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Abstract 
The estimation of the functional failure probability of a thermal-hydraulic (T-H) passive system can 

be done by Monte Carlo (MC) sampling of the epistemic uncertainties affecting the system model 

and the numerical values of its parameters, followed by the computation of the system response by a 

mechanistic T-H code, for each sample. The computational effort associated to this approach can 

be prohibitive because a large number of lengthy T-H code simulations must be performed (one for 

each sample) for accurate quantification of the functional failure probability and the related 

statistics. 

In this paper, the computational burden is reduced by replacing the long-running, original T-H 

code by a fast-running, empirical regression model: in particular, an Artificial Neural Network 

(ANN) model is considered. It is constructed on the basis of a limited-size set of data representing 

examples of the input/output nonlinear relationships underlying the original T-H code; once the 

model is built, it is used for performing, in an acceptable computational time, the numerous system 

response calculations needed for an accurate failure probability estimation, uncertainty 

propagation and sensitivity analysis. 

The empirical approximation of the system response provided by the ANN model introduces an 

additional source of (model) uncertainty, which needs to be evaluated and accounted for. A 

bootstrapped ensemble of ANN regression models is here built for quantifying, in terms of 

confidence intervals, the (model) uncertainties associated with the estimates provided by the ANNs. 

For demonstration purposes, an application to the functional failure analysis of an emergency 

passive decay heat removal system in a simple steady-state model of a Gas-cooled Fast Reactor 
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(GFR) is presented. The functional failure probability of the system is estimated together with 

global Sobol sensitivity indices. The bootstrapped ANN regression model built with low 

computational time on few (e.g., 100) data examples is shown capable of providing reliable (very 

near to the true values of the quantities of interest) and robust (the confidence intervals are 

satisfactorily narrow around the true values of the quantities of interest) point estimates. 

1 Introduction 

Passive systems (IAEA, 1991) are expected to contribute significantly to the safety of future nuclear 

power plants by combining their peculiar characteristics of simplicity, reduction of human 

interaction (Prosek and Cepin, 2008) and reduction or avoidance of hardware failures (Mathews et 

al., 2008). On the other hand, the uncertainties associated to their actual operation and modelling 

are usually larger than in active systems. 

Two different sources of uncertainties are usually considered in safety analyses: randomness due to 

intrinsic variability in the behavior of the system (aleatory uncertainty) and imprecision due to lack 

of data on some underlying phenomena (e.g., natural circulation) and to scarce or null operating 

experience over the wide range of conditions encountered during operation (epistemic uncertainty) 

(Apostolakis, 1990; Helton, 2004). 

Due to these uncertainties, there is a nonzero probability that the physical phenomena involved in 

the operation of a passive system do not occur as expected, thus leading to the failure of performing 

the intended safety function even if safety margins have been dimensioned (Marquès et al., 2005; 

Patalano et al., 2008). 

Various methodologies have been proposed in the open literature to quantify the probability that T-

H passive systems fail to perform their functions: the reader is referred to (Burgazzi, 2007; Zio and 

Pedroni, 2009a) for a review. A reasonable approach to take is that founded on the concept of 

functional failures in the framework of reliability physics and load-capacity exceedance probability 

(Burgazzi, 2003). In this view, a passive system fails to perform its function due to deviations from 

its expected behavior which lead the load imposed on the system (e.g., the peak value of the fuel 

cladding temperature during a LOCA transient) to overcome its capacity (e.g., a threshold value 

imposed by regulating authorities or by the mechanical properties of structural materials). This 

concept is at the basis of many works of literature, including (Jafari et al., 2003; Marquès et al., 

2005; Pagani et al., 2005; Bassi and Marquès, 2008; Mackay et al., 2008; Mathews et al., 2008 and 

2009; Patalano et al., 2008; Fong et al., 2009; Zio and Pedroni, 2009a and b); in these works, the 

passive system is modeled by a detailed, mechanistic T-H system code and the probability of not 

performing the required function is estimated based on a Monte Carlo (MC) sample of code runs 
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which propagate the epistemic (state-of-knowledge) uncertainties in the model describing the 

system and the numerical values of its parameters/variables; because of these uncertainties, the 

system may not accomplish its mission, even if no hardware failure occurs. 

 

MC simulation allows a realistic assessment of the T-H system functional failure probability, thanks 

to its flexibility and indifference to the complexity of the T-H model. This, however, is paid in 

terms of the high computational efforts required. Indeed, a large number of Monte Carlo-sampled 

T-H model evaluations must generally be carried out for an accurate estimation of the functional 

failure probability. Since the number of simulations required to obtain a given accuracy depends on 

the magnitude of the failure probability to be estimated, with the computational burden increasing 

with decreasing functional failure probability (Schueller, 2007), this poses a significant challenge 

for the typically quite small (e.g., less than 10-4) probabilities of functional failure of T-H passive 

safety systems. In particular, the challenge is due to the time required for each run of the detailed, 

mechanistic T-H system code which can take several hours (one code run is required for each 

sample of values drawn from the uncertainty distributions of the input parameters/variables to the 

T-H code) (Fong et al., 2009). Thus, alternative methods must be sought to tackle the computational 

burden associated to the analysis. 

 

To tackle the computational issue, efficient sampling techniques can be adopted for obtaining robust 

estimations with a limited number of input samples. Techniques like Importance Sampling (IS) (Au 

and Beck, 2003; Schueller et al., 2004), Stratified Sampling (Helton and Davis, 2003; Cacuci and 

Ionescu-Bujor, 2004) and Latin Hypercube Sampling (LHS) (Helton and Davis, 2003) have been 

widely used in reliability analysis and risk assessment (Helton 1998). Recently, advanced sampling 

methods such as Subset Simulation (SS) (Au and Beck, 2001; Au and Beck, 2003) and Line 

Sampling (LS) (Koutsporelakis et al., 2004; Pradlwarter et al., 2005) have been proposed for 

structural reliability assessment and subsequently applied to the estimation of the functional failure 

probability of a T-H passive system (Zio and Pedroni, 2009a and b)1. These methods have been 

shown to improve the computational efficiency although there is no indication yet that the number 

of model evaluations can be reduced to below a few hundreds, which may be mandatory in the 

presence of computer codes requiring several hours to run a single simulation. 

                                                 
1 Apart from efficient MC techniques, there exist methods based on nonparametric order statistics (Wilks, 1942) that 
propagate uncertainties through mechanistic T-H codes with reduced computational burden, especially if only one- or 
two-sided confidence intervals are needed for particular statistics (e.g., the 95th percentile) of the outputs of the code. 
For example, the so-called coverage (Guba et al., 2003; Makai and Pal, 2006) and bracketing (Nutt and Wallis, 2004) 
approaches can be used to identify the precise number of sample code runs required to obtain a given confidence level 
on the estimates of prescribed statistics of the code outputs. 
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In such cases, the only viable alternative seems that of resorting to fast-running, surrogate 

regression models, also called response surfaces or meta-models, to approximate the input/output 

function implemented in the long-running T-H model code, and then substitute it in the passive 

system functional failure analysis. The construction of such regression models entails running the 

T-H model code a predetermined, reduced number of times (e.g., 50-100) for specified values of the 

uncertain input parameters/variables and collecting the corresponding values of the output of 

interest; then, statistical techniques are employed for fitting the response surface of the regression 

model to the input/output data generated in the previous step. Several examples can be found in the 

open literature concerning the application of surrogate meta-models in reliability problems. In 

(Bucher and Most, 2008; Gavin and Yau, 2008; Liel et al., 2008), polynomial Response Surfaces 

(RSs) are employed to evaluate the failure probability of structural systems; in (Arul et al., 2009; 

Fong et al., 2009; Mathews et al., 2009), linear and quadratic polynomial RSs are employed for 

performing the reliability analysis of T-H passive systems in advanced nuclear reactors; in (Deng, 

2006; Hurtado, 2007; Cardoso et al., 2008; Cheng et al., 2008), learning statistical models such as 

Artificial Neural Networks (ANNs), Radial Basis Functions (RBFs) and Support Vector Machines 

(SVMs) are trained to provide local approximations of the failure domain in structural reliability 

problems; in (Volkova et al., 2008; Marrel et al., 2009), Gaussian meta-models are built to calculate 

global sensitivity indices for a complex hydrogeological model simulating radionuclide transport in 

groundwater. 

 

In this work, Artificial Neural Networks (ANNs) are considered to reduce the computational burden 

associated to uncertainty propagation in the functional failure analysis of a natural convection-based 

decay heat removal system of a Gas-cooled Fast Reactor (GFR) (Pagani et al., 2005). A limited-size 

set of input/output data examples is used to construct the ANN regression model; once the model is 

built, it is used to perform, in a negligible computational time, the functional failure analysis of the 

T-H passive system: in particular, the functional failure probability of the system is estimated 

together with global sensitivity indices of the naturally circulating coolant temperature. 

The use of regression models in safety critical applications like nuclear power plants raises concerns 

with regards to the model accuracy, which must be not only verified but also quantified; in this 

paper, we resort to the bootstrap method for quantifying, in terms of confidence intervals, the model 

uncertainty associated to the estimates provided by ANNs (Efron and Thibshirani, 1993). Some 

examples of the application of the bootstrap method for the evaluation of the uncertainties 

associated to the output of regression models in safety-related problems can be found in the 

literature: in (Zio, 2006), bootstrapped ANNs are trained to predict nuclear transients processes; in 
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(Cadini et al., 2008; Secchi et al., 2008), the model uncertainty, quantified in terms of a standard 

deviation, is used to “correct” the ANN output in order to provide conservative estimates for 

important safety parameters in nuclear reactors (i.e., percentiles of the pellet cladding temperature); 

finally, in (Storlie et al., 2008), the bootstrap procedure is combined with different regression 

techniques, e.g. Multivariate Adaptive Regression Spline (MARS), Random Forest (RF) and 

Gradient Boosting Regression (GBR), to calculate confidence intervals for global sensitivity indices 

of the computationally demanding model of a nuclear waste repository. 

 

The main objective of the present study is to show the possibility of: 

•  limiting the computational burden associated to the uncertainty propagation and sensitivity 

analyses underpinning a quantitative functional failure analysis of a T-H passive system; to 

this aim, ANN regression models trained on a small data set are used for the first time for 

the estimation of: 

� the functional failure probability of the passive system; 

� first-order global Sobol sensitivity indices determining the contribution of the 

individual uncertain parameters (i.e., the inputs to the T-H code) to the uncertainty in 

the coolant temperature (i.e., the output of the T-H code) and consequently to the 

probability of functional failure of the passive system; 

•  quantifying, in terms of confidence intervals, the model uncertainty associated to the 

estimates of the functional failure probability and Sobol indices provided by the ANN 

models. To the best of the authors’ knowledge, the issue of quantification of model 

uncertainty in the regression estimates has not been addressed in the literature regarding the 

functional failure analysis of T-H passive systems (Arul et al., 2009; Fong et al., 2009; 

Mathews et al., 2009); in the present work, bootstrapped ANNs are used to the purpose. 

 

The paper organization is as follows. In Section 2, the concepts of functional failure analysis for T-

H passive systems are synthetically summarized. Section 3 briefly presents the problem of empirical 

regression modeling by means of ANNs and provides a snapshot on the bootstrap method for the 

quantification of the ANN (model) uncertainty. In Section 4, the case study of literature concerning 

the passive cooling of a GFR is presented. In Section 5, the results of the application of 

bootstrapped ANNs to the functional failure analysis of the T-H passive system of Section 4 are 

reported. Conclusions are provided in the last section. Finally, algorithmic details about the 

bootstrap-based method for quantifying, in terms of confidence intervals, the model uncertainty 
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associated to the estimates of safety parameters computed by ANN regression models are reported 

in the Appendix at the end of the paper. 

2 Functional failure analysis of T-H passive systems 

Since a comprehensive functional failure analysis of a T-H passive system is beyond the scope of 

this work, only the essential steps for the conceptual development of the analysis are briefly 

reported below (Marquès et al., 2005): 

1. Define the failure criteria of the passive system. 

2. Build a deterministic, best-estimate T-H model to simulate the passive system behavior. 

3. Identify and characterize by proper probability distributions the factors of uncertainty in the 

results of the best estimate T-H calculations. In the present work, only epistemic 

uncertainties are considered, due to the limited knowledge on some phenomena and 

processes (e.g., models, parameters and correlations used in the T-H analysis). 

4. Propagate by Monte Carlo Simulation (MCS), the epistemic uncertainties associated to the 

identified relevant parameters, models and correlations (step 3. above) through the 

deterministic, long-running T-H code in order to estimate the functional failure probability 

of the passive system conditional on the current state of knowledge about the phenomena 

involved (step 3. above) (Bassi and Marques, 2008; Mackay et al., 2008; Mathews et al., 

2008; Patalano et al., 2008). Formally, let x  = {x1, x2, …, xj, …, 
inx } be the vector of the 

relevant uncertain system parameters/variables, Y( x ) be a scalar indicator variable of the 

performance of the passive system (e.g., the fuel peak cladding temperature) and αY a 

threshold value defining the corresponding failure criterion (e.g., a limit value imposed by 

regulating authorities). For illustrating purposes, let us assume that the passive system 

operates as long as Y( x ) < αY. The MCS procedure for estimating the functional failure 

probability entails that a large number NT of samples of the values of the system parameters 

x be drawn from the corresponding probability distributions and used to evaluate Y(x) by 

running the T-H code. An estimate ( )P̂ F  of the probability of failure P(F) can then be 

computed by dividing the number of times that Y( x ) > αY by the total number of samples 

NT. 

5. Perform a sensitivity study to determine the contribution of the individual uncertain 

parameters (i.e., the inputs to the T-H code) to the uncertainty in the outputs of the T-H code 

and consequently to the functional failure probability of the T-H passive system. As is true 

for uncertainty propagation (step 4. above), sensitivity analysis relies on multiple 

evaluations of the code for different combinations of system inputs. 
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The computational burden posed by the uncertainty propagation and sensitivity analysis of steps 4. 

and 5. above may be tackled by replacing the long-running, original T-H model code by a fast-

running, surrogate regression model properly built to approximate the output from the true system 

model. In this paper, Artificial Neural Networks (ANNs) (Bishop, 1995) are used. A confidence 

interval is evaluated by means of the bootstrap method (Efron and Thibshirani, 1993); a brief 

description of this latter technique is given in the following Section, whereas the relevant 

algorithmic details can be found in the Appendix at the end of the paper. 

3 Bootstrapped Artificial Neural Networks for empiric al regression 

modelling 

As discussed in the previous Section, the computational burden posed by uncertainty and sensitivity 

analyses of T-H passive systems can be tackled by replacing the long-running, original T-H model 

code by a fast-running, surrogate regression model. Because calculations with the surrogate model 

can be performed quickly, the problem of long simulation times is circumvented. 

Let us consider a generic meta-model to be built for performing the task of nonlinear regression, 

i.e., estimating the nonlinear relationship between a vector of input variables x = {x1, x2, ..., xj, ..., 

inx } and a vector of output targets y = {y1, y2, ..., yl, ..., 
ony }, on the basis of a finite (and possibly 

reduced) set of input/output data examples (i.e., patterns), ( ){ }trainpptrain NpD ...,,2,1,, == yx  (Zio, 

2006). It can be assumed that the target vector y is related to the input vector x by an unknown 

nonlinear deterministic function ( )xµy  corrupted by a noise vector ( )xε , i.e., 

( ) ( ) ( )xεxµxy y += . (1) 

Notice that in the present case of T-H passive system functional failure probability assessment the 

vector x contains the relevant uncertain system parameters/variables, the nonlinear deterministic 

function ( )xµy  represents the complex, long-running T-H mechanistic model code (e.g., RELAP5-

3D), the vector y(x) contains the output variables of interest for the analysis and the noise ( )xε  

represents the errors introduced by the numerical methods employed to calculate ( )xµy  (Storlie et 

al., 2008); for simplicity, in the following we assume ( )xε  = 0 (Secchi et al., 2008). 

The objective of the regression task is to estimate ( )xµy  in (1) by means of a regression function 

f(x, w*) depending on a set of parameters w* to be properly determined on the basis of the available 

data set Dtrain; the algorithm used to calibrate the set of parameters w* is obviously dependent on the 

nature of the regression model adopted, but in general it aims at minimizing the mean (absolute or 
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quadratic) error between the output targets of the original T-H code, yp = ( )pyµ x , p = 1, 2, ..., 

Ntrain, and the output vectors of the regression model, ( )*,ˆ wxfy pp = , p = 1, 2, ..., Ntrain; for 

example, the Root Mean Squared Error (RMSE) is commonly adopted to this purpose (Zio, 2006): 

( )2

, ,
1 1

1
ˆ

train oN n

p l p l
p ltrain o

RMSE y y
N n = =

= −
⋅ ∑∑ . (2) 

Once built, the regression model f(x, w*) can be used as a simplified, quick-running surrogate of the 

original, long-running T-H model code for significantly reducing the computational burden 

associated to the accurate estimation and epistemic uncertainty propagation steps of the functional 

failure analysis of T-H passive systems. In particular, the regression model f(x, w*) can be used in 

place of the T-H code to calculate any quantity of interest Q, e.g. the functional failure probability 

of the passive system, confidence intervals and global sensitivity indices, etc. 

In this work, three-layered feed-forward Artificial Neural Network (ANN) regression models are 

considered. In extreme synthesis, ANNs are computing devices inspired by the function of the nerve 

cells in the brain (Bishop, 1995). They are composed of many parallel computing units (called 

neurons or nodes) interconnected by weighed connections (called synapses). Each of these 

computing units performs a few simple operations and communicates the results to its neighbouring 

units. From a mathematical viewpoint, ANNs consist of a set of nonlinear (e.g., sigmoidal) basis 

functions with adaptable parameters w* that are adjusted by a process of training (on many different 

input/output data examples), i.e., an iterative process of regression error minimization (Rumelhart et 

al., 1986). The details about ANN regression models are not reported here for brevity, the interested 

reader may refer to the cited references and the copious literature in the field. The particular type of 

ANN employed in this paper is the classical three-layered feed-forward ANN trained by the error 

back-propagation algorithm. 

 

When using the approximation of the system output provided by an ANN empirical regression 

model, an additional source of uncertainty is introduced which needs to be evaluated, particularly in 

safety critical applications like those related to nuclear power plant technology. One way to do this 

by resorting to bootstrapped ANN regression models (Efron and Thibshirani, 1993), i.e., an 

ensemble of ANN regression models, constructed on different data sets bootstrapped from the 

original one (Zio, 2006; Storlie et al., 2008). The bootstrap method is a distribution-free inference 

method which requires no prior knowledge about the distribution function of the underlying 

population (Efron and Thibshirani, 1993). The basic idea is to generate a sample from the observed 

data by sampling with replacement from the original data set (Efron and Thibshirani, 1993). From 

the theory and practice of ensemble empirical models, it can be shown that the estimates given by 
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bootstrapped ANN regression models is in general more accurate than the estimate of the best ANN 

regression model in the bootstrap ensemble of ANN regression models (Zio, 2006; Cadini et al., 

2008). 

A bootstrap-based estimation technique is here employed for the evaluation of the so-called 

Bootstrap Bias Corrected (BBC) point estimate ˆ
BBCQ  of a generic quantity Q (e.g., a safety 

parameter) by an ANN regression model f(x, w*) and the calculation of the associated BBC 

Confidence Interval (CI) (Zio, 2006; Storlie et al., 2008). The complete algorithm is not reported 

here for brevity; some details can be found in the Appendix at the end of the paper. 

4 Case study: functional failure analysis of a T-H passive system 

The case study considered in this work concerns the natural convection cooling in a Gas-cooled 

Fast Reactor (GFR) under a post-Loss Of Coolant Accident (LOCA) condition (Pagani et al., 2005). 

The reactor is a 600-MW GFR cooled by helium flowing through separate channels in a silicon 

carbide matrix core whose design has been the subject of study in the past several years at the 

Massachussets Institute of Technology (MIT) (Pagani et al., 2005). 

In these studies, the possibility of using natural circulation to remove the decay heat in case of an 

accident is demonstrated. In particular, in the case of a LOCA, the long-term heat removal is 

ensured by natural circulation in a given number Nloops of identical and parallel loops. 

A GFR decay heat removal configuration is shown schematically in Figure 1; only one of the Nloops 

loops is reported for clarity of the picture: the flow path of the cooling helium gas is indicated by 

the black arrows; the loop has been divided into Nsections = 18 sections for numerical calculation; 

technical details about the geometrical and structural properties of these sections are not reported 

here for brevity: the interested reader may refer to (Pagani et al., 2005). 

 

Figure 1 here 

 

In the present analysis, the average core power to be removed is assumed to be 18.7 MW, 

equivalent to about 3% of full reactor power (600 MW): to guarantee natural circulation cooling at 

this power level, a pressure of 1650 kPa is required in nominal conditions. Finally, the secondary 

side of the heat exchanger (i.e., item 12 in Figure 1) is assumed to have a nominal wall temperature 

of 90 °C (Pagani et al., 2005). 

The model describes the quasi-steady-state natural circulation cooling that takes place after the 

LOCA transient has occurred. The associated simplifications introduced in the modeling allow 

relatively fast calculations, which enable to obtain reference values for comparison of the estimates 
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obtained by the ANN models developed. From a strictly mathematical point of view, obtaining a 

steady-state solution amounts to dropping the time dependent terms in the energy and momentum 

conservation equations. In practice, the T-H model code balances the pressure losses around the 

loops so that friction and form losses are compensated by the buoyancy term, while at the same time 

maintaining the heat balance in the heater (i.e., the reactor core, item 4 in Figure 1) and cooler (i.e., 

the heat exchanger, item 12 in Figure 1); a thorough description of the deterministic T-H model is 

not given here for brevity: the interested reader may refer to (Pagani et al., 2005) for details. 

4.1 Uncertainties in the T-H model 

Uncertainties affect the actual operation of passive systems and its modeling. On the one side, there 

are phenomena, like the occurrence of unexpected events and accident scenarios, e.g. the failure of 

a component or the variation of the geometrical dimensions and material properties, which are 

random in nature. This kind of uncertainty in the model description of the system behavior is 

termed aleatory (NUREG-1150, 1990; Helton, 1998; USNRC, 2002). In this work, as well as in the 

reference paper by (Pagani et al., 2005), aleatory uncertainties are not considered for the estimation 

of the functional failure probability of the T-H passive system of Figure 1. 

An additional contribution of uncertainty comes from the incomplete knowledge on the properties 

of the system and the conditions in which the phenomena occur (i.e., natural circulation). This 

uncertainty is often termed epistemic and affects the model representation of the system behaviour, 

in terms of both (model) uncertainty in the hypotheses assumed and (parameter) uncertainty in the 

values of the parameters of the model (Cacuci and Ionescu-Bujor, 2004; Helton et al., 2006; 

Patalano et al., 2008).  

Model uncertainty arises because mathematical models are simplified representations of real 

systems and, therefore, their outcomes may be affected by errors or bias. It may, for example, 

involve the correlations adopted to describe the T-H phenomena, which are subject to errors of 

approximation. Such uncertainties may for example be represented by a multiplicative model (Zio 

and Apostolakis, 1996; Patalano et al., 2008): 

,)( ζ⋅= xmz  (3) 

where z is the real value of the parameter to be correlated (e.g., heat transfer coefficients, friction 

factors, Nusselt numbers or thermal conductivity coefficients), m(·) is the mathematical model of 

the correlation, x is the vector of correlating variables and ζ  is a multiplicative error factor. Hence, 

the uncertainty in the output quantity z is translated into an uncertainty in the multiplicative error 

factor ζ , commonly classified as representing model uncertainty. 
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Uncertainty affects also the values of the parameters used in the model (e.g., power level, pressure, 

cooler wall temperature, material conductivity, …), e.g. owing to errors in their measurement or 

insufficient data and information. As a consequence, the values of such parameters are usually 

known only to a certain level of precision, i.e., epistemic uncertainty is associated with them 

(Pagani et al., 2005). 

 

In this work, only epistemic (i.e., model and parameter) uncertainties are represented and 

propagated through the deterministic T-H code (Pagani et al., 2005; Bassi and Marques, 2008; 

Mackay et al., 2008; Mathews et al., 2008; Patalano et al., 2008). Parameter uncertainties are 

associated to the reactor power level, the pressure in the loops after the LOCA and the cooler wall 

temperature. Model uncertainties are associated to the correlations used to calculate the Nusselt 

numbers and friction factors in the forced, mixed and free convection regimes. The corresponding 

nine uncertain inputs of the model { }: 1,2,...,9jx j =  are assumed to be distributed according to 

normal distributions of known mean µ and standard deviation σ, taking values in the range [µ - 4σ, µ 

+ 4σ] (Table 1, Pagani et al., 2005). The practical and conceptual reasons underpinning the values in 

Table 1 are described in (Pagani et al., 2005). 

 

Table 1 here 

4.2 Failure criteria of the T-H passive system 

The passive decay heat removal system of Figure 1 is considered failed whenever the temperature 

of the coolant helium leaving the core (item 4 in Figure 1) exceeds either 1200 °C in the hot channel 

or 850 °C in the average channel: these values are expected to limit the fuel temperature to levels 

which prevent excessive release of fission gases and high thermal stresses in the cooler (item 12 in 

Figure 1) and in the stainless steel cross ducts connecting the reactor vessel and the cooler (items 

from 6 to 11 in Figure 1) (Pagani et al., 2005). 

Indicating by x  the vector of the 9 uncertain system parameters of Table 1 (Section 4.1) and by 

( )xhot
coreoutT ,  and ( )xavg

coreoutT ,  the coolant outlet temperatures in the hot and average channels, 

respectively, the failure event F can be written as follows: 

( ){ } ( ){ }850:1200: ,, >∪>= xxxx avg
coreout

hot
coreout TTF . (4) 

Notice that, in the notation of the preceding Section 3, ( )xhot
coreoutT ,  = y1(x) and ( )xavg

coreoutT ,  = y2(x) are 

the two target outputs of the T-H model. 

The failure event F in (4) can be condensed into a single performance indicator Y(x) (Section 2) as 
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( ) ( ) ( ) ( ) ( )






=









=
850

,
1200850

,
1200

21,, xxxx
x

yy
max

TT
maxY

avg
coreout

hot
coreout  (5) 

so that the failure event F becomes specified as: 

( ){ }1: >= xx YF . (6) 

In the notation of Section 2, the failure threshold αY is then equal to one. 

5 Results of the application of bootstrapped ANNs for the functional 

failure analysis of the T-H passive system of Section 4 

In this Section, the results of the application of bootstrapped Artificial Neural Networks (ANNs) for 

the quantitative functional failure analysis of the 600-MW GFR passive decay heat removal system 

in Figure 1 are illustrated. First, few details about the construction of the ANN regression model are 

given in Section 5.1; then, this is used to estimate the probability of functional failure of the system 

(Section 5.2); finally, the sensitivity of the hot-channel coolant outlet temperature to the uncertain 

input parameters is studied by computing first-order Sobol indices (Section 5.3). Notice that at each 

estimation step, the model uncertainties associated to the above mentioned quantities are also 

estimated by bootstrapping the ANN regression models (see Section 3 and the Appendix). 

5.1 Building and testing the ANN regression model 

The ANN model used in this work is built using a set ( ){ }trainpptrain NpD ...,,2,1,, == yx  of 

input/output data examples of size Ntrain = 100; this is done to test the capability of the ANN 

regression model to reproduce the outputs of the nonlinear T-H model code on the basis of a 

relatively small number of runs from the original T-H code. A Latin Hypercube Sample (LHS) of 

the inputs is drawn to give the vectors xp = {x1,p, x2,p, …, xj,p, …, ,in px }, p = 1, 2, …., Ntrain (Zhang 

and Foschi, 2004). Then, the original T-H model is evaluated on the input vectors xp, p = 1, 2, …, 

Ntrain, to obtain the corresponding output vectors yp = µy(xp) = {y1,p, y2,p, ..., yl,p, ..., ,on py }, p = 1, 2, 

…, Ntrain, and build the data set ( ){ }trainpptrain NpD ...,,2,1,, == yx . Finally, the adjustable parameters 

w* of the ANN regression model are calibrated to fit the generated data: in particular, the common 

error back-propagation algorithm is implemented to train the ANN (Rumelhart et al., 1986). 

In the present case study, the number ni of inputs to the ANN regression model is equal to 9 (i.e., 

the number of uncertain inputs in Table 1 of Section 4.1), whereas the number no of outputs is equal 

to 2 (i.e., the number of system variables of interest, the hot- and average-channel coolant outlet 

temperatures, as reported in Section 4.2). The number of nodes nh in the hidden layer has been set 

equal to 4 by trial and error. 
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A validation data set ( ){ }, , 1,2,..., 20val p p valD p N= = =x y  (different from the training set Dtrain) is 

used to monitor the accuracy of the ANN model during the training procedure: in practice, the 

RMSE (2) is computed on Dval at different phases of the training procedure. At the beginning, the 

RMSE computed on the validation set Dval typically decreases together with the RMSE computed 

on the training set Dtrain; then, when the ANN regression model starts overfitting the data, the 

RMSE calculated on the validation set Dval starts increasing: this is the time to stop the training 

algorithm. 

For a realistic measure of the ANN model accuracy, the widely adopted coefficient of determination 

2R  and the RMSE have been computed for each output yl, l = 1, 2, ..., no, on a new data set 

( ){ }testpptest NpD ...,,2,1,, == yx  also of size Ntest = 20, not used during training (Marrel et al., 2009). 

Table 2 reports the values of the coefficient of determination 2R  and of the RMSE associated to the 

estimates of the hot- and average- channel coolant outlet temperatures hot
coreoutT ,  and avg

coreoutT , , 

respectively, computed on the test set Dtest of size Ntest = 20 by the ANN model with nh = 4 hidden 

neurons, built on a data set Dtrain of size Ntrain = 100; the number of adjustable parameters (ANN 

weights) w* in the ANN regression model is also reported. 

 

Table 2 here 

 

The large values of the coefficient of determination R2, i.e., 0.9897 and 0.9866, and the small values 

of 12 °C and 6.3 °C for the RMSEs produced by the ANN for the hot- and average-channel coolant 

outlet temperatures hot
coreoutT ,  and avg

coreoutT , , respectively, lead us to assert that the accuracy of the ANN 

model can be considered satisfactory for the needs of estimating the functional failure probability of 

the present T-H passive system. 

Finally, in order to demonstrate that the trial-and-error selected ANN architecture with nh = 4 

hidden neurons is suitable for the present application, Table 2 contains also the values of the 

coefficient of determination 2R  and of the RMSE associated to the estimates of the hot- and 

average- channel coolant outlet temperatures hot
coreoutT ,  and avg

coreoutT , , respectively, obtained on the test 

set Dtest by two additional ANN topologies: in particular, ANN regression models with nh = 3 and 5 

hidden neurons are considered. It can be seen that the values of the coefficient of determination R2 

obtained by the ANN architecture with nh = 3 hidden neurons are 0.9821 and 0.9763 (i.e., lower 

than those produced by the ANN with nh = 4 hidden neurons), while the values of the RMSEs are 

16.0 °C and 8.5 °C (i.e., larger than those produced by the ANN with nh = 4 hidden neurons) for the 
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hot- and average-channel coolant outlet temperatures hot
coreoutT ,  and avg

coreoutT , , respectively. The values 

of the coefficient of determination R2 obtained by the ANN architecture with nh = 5 hidden neurons 

are 0.9891 and 0.9860 (again, lower than those produced by the ANN with nh = 4 hidden neurons), 

while the values of the RMSEs are 13.4 °C and 7.6 °C (again, larger than those produced by the 

ANN with nh = 4 hidden neurons) for the hot- and average-channel coolant outlet temperatures 

hot
coreoutT ,  and avg

coreoutT , , respectively. 

5.2 Functional failure probability estimation 

In this Section, the bootstrapped ANNs are used for estimating the functional failure probability, 

and associated confidence interval of the 600-MW GFR passive decay heat removal system of 

Figure 1. The previous system configuration with Nloops = 3 is analyzed. 

 

Table 3 reports the value of the Bootstrap Bias Corrected (BBC) estimate ( )BBCFP̂  of the functional 

failure probability (per demand) P(F) obtained with NT = 500000 estimations from B = 1000 

bootstrapped ANNs built on Ntrain = 100 data examples; the corresponding Bootstrap Bias Corrected 

(BBC)-95% Confidence Interval (CI) is also reported. A “true” value of the functional failure 

probability P(F) is also reported in Table 3 for reference (i.e., P(F) = 3.34·10-4); this has been 

obtained with a very large number NT (i.e., NT = 500000) of simulations of the original T-H code, 

which actually runs fast enough to allow repetitive calculations (one code run lasts on average 3 

seconds on a Pentium 4 CPU 3.00GHz): the computational time required by this reference analysis 

is thus 500000·3 s = 1500000 s ≈ 417 h. 

 

Table 3 here 

 

It can be seen that bootstrapped ANNs are quite reliable because the value of the BBC point 

estimate ( )BBCFP̂  (i.e., 3.59·10-4) is quite close to the “true” value (i.e., 3.34·10-4) of the functional 

failure probability P(F). In spite of the small value of the failure probability (i.e., P(F) ~ 10-4) this is 

done by resorting to quite a low number of runs of the T-H code (i.e., only Ntrain + Nval + Ntest = 100 

+ 20 + 20 = 140 input/output examples for training, validating and testing the bootstrapped ANN 

model). 

In addition, the BBC-95% CI produced by the bootstrapped ANNs provides a measure of the 

(model) uncertainty associated to the ANN point estimate ( )BBCFP̂ : this information is particularly 

interesting when very few data are used to build the bootstrapped ANN models and, consequently, 
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the confidence of the analyst in the obtained BBC point estimate ( )BBCFP̂  is poor. In this respect, 

the upper bound of the BBC-95% CI (in this case, 4.12·10-4) can be used to provide a slightly 

conservative estimate of the corresponding functional failure probability P(F). Note that the BBC-

95% CI includes the “true” value of P(F) (i.e., 3.34·10-4) and it is quite narrow around it: this 

confirms the robustness of the estimates produced by the trained bootstrapped ANN regression 

models in the present application. 

Finally, a computational time of about 2 hours is associated to the calculation of the BBC point 

estimate ( )BBCFP̂  for P(F) and the corresponding BBC-95% CI (Table 3); this value includes the 

time required for i) generating the Ntrain + Nval + Ntest = 100 + 20 + 20 = 140 input/output examples, 

by running the T-H code (i.e., on average 140·3 s = 420 s = 7 m ≈ 0.12 h), ii) training the 

bootstrapped ensemble of B = 1000 ANN models by means of an error back-propagation algorithm 

(i.e., on average 2 h) and iii) performing NT = 500000 evaluations of each of the B = 1000 

bootstrapped ANN models (i.e., on average 6 minutes = 0.1 h). The overall CPU time required by 

the use of bootstrapped ANNs (i.e., on average 2.22 h) is about 180 times lower than that required 

by the use of the original T-H model code (i.e., on average 417 h). 

5.3 Global sensitivity analysis based on first-order Sobol indices 

In the functional failure analysis of a T-H passive system, sensitivity analysis is a useful tool for 

identifying the uncertain parameters (i.e., the uncertain inputs to the T-H code) that contribute most 

to the variability of the model outputs (i.e., the coolant outlet temperatures). In the following, first-

order Sobol sensitivity indices are computed only for the hot-channel coolant outlet temperature 

hot
coreoutT ,  by way of example (Sobol, 1993). 

By definition, the first-order Sobol sensitivity index Sj
l, j = 1, 2, …, ni, l = 1, 2, …, no, quantifies the 

proportion of the variance of the output yl, l = 1, 2, …, no, that can be attributed to the variance of 

the uncertain input variable xj alone, i.e., without taking into account interactions with other input 

variables. It is formally defined as 

( )
[ ]

|
, 1,2,..., , 1,2,...,j jx l jl

j i o
l

V E y x
S j n l n

V y
−

 
 = = =

x
, (7) 

where V[yl] is the variance of the model output yl, l = 1, 2, …, no, obtained when all model input 

parameters xj, j = 1, 2, …, ni, are sampled over their variation range, { }1 2 1 1, ,..., , ,...,
ij j j nx x x x x− − +=x  

is a vector containing all the uncertain input variables except xj and ( )|
j jx l jV E y x

−
 
 x  is the 

expected variance of yl obtained when the input parameter of interest xj is fixed and all the 
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remaining input variables are sampled over their variation ranges; a thorough description of this 

sensitivity measure goes far beyond the scope of this work: further details can be found in (Saltelli, 

2002a). 

As pointed out in (Saltelli, 2002b), the sensitivity index (7) has the advantage of being global 

because the effect of the entire distribution of the parameter whose uncertainty importance is 

evaluated, is considered; moreover, this sensitivity index is also “model free” because its 

computation is independent from assumptions about the model form, such as linearity, additivity 

and so on. The drawback of this approach relies in the computational burden associated to its 

calculation. Actually, if N samples (i.e., T-H model code evaluations) are used to calculate both the 

expected value ( )|
j l jE y x

−x  and the variance ( )|
j jx l jV E y x

−
 
 x  in (7) by crude Monte Carlo 

sampling, then the total number NT of samples required to compute (7) is NT = N2 for each output yl 

of interest, l = 1, 2, …, no (Saltelli et al., 2008): for example, if N = 102 ÷  103, then NT = 104 ÷  106, 

rendering impracticable the associated analysis. The total number NT of samples can be reduced to 

N(ni + 2) by resorting to an efficient algorithm proposed by (Saltelli, 2002b): in this case, if N = 102 

÷  103 and ni = 9 (like in the present problem), then NT = 1.1·103 ÷  1.1·104, leading to a reduction of 

one or two orders of magnitude in the number of required T-H code simulations; details about these 

algorithms can be found in the cited references. 

 

In this work, the hot channel coolant outlet temperature hot
coreoutT ,  = y1 is chosen as output of interest 

for the analysis and the algorithm proposed by (Saltelli, 2002b) has been implemented with N = 

10000 and ni = 9 (i.e., NT = 110000) to obtain the “true” (i.e., reference) values of the first-order 

Sobol sensitivity indices 1jS  for the input variables xj, j = 1, 2, …, 9. The reference ranking of the 

uncertain input variables obtained with NT = 110000 runs of the original T-H model code is reported 

in the left column of Table 4 together with the corresponding values of the first-order Sobol 

sensitivity indices 1
jS , j = 1, 2, …, 9 (in parentheses) The Table also shows the ranking of the 

uncertain input parameters xj, j = 1, 2, …, 9, based on the BBC point estimates 1
,

ˆ
j BBCS , j = 1, 2, …, 

9, obtained with NT = 110000 estimations from B = 1000 bootstrapped ANN models built on Ntrain = 

100 input/output data examples (right column); finally, the computational time (in hours) associated 

to both analyses (i.e., on average 92 h and 2.12 h, respectively) is also reported, on a Pentium 4 

CPU 3.00GHz. 

 

Table 4 here 
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It can be seen that the ranking provided by bootstrapped ANNs is exactly the same as the reference 

one (i.e., the one obtained by running the original T-H model code a large number NT of times): this 

results confirms the good estimation accuracy of the trained bootstrapped ANNs and the possibility 

to use this regression model for sensitivity analysis in T-H passive system functional failure 

assessment. It is interesting to note that the variances of the probability distributions of the first five 

uncertain input parameters/variables in the ranking (i.e., x2, x8, x5, x3 and x1) accounts for about the 

96% of the total variance of the probability distribution of the hot channel coolant outlet 

temperature hot
coreoutT ,  = y1: actually, 1

2S  + 1
8S  + 1

5S  + 1
3S  + 1

1S  = 0.9645. This outcome provides two 

important insights. On the one side, the analyst is able to identify those parameters/variables whose 

epistemic uncertainty plays a major role in determining the functional failure of the T-H passive 

system: consequently, his/her research efforts can be focused on increasing the state-of-knowledge 

only on these important parameters/variables and the related physical phenomena (for example, the 

collection of experimental data could lead to an improvement in the state-of-knowledge on the 

correlations used to model the heat transfer process in natural convection); on the other side, the 

analyst is allowed to identify those parameters/variables (in this case, x6, x9, x4 and x7) that are not 

important so that they may be excluded from the analysis, thereby simplifying the T-H model. 

In addition, it is worth recalling that in the present case these insights are obtained at the expense of 

only Ntrain + Nval + Ntest = 100 + 20 + 20 = 140 runs of the original T-H model code instead of the 

many thousands that are required by the crude and direct application of the algorithm in (Saltelli, 

2002b) to the original, long-running T-H model code. 

 

Finally, Table 5 reports the Bootstrap Bias Corrected (BBC)-95% Confidence Intervals (CIs) 

associated to the BBC point estimates 1
,

ˆ
j BBCS  of Table 4, j = 1, 2, …, 9. The information conveyed 

by these intervals is important when few data are used to train the bootstrapped ANNs and the 

consequent confidence of the analyst on the Sobol index point estimates 1,
ˆ

j BBCS  is poor. In this 

respect, it is interesting to note that the relative width of the CIs of Sobol indices very close to one 

(i.e., those associated to very important input variables) is much lower with respect to those very 

close to zero (i.e., those associated to non important input variables): for example, the relative width 

of the BBC-95% CI of the first variable in the ranking, i.e. x2 (pressure), is (0.8324 – 

0.7949)/0.8105 = 0.0463, whereas that of the fourth variable in the ranking, i.e. x3 (cooler wall 

temperature), is (0.0479 – 0.0352)/0.0303 = 0.4191. As expected, the robustness of the estimates of 

Sobol indices very close to zero is much lower than those of Sobol indices very close to one. 

Table 5 here 
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6 Conclusions 

In this paper, Artificial Neural Networks (ANNs) have been considered for performing a fast and 

efficient functional failure analysis of a T-H passive system. A case study involving the natural 

convection cooling in a Gas-cooled Fast Reactor (GFR) after a Loss of Coolant Accident (LOCA) 

has been taken as reference. For simplicity, the representation of the system behavior has been 

limited to a steady-state model. 

An ANN model has been constructed on the basis of a limited-size set of data which represent 

examples of the nonlinear relationships between 9 uncertain inputs and 2 relevant outputs of the T-

H model code (i.e., the hot- and average-channel coolant outlet temperatures). Once built, such 

model has been used as fast-running surrogate of the original, long-running T-H model code to 

perform the functional failure analysis of the T-H passive system. First, a functional failure 

probability as small as 10-4 has been estimated; then, the sensitivity of the passive system 

performance to the uncertain system input parameters has been studied by calculating first-order 

Sobol sensitivity indices. In both analyses, the results have demonstrated that although the ANN 

regression model has been built on few (i.e., 100) data examples, the point estimates provided are 

reliable, because they are very near to the true values of the quantities of interest. 

Moreover, a bootstrap of ANN regression models has been considered to produce confidence 

intervals for the estimates of the above mentioned safety quantities: this (model) uncertainty 

quantification is of paramount importance in safety critical applications, in particular when few data 

examples are used to build the surrogate models and, consequently, the confidence of the analyst in 

the obtained estimates is poor. With respect to that, the bootstrapped ANNs have been shown to be 

quite robust because the produced confidence intervals are satisfactorily narrow around the true 

values of the quantities of interest. 

The results obtained show that the applied procedure is effective in reducing the computational 

burden associated to the functional failure analyses of T-H passive systems, while quantifying the 

uncertainty in the results. Although the T-H model used in this work to describe the behaviour of 

the natural circulation-based T-H passive system is a steady-state (thus, simplified) model, it is 

expected that even more significant benefits be gained with respect to more detailed thermal-

hydraulic models (e.g., RELAP5-3D), provided that the number of code runs to train and validate 

the bootstrapped ANN regression model is small, as in the proposed procedure. 

A final remark is also in order with respect to the possibility of using bootstrapped ANNs in the 

analysis of a complete accident sequence involving a T-H passive system instead of only one phase 

of the sequence (as it is done in the present work). In this view, two issues must be taken into 

account: i) the behavior of a T-H passive system is obviously dependent on the boundary conditions 
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of operation which depend on their turn on the particular phase of the accident sequence considered 

and on the “history” of the accident sequence itself: thus, possibly different ANN regression models 

should be built for use in different phases of the accident scenarios considered; ii) the (model) 

uncertainty associated to the estimates of the ANN regression model have to be propagated through 

the accident sequence: to this aim, the creation of bootstrap-based empirical probability 

distributions for the physical quantities of interest (e.g., the coolant temperature, the passive system 

failure probability and so on) offers a possible way to tackle this problem. Both issues i) and ii) 

above will be subject of future researches and applications. 
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Appendix 

The bootstrap algorithm for bias-corrected point and confidence 

interval estimation in ANN empirical regression modeling 

In what follows, the steps of the procedure for the evaluation of the so-called Bootstrap Bias 

Corrected (BBC) point estimate ˆ
BBCQ  of a generic quantity Q (e.g., a safety parameter) by an ANN 

regression model f(x, w*) and the calculation of an associated BBC Confidence Interval (CI) are 

reported in detail (Zio, 2006; Storlie et al., 2008): 

1. Generate a set D train of input/output data examples by sampling Ntrain independent input 

parameters values xp, p = 1, 2, ..., Ntrain, and calculating the corresponding set of Ntrain output 

vectors yp = µy(xp) through the mechanistic T-H system code. Plain random sampling, Latin 

Hypercube Sampling or other more sophisticated experimental design methods can be 

adopted to select the input vectors xp, p = 1, 2, ..., Ntrain (Gazut et al., 2008). 
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2. Build an ANN regression model f(x, w*) on the basis of the entire data set 

( ){ }trainpptrain NpD ...,,2,1,, == yx  (step 1. above) in order to obtain a fast-running surrogate 

of the T-H model code represented by the unknown nonlinear deterministic function µy(x) in 

(1). 

3. Use the ANN regression model f(x, w*) (step 2. above), in place of the T-H model code, to 

provide a point estimate Q̂  of the quantity Q, e.g., the functional failure probability of the T-

H passive system or a sensitivity index. 

In particular, draw a sample of NT new input vectors xr, r = 1, 2, …, NT, from the 

corresponding epistemic probability distributions and feed the ANN regression model f(x, 

w*) with them; then, use the corresponding output vectors yr = f(xr, w
*), r = 1, 2, …, NT, to 

calculate the estimate Q̂  for Q (the algorithm for computing Q̂  is obviously dependent on 

the meaning of the quantity Q). Since the ANN regression model f(x, w*) can be evaluated 

quickly, this step is computationally costless even if the number NT of model evaluations is 

very high (e.g., NT = 105 or 106). 

4. Build an ensemble of B (with B = 500-1000) ANN regression models 

( ){ }Bbbb ...,,2,1,, * =wxf  by random sampling with replacement and use each of the 

bootstrapped ANN regression models fb(x, wb
*), b = 1, 2, ..., B, to calculate an estimate bQ̂ , 

b = 1, 2, ..., B, for the quantity Q of interest: by so doing, a bootstrap-based empirical 

probability distribution for the quantity Q is produced which is the basis for the construction 

of the corresponding confidence intervals. In particular, repeat the following steps for b = 1, 

2, ..., B: 

a. Generate a bootstrap data set ( ){ }trainbpbpbtrain NpD ...,,2,1,, ,,, == yx , b = 1, 2, ..., B, by 

performing random sampling with replacement from the original data set 

( ){ }trainpptrain NpD ...,,2,1,, == yx  of Ntrain input/output patterns (steps 1. and 2. 

above). The data set Dtrain,b is thus constituted by the same number Ntrain of 

input/output patterns drawn among those in Dtrain although, due to the sampling with 

replacement, some of the patterns in Dtrain will appear more than once in Dtrain,b, 

whereas some will not appear at all. 

b. Build an ANN regression model fb(x, wb
*), b = 1, 2, ..., B, on the basis of the 

bootstrap data set ( ){ }trainbpbpbtrain NpD ...,,2,1,, ,,, == yx  (step 3.a. above). 

c. Use the ANN regression model fb(x, wb
*) (step 4.b. above), in place of the original T-

H code, to provide a point estimate bQ̂  of the quantity of interest Q. It is important to 
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note that for a correct quantification of the confidence interval the estimate bQ̂  must 

be based on the same input and output vectors xr and yr, r = 1, 2, …, NT, 

respectively, obtained in step 3. above. 

5. Calculate the so-called Bootstrap Bias Corrected (BBC) point estimate BBCQ̂  for Q as 

 bootBBC QQQ ˆˆ2ˆ −=  (1’) 

where Q̂  is the estimate obtained with the ANN regression model f(x, w*) trained with the 

original data set Dtrain (steps 2. and 3. above) and bootQ̂  is the average of the B estimates bQ̂  

obtained with the B ANN regression models  fb(x, wb
*), b = 1, 2, ..., B (step 4.c. above), i.e., 

 ∑
=

=
B

b
bboot Q

B
Q

1

ˆ1
. (2’) 

The BBC estimate BBCQ̂  in (1’) is taken as the point estimate for Q. 

The explanation for expression (1’) is as follows. It can be demonstrated that if there is a 

bias in the bootstrap average estimate bootQ̂  in (2’) compared to the estimate Q̂  obtained 

with the single ANN regression model f(x, w*) (step 3. above), then the same bias exists in 

the single estimate Q̂  compared to the true value Q of the quantity of interest (Baxt and 

White, 1995). Thus, in order to obtain an appropriate, i.e. bias-corrected, estimate BBCQ̂  for 

the quantity of interest Q, the estimate Q̂  must be adjusted by subtracting the corresponding 

bias ( bootQ̂  - Q̂ ): as a consequence, the final, bias-corrected estimate BBCQ̂  is BBCQ̂  = Q̂  - 

( bootQ̂  - Q̂ ) = 2Q̂  - bootQ̂ . 

6. Calculate the two-sided Bootstrap Bias Corrected (BBC)-100·(1 - α)% Confidence Interval 

(CI) for the BBC point estimate in (1’) by performing the following steps: 

a. Order the bootstrap estimates bQ̂ , b = 1, 2, ..., B, (step 4.c. above) by increasing 

values, such that bi QQ ˆˆ
)( =  for some b = 1, 2, ..., B, and )1(Q̂  < )2(Q̂  < ... < )(

ˆ
bQ  < ... < 

)(
ˆ

BQ . 

b. Identify the 100·α/2th and 100·(1 – α/2)th quantiles of the bootstrapped empirical 

probability distribution of Q (step 4. above) as the [B·α/2]th and [B(1 – α/2)]th 

elements [ ]( )2/
ˆ

α⋅BQ  and ( )[ ]( )2/1
ˆ

α−⋅BQ , respectively, in the ordered list )1(Q̂  < )2(Q̂  < ... < 

)(
ˆ

bQ  < ... < )(
ˆ

BQ ; notice that the symbol [·] stands for “closest integer”. 

c. Calculate the two-sided BBC-100·(1 - α)% CI for BBCQ̂  as 
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 [ ]( )( ) ( )[ ]( )( )[ ]bootBBBCBbootBBC QQQQQQ ˆˆˆ,ˆˆˆ
2/12/ −+−− −⋅⋅ αα . (3’) 

 

An important advantage of the bootstrap method is that it provides confidence intervals for a given 

quantity Q without making any model assumptions (e.g., normality); a disadvantage is that the 

computational cost could be high when the set Dtrain and the number of adaptable parameters w* in 

the regression models are large. 
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FIGURE 

 

 

Figure 1. Schematic representation of one loop of the 600-MW GFR passive decay heat removal 

system (Pagani et al., 2005) 
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TABLES 

 

 Name Mean, µ Standard deviation, σ (% of µ) 

Parameter 

uncertainty 

Power (MW), x1 18.7 1% 

Pressure (kPa), x2 1650 7.5% 

Cooler wall temperature (°C), x3 90 5% 

Model 

uncertainty 

(error factor, ζ) 

Nusselt number in forced convection, x4 1 5% 

Nusselt number in mixed convection, x5 1 15% 

Nusselt number in free convection, x6 1 7.5% 

Friction factor in forced convection, x7 1 1% 

Friction factor in mixed convection, x8 1 10% 

Friction factor in free convection, x9 1 1.5% 

Table 1. Epistemic uncertainties considered for the 600-MW GFR passive decay heat removal 

system of Figure 1 (Pagani et al., 2005) 

 

 

Artificial Neural Network (ANN) 

Optimal configuration selected: ni = 9, nh = 4, no = 2 

  R2 RMSE [°C] 

Ntrain Nval Ntest Number of adjustable parameters w* hot
coreout,T  avg

coreout,T  hot
coreout,T  avg

coreout,T  

100 20 20 50 0.9897 0.9866 12.0 6.3 

Configuration: ni = 9, nh = 3, no = 2 

  R2 RMSE [°C] 

Ntrain Nval Ntest Number of adjustable parameters w* hot
coreout,T  avg

coreout,T  hot
coreout,T  avg

coreout,T  

100 20 20 38 0.9821 0.9763 16.0 8.5 

Configuration: ni = 9, nh = 5, no = 2 

  R2 RMSE [°C] 

Ntrain Nval Ntest Number of adjustable parameters w* hot
coreout,T  avg

coreout,T  hot
coreout,T  avg

coreout,T  

100 20 20 62 0.9891 0.9860 13.4 7.6 

Table 2. Coefficient of determination 2R  and RMSE associated to the ANN estimates of the hot- 

and average-channel coolant outlet temperatures hot
coreoutT ,  and avg

coreoutT , , respectively 
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Failure probability (“True” value, P(F) = 3.34·10-4; CPU time ≈ 417 h) 

Bootstrapped Artificial Neural Networks (ANNs) 

Ntrain Nval Ntest BBC point estimate, ( )ˆ
BBC

P F  BBC-95% CI CPU time 

100 20 20 3.59·10-4 [2.55·10-4, 4.12·10-4] ≈ 2.22 h 

Table 3. Bootstrap Bias Corrected (BBC) point estimate ( )BBCFP̂  and BBC-95% Confidence 

Interval (CI) of the functional failure probability P(F) 

 

Ranking of the uncertain input variables – Hot-channel coolant outlet temperature, hot
coreout,T  = y1 

Original T-H code, NT = 110000 ( 1
jS ) ; CPU time ≈ 92 h Bootstrapped ANNs, Ntrain = 100 ( ,

ˆ 1
j BBCS ); CPU time ≈ 2.12 h 

Pressure, x2 (0.8105) Pressure, x2 (0.8098) 

Friction mixed, x8 (0.0594) Friction mixed, x8 (0.0605) 

Nusselt mixed, x5 (0.0583) Nusselt mixed, x5 (0.0591) 

Cooler wall temperature, x3 (0.0303) Cooler wall temperature, x3 (0.0368) 

Power, x1 (5.950·10-3) Power, x1 (5.199·10-3) 

Nusselt free, x6 (5.211·10-4) Nusselt free, x6 (6.338·10-4) 

Friction free, x9 (2.139·10-4) Friction free, x9 (1.676·10-4) 

Nusselt forced, x4 (4.214·10-5) Nusselt forced, x4 (6.430·10-5) 

Friction forced, x7 (1.533·10-5) Friction forced, x7 (1.634·10-5) 

Table 4. Ranking of the uncertain input variables xj, j = 1, 2, …, 9, based on the first-order Sobol 

sensitivity indices 1
jS  calculated for the hot channel coolant outlet temperature hot

coreoutT ,  = y1 
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First-order Sobol sensitivity indices 1
jS  - Hot-channel coolant outlet temperature, hot

coreout,T  = y1 

Bootstrapped Artificial Neural Networks (ANNs), Ntrain = 100; CPU time ≈ 2.12 h 

Variable, xj (
1
jS ) BBC point estimate, ,

ˆ 1
j BBCS  BBC-95% CI 

Power, x1 (5.950·10-3) 5.199·10-3 [4.137·10-4, 8.563·10-3] 

Pressure, x2 (0.8105) 0.8098 [0.7949, 0.8324] 

Cooler wall temperature, x3 (0.0303) 0.0368 [0.0352, 0.0479] 

Nusselt forced, x4 (4.214·10-5) 6.430·10-5 [0, 9.523·10-5] 

Nusselt mixed, x5 (0.0583) 0.0591 [0.0491, 0.0649] 

Nusselt free, x6 (5.211·10-4) 6.338·10-4 [0, 8.413·10-4] 

Friction forced, x7 (1.533·10-5) 1.634·10-5 [0, 4.393·10-5] 

Friction mixed, x8 (0.0594) 0.0605 [0.0536, 0.0711] 

Friction free, x9 (2.139·10-4) 1.676·10-4 [0, 3.231·10-4] 

Table 5. Bootstrap Bias Corrected (BBC) point estimates 1
,

ˆ
j BBCS , j = 1, 2, …, 9, and BBC-95% 

Confidence Intervals (CIs) of the first-order Sobol sensitivity indices 1
jS , j = 1, 2, …, 9, calculated 

for the hot channel coolant outlet temperature hot
coreoutT ,  = y1 

 


