitivity index.
In particular, draw a sample dfy new input vectors, r = 1, 2, ...,Ny, from the
corresponding epistemic probability distributionsldeed the ANN regression modék,
w') with them; then, use the corresponding outputarsg;, = f(x,, W), r = 1, 2, ...,Ny, to
calculate the estimaté for Q (the algorithm for computing@ Is obviously dependent on
the meaning of the quantit)). Since the ANN regression modék, w') can be evaluated
quickly, this step is computationally costless eifedhe numbemNy of model evaluations is
very high (e.g.Nr = 1 or 10).

4. Build an ensemble ofB (with B = 500-1000) ANN regression models

{fb(x,w;),b:lz,...,B} by random sampling with replacement and use edchhe

bootstrapped ANN regression mod&i, w, ), b =1, 2, ... B, to calculate an estimatéb,

b=1, 2, ...,B, for the quantityQ of interest. by so doing, a bootstrap-based engliri
probability distribution for the quantit® is produced which is the basis for the constructio
of the corresponding confidence intervals. In gattr, repeat the following steps for= 1,
2,...,B:

a. Generate a bootstrap data &%, , ={(X .5, Vo) P=12.,Npainf, D= 1, 2, ... B, by

performing random sampling with replacement frome tloriginal data set
Dyain :{(xp,yp),p=l2,...,Ntram} of Niain input/output patterns (steps 1. and 2.
above). The data sdDyan,p IS thus constituted by the same numibgg, of
input/output patterns drawn among thos®ini, although, due to the sampling with
replacement, some of the patternsDi,in Will appear more than once Diain,b,
whereas some will not appear at all.

b. Build an ANN regression moddh(x, Wy ), b = 1, 2, ...,B, on the basis of the
bootstrap data sdd —{(x ob yp‘b), p= lZ,...,NUam} (step 3.a. above).

train,b —

c. Use the ANN regression modg(x, W, ) (step 4.b. above), in place of the original T-

H code, to provide a point estima(ﬁg of the quantity of intere€). It is important to
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note that for a correct quantification of the cdefice interval the estima(éo must

be based on the same input and output vectprandy,, r = 1, 2, ..., Ny,
respectively, obtained in step 3. above.

5. Calculate the so-called Bootstrap Bias CorrectdgiqBpoint estimateéBBC for Q as
Qpac = 2Q ~ Quor 1)
where@ is the estimate obtained with the ANN regressiadenf(x, w) trained with the

original data seDy.in (Steps 2. and 3. above) a@oot is the average of thg estimates(ﬁb

obtained with thé ANN regression model$y(x, Wy ), b= 1, 2, ...B (step 4.c. above), i.e.,
134

Qboot = _ZQb . (2,)
B

The BBC estimate@BBC in (1’) is taken as the point estimate €@r

The explanation for expression (1') is as followscan be demonstrated that if there is a
bias in the bootstrap average estim@,@Ot in (2’) compared to the estimaté obtained
with the single ANN regression modik, w) (step 3. above), then the same bias exists in
the single estimatéﬁ compared to the true valu@ of the quantity of interest (Baxt and

White, 1995). Thus, in order to obtain an apprdpriae. bias-corrected, estima(fgBC for

the quantity of intere<p, the estimate@ must be adjusted by subtracting the corresponding

A

bias ((§boot - Q): as a consequence, the final, bias-correctechaisiiéBBC is QBBC =Q -

(éboot - é) = 2@ - Qboot'
6. Calculate the two-sided Bootstrap Bias CorrecteBGR100-(1 -a)% Confidence Interval
(CI) for the BBC point estimate in (1’) by performg the following steps:

a. Order the bootstrap estimatég, b=1, 2, ..,B, (step 4.c. above) by increasing
values, such thaﬁ(i) = Qb forsomeb=1, 2, ...B, andé(l) < Q(Z) <. <(§(b) <..<
Q(B) .

b. Identify the 100v/2" and 100-(1 -«/2)" quantiles of the bootstrapped empirical
probability distribution ofQ (step 4. above) as th&-§/2]" and B(1 — a/2)]"

eIementsQ([Bm,z]) and Q([B[(l_a,z)]), respectively, in the ordered Iié}(l) < é(z) <..<
é(b) <.. <(§(B); notice that the symbol [-] stands for “closes¢ger”.
c. Calculate the two-sided BBC-100-(&)% CI for QBBC as
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A

lQBBC - (Qboot - Q([Bm/z]) )’ QBBC + (é([B[(ﬁ[l—a/Z)]) - éboot )J )

An important advantage of the bootstrap methodias it provides confidence intervals for a given
guantity Q without making any model assumptions (e.g., noity)ala disadvantage is that the

computational cost could be high when theBg, and the number of adaptable parameterin
the regression models are large.
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Figure 1. Schematic representation of one loohef@00-MW GFR passive decay heat removal

system (Pagani et al., 2005)
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TABLES

Name Mean,u | Standard deviation, s (% of u)
Power (MW),x 18.7 1%
Parameter (MW) x4 °
_ Pressure (kPa¥, 1650 7.5%
uncertaint
y Cooler wall temperature (°C)z 90 5%
Nusselt number in forced convectiog, 1 5%
— . 5
Model Nusselt number in mixed convectioa, 1 15%
. Nusselt number in free convectiog, 1 7.5%
uncertainty _ _ ,
Friction factor in forced convectiory 1 1%
(error factor, () Friction factor in mixed convectiong 1 10%
Friction factor in free convectiony 1 1.5%

Table 1. Epistemic uncertainties considered forag@@8-MW GFR passive decay heat removal

system of Figure 1 (Pagani et al., 2005)

Artificial Neural Network (ANN)

Optimal configuration selected:n; = 9,n, = 4,n, =2

R? RMSE [°C]
Nyan | Nvw | Nies | Number of adjustable parametersw* Tore T e T e T e
100 20 20 50 0.9897 0.9866 12.0 6.3
Configuration: n;=9,n,=3,n,=2
R® RMSE [°C]
Nian | Nva | Nes | Number of adjustable parametersw | Tor.. Toucore Torere Toucore
100 20 20 38 0.9821 0.9763 16.0 8.5
Configuration: n; =9,n, =5,n,=2
R® RMSE [°C]
Nian | Nva | Nes | Number of adjustable parametersw | Tor.. Toucore Torere Toucore
100 20 20 62 0.9891 0.9860 13.4 7.6

Table 2. Coefficient of determinatid®? and RMSE associated to the ANN estimates of the ho

and average-channel coolant outlet temperatufgy,,. and T2, ., respectively
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Failure probability (“True” value, P(F) = 3.34.10; CPU time= 417 h)
Bootstrapped Artificial Neural Networks (ANNS)

Nian | Nua | Niw | BBC point estimate, P(F ), BBC-95% ClI CPU time

100 20 20 3.59-10 [2.55-10%, 4.12-10] ~2.22h

Table 3. Bootstrap Bias Corrected (BBC) point eatmﬁ(F)BBC and BBC-95% Confidence

Interval (ClI) of the functional failure probability(F)

Ranking of the uncertain input variables — Hot-chamel coolant outlet temperature, T, =V
Original T-H code, Ny = 110000 §; ) ; CPU time= 92 h | Bootstrapped ANNS,Ny4, = 100 (éifBBC ); CPU time= 2.12 h
Pressurex, (0.8105) Pressurex, (0.8098)
Friction mixed xg (0.0594) Friction mixedxg (0.0605)
Nusselt mixedys (0.0583) Nusselt mixeds (0.0591)
Cooler wall temperatureg (0.0303) Cooler wall temperatupe, (0.0368)
Power x; (5.950-10) Power x; (5.199-10)
Nusselt freexs (5.211-10) Nusselt freexs (6.338-10)
Friction free xo (2.139-10) Friction free X, (1.676-10)
Nusselt forcedy, (4.214-10) Nusselt forcedy, (6.430-10)
Friction forced x; (1.533-10) Friction forcedx; (1.634-10)

Table 4. Ranking of the uncertain input variablgg % 1, 2, ..., 9, based on the first-order Sobol

sensitivity indice§} calculated for the hot channel coolant outlet tenapure T =y,

out,core
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First-order Sobol sensitivity indices S’ - Hot-channel coolant outlet temperature,T, o =V

out,core

Bootstrapped Artificial Neural Networks (ANNS), N4, = 100; CPU time= 2.12 h

Variable, x; (S}) BBC point estimate, S',,. BBC-95% ClI
Power,x, (5.950-10) 5.199-10 [4.137-1C, 8.563-10]
Pressurex, (0.8105) 0.8098 [0.7949, 0.8324]

Cooler wall temperatureg (0.0303) 0.0368 [0.0352, 0.0479]
Nusselt forcedy, (4.214-10) 6.430-10 [0, 9.523-10]

Nusselt mixedxs (0.0583) 0.0591 [0.0491, 0.0649]
Nusselt freexs (5.211-10) 6.338-10 [0, 8.413-10]
Friction forced x; (1.533-10) 1.634-10 [0, 4.393-10]

Friction mixed xg (0.0594) 0.0605 [0.0536, 0.0711]
Friction free xo (2.139-10) 1.676-10 [0, 3.231-10]

Table 5. Bootstrap Bias Corrected (BBC) point eates éjl,BBc ,J=1,2,...,9,and BBC-95%
Confidence Intervals (Cls) of the first-order Sobehsitivity indicesS', j =1, 2, ..., 9, calculated

for the hot channel coolant outlet temperatdgf'.,. = y1

30



