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Abstract
The quantitative reliability assessment of a thdrhmalraulic (T-H) passive safety system of a
nuclear power plant can be obtained by i) Monte IG4MC) sampling the uncertainties of the
system model and parameters, ii) computing, foheample, the system response by a mechanistic
T-H code and iii) comparing the system responsé rie-established safety thresholds, which
define the success or failure of the safety functithe computational effort involved can be
prohibitive because of the large number of (typdicdbng) T-H code simulations that must be
performed (one for each sample) for the statistiesfimation of the probability of success or
failure.
In this work, Line Sampling (LS) is adopted foriceght MC sampling. In the LS method, an
“important direction” pointing towards the failurdomain of interest is determined and a number
of conditional one-dimensional problems are sohaddng such direction; this allows for a
significant reduction of the variance of the faduyprobability estimator, with respect, for example,
to standard random sampling.
Two issues are still open with respect to LS: fitke method relies on the determination of the
“important direction”, which requires additional ms of the T-H code; second, although the
method has been shown to improve the computatigffialency by reducing the variance of the
failure probability estimator, no evidence has begwen yet that accurate and precise failure
probability estimates can be obtained with a numiifesamples reduced to below a few hundreds,
which may be required in case of long-running medel
The work presented in this paper addresses thé iBsie by i) quantitatively comparing the
efficiency of the methods proposed in the literattor determine the LS important direction; ii)
employing Artificial Neural Network (ANN) regressionodels as fast-running surrogates of the
original, long-running T-H code to reduce the congtional cost associated to the determination
of the LS “important direction” and iii) proposin@@ new technique for identifying the LS



“important direction”, based on the Genetic Algdmh (GA) minimization of the variance of the LS
failure probability estimator.

In addition, this work addresses the second isguasisessing the performance of the LS method in
estimating small failure probabilities with a redat (e.g., lower than one hundred) number of
samples.

The issues are investigated within two case studhesfirst one deals with the estimation of the
failure probability of a nonlinear structural systesubject to creep and fatigue damages [1], [2];
the second one regards a passive decay heat reragstm in a Gas-cooled Fast Reactor (GFR)

of literature [3].

Keywords: Functional failure probability, passive systenind. Sampling, important direction,
variance minimization, Artificial Neural Network, é&etic Algorithm, long-running code,

computational cost.

1 Introduction

Modern nuclear reactor concepts make use of passfety features [4], which do not need
external input (especially energy) to operate [3dl,athus, are expected to improve the safety of
nuclear power plants because of simplicity and cgdo of both human interactions and hardware
failures [6]-[8].

However, the uncertainties involved in the modellamd functioning of passive systems are usually
larger than for active systems. This is due tothg random nature of several of the physical
phenomena involved in the functioning of the syst@ieatory uncertainty); ii) the incomplete
knowledge on the physics of some of these phenoifegistemic uncertainty) [9].

Due to these uncertainties, the physical phenonmemédved in the passive system functioning (e.qg.,
natural circulation) might develop in such a wayldad the system to fail its function: actually,
deviations in the natural forces and in the coodgiof the underlying physical principles from the
expected ones can impair the function of the systseif [10].

In this view, a passive system fails to perform filaction when deviations from its expected
behavior lead the load imposed on the system teegkds capacity [11]. In the reliability analysis
of such functional failure behavior, the passivetem is modeled by a detailed, mechanistic T-H
system code and the probability of failing to periahe required function is estimated based on a
Monte Carlo (MC) sample of code runs which propeagtte epistemic (state-of-knowledge)

uncertainties in the model and numerical valuassgfarameters/variables [3], [4], [12]-[19].



In practice, the probability of functional failucé a passive system is very small (e.qg., of theeord
of 10% or less), so that a large number of samples isssacy for acceptable estimation accuracy
[20]. Given that the time required for each rurthed detailed, mechanistic T-H system model code
can be of the order of several hours [4], the MQuation-based procedure typically requires
considerable computational efforts.

To reduce the computational burden of MC simulabased approaches to reliability and risk
analysis, efficient sampling techniques like Impade Sampling (1S) [21], Stratified Sampling [22]
and Latin Hypercube Sampling (LHS) [23] have bedtely used [24].

In this paper, we consider an advanced simulatiethad called Line Sampling (LS), which has
been recently introduced in structural reliabilitiyalysis [25]Lines instead of randorpoints are
used to probe the failure domain [26]; an “importdinection” pointing towards the failure domain
of interest is first determined and a number ofdiional, one-dimensional problems are then
solved along such direction [26]. The approachbeen shown capable of substantially improving
computational efficiency in a wide range of rellabi applications [2], [19], [25]-[29]. If the
boundary profile of the failure domain of interésinot too irregular and the “important direction”
is almostperpendicularto it, the variance of the failure probability iesator could ideally be
reduced to zero [25].

Two main issues of the LS method are still undedfor its practical application in reliability dn
risk analysis:

1. LS relies on the determination of the importanediion, which requires additional runs of
the T-H model, with an increase of the computaticoat.

2. LS has been shown to significantly reduce the nageof the failure probability estimator,
but this must be achieved with a small humber oh@as (and, thus, of T-H model
evaluations; say, few tens or hundreds dependinth@mapplication), for practical cases in
which the computer codes require several hourgri@rsingle simulation [4].

The present paper addresses the first issue alyove b
» comparing the efficiency of a number of methodsppseed in the literature to identify the
important direction;
* employing Artificial Neural Network (ANN) regressiomodels [30] as fast-running
surrogates of the long-running T-H code, to redineecomputational cost associated to the
identification of the LS important direction;



proposing a new technique to determine the LS itapordirection, based on the

minimizationof the variance of the LS failure probability esditor.

With respect to the second issue above, this pEpes at:

assessing the performance of the LS method inghma&tion of small failure probabilities

(e.g., of the order of 1) with areducednumber of samples (e.g., below 100).

The noveltieswith respect to previous work performed by thehatd on these issues [31] are the

following:

Genetic Algorithms (GAs) are employed as optim@aatialgorithms, whereas in the
previous work an algorithm based on Sequential @igmdProgramming-SQP was used,;

the ANN regression models are here trained accgrttirasequential two-stepalgorithm
(based on error back-propagation) in order to emeethe accuracy of the ANN model
estimates in proximity of the failure domain ofdrgst; on the contrary, in the previous
work a simpleone-steplgorithm was used;

the performance of the LS method in the estimadiosmall failure probabilities (e.g., of the
order of 1) is assessed withwery smallnumber of samples drawn (of the order of 5-50);
instead, in the previous work the performance efli8 method was assessed with a number
of samples of the order of one-two hundreds;

the following probabilistic simulation methods azempared in the estimation of small
failure probabilities on the basis ofvary smallnumber of samples drawn: i) the optimized
LS method proposed in this paper, ii) a combinatibthe optimized LS method and Latin
Hypercube Sampling (LHS), also developed in thipepaiii) Importance Sampling (IS)
[21] and iv) a combination of IS and LHS [32]; imet previous work, no comparison with

other simulation methods was performed.

The investigations are carried out with regardsmo case studies. The first one (not considered in

the previous paper [31]) deals with the estimatbthe failure probability of a nonlinear structura

system subject to creep and fatigue damages [[Lth@nks to its simplicity, it is here used a®g-t

problem toextensively teghe proposed methods, with respect to both issuasd 2. above. The

second one (considered also in the previous pa&) feals with the reliability analysis of a

passive, natural convection-based decay heat rdrsgsem of a Gas-cooled Fast Reactor (GFR)

[3]: on the basis of the investigations performedhie first case study, only issue 2. above isl¢gick

in the second case study.



The remainder of the paper is organized as folldwsSection 2, the reliability analysis of T-H
passive systems is framed in terms of the conaafptenctional failure analysis. In Section 3, a
general presentation of the LS procedure is praVidie Section 4, a detailed description of the
techniques employed in this work to estimate theadrtant direction for LS is given. In Sections 5
and 6, the structural case study of literature thedcase study concerning the passive cooling of a
GFR are respectively presented, together with tbeesponding results. Finally, a critical
discussion of the results obtained is proposederti@ 7 and some conclusions are drawn in the

last Section.

2 Functional failure analysis of T-H passive systems

The basic steps of a functional failure analysia 0fH passive system are [33]:

1. Detailed modeling of the system response by medna deterministic, best-estimate
(typically long-running) T-H code.

2. ldentification of the parameters/variables, mo@eid correlations (i.e., the inputs to the T-H
code) which contribute to thencertaintyin the results (i.e., the outputs) of the besieste
T-H calculations.

3. Propagation of the uncertainties through the detestic, long-running T-H code in order to
estimate the functional failure probabilyF) of the passive system. Formally, bet= {x,

X2, ..., X, ..., Xn} b€ the vector of the relevant system uncertarampetersy(x) be a scalar
function indicating the performance of the T-H passystem (e.g., the fuel peak cladding
temperature during an accidental transient) @nd threshold value (imposed e.g. by the
regulatory authorities) defining the criterion ok$ of system functionality. For illustrating
purposes, let us assume that the passive systknif féf x ) > ay; equivalently, introducing

a variable called Performance Function (PF) @gx)=Y(x)-a,, failure occurs if
9,(x) >0. The probabilityP(F) of system functional failure can then be exprédsg the
multidimensional integral:

P(F)=[]..[ 1 (x)a(x)dx (1)
where q([)] is the joint Probability Density Function (PDF)presenting the uncertainty in

the parameterx, F is the failure region (wherg(:) > 0) andg(") is an indicator function
such thatg(x) = 1, ifx LJ F andlg(x) = 0, otherwise.
The evaluation of integral (1) above entaiisltiple (e.g., many thousands) evaluations of the T-H
code for different sampled combinations of systeputs; if the running time for each T-H code

simulation takes several hours (which is often tlhese for T-H nuclear passive systems), the
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associated computing cost is prohibitive. In thépgr, the computational issue is addressed by

resorting to the Line Sampling (LS) technique [28hose main concepts are given in the following

Section.

3 A synthetic illustration of the Line Sampling technque

Line Sampling (LS) is a simulation method for a#ittly computing small failure probabilities.

The underlying idea is to empldipesinstead of randorpointsin order to probe the failure domain

of the system analyzed [25], [26].

In extreme synthesis, the computational stepseo&tgorithm are [26], [28]:

1.

From the original multidimensional joint probabjlidensity function q([)]:D” - [0,00),
sampleNr vectors{x* :k = 1,2,...,N; }, with x* ={xk, x4 e X X<,

Transform theNr sample vector;{x" k= lZ,...,NT} defined in the original (i.e., physical)
space intd\t samples{a" k= lZ,...,NT} defined in the standard normal space; also the PFs
g, () defined in the physical space have to be trangfdrimto g, ([ in the standard normal
space [34].

In the standard normal space, determine thenit important direction

a :{al,az sl ,...,an}T (hereafter also called “important unit vector” Gimportant

direction”) pointing towards the failure domdiof interest (see Section 4 below).
Reduce the problem of computing the high-dimengitailure probability integral (1) to a
number of conditional one-dimensional problemsyeslalong the “important directiorn

in the standard normal space: in particular, eséniNy conditional “one-dimensional”
failure probabilities{P(FJ°* :k = 1.2...,N, |, corresponding to each one of the standard

normal samples{a" k= 12,...,NT} obtained in step 2. Notice thatNz-or 3Nt system

performance analyses (i.e., runs of the T-H moddkgy have to be carried out to calculate

each of the N; conditional one-dimensional failure probability tiesates
{B(FY°*:k = 1,2....N,} (see [26] and [28] for details).
Compute the unbiased estimatB(F)"" for the failure probabilityP(F) and its variance

JZ[IS(F)NT] as:

B(F) =yN: O B(F)™ @
o[BE)" | = YN (N, 1) [BES™ - B(F)" ] ©)

k=1



The LS method here outlined can significantly redtlte variance (3) of the estimator (2) of the
failure probability integral (1) [25]; however, itfficiency depends on the determination of the

important directior (step 3. above): the following Section delvesHartinto this issue.

4 Methods for the determination of the important direction a

In what follows, the methods used in this work &tedmine the LS important directian are
presented in detail: in Section 4.1, the techniqueposed in the literature are critically revieywed
in Section 4.2, a new method based on the minimoizaif the variance of the LS failure probability

estimator is proposed.
4.1 Literature methods

4.1.1 Normalized “center of mass” of the failure domainF

The important unit vectos can be computed as the normalized “center of makshe failure
domainF of interest [25]. A pointd° is taken in the failure domaiR: this can be done by

engineering judgment when possible. Subsequesflyis used as the initial point of a Markov

chain which lies entirely in the failure domatn For that purpose, a Metropolis-Hastings algorithm
is employed to generate a sequencé&lopoints {0“ u= 12,...,NS} lying in the failure domair

[35]. The unit vectorsa“/ 0"

, U= 1, 2, ...,Ns, are then averaged in order to obtain the LS

. . 1 s
important unit vector as :WEEHU/ 0"
1

s U=

, (Figure 1, top, left). This direction provides aod

“map” of the important regions of the failure domdat least as the sample sitgis large); on the
other hand, the procedure impliB additional system analyses by the T-H model, whichy
substantially increase the computational cost @ssatto the simulation method.

4.1.2 Direction of the design point in the standard norméaspace

A plausible selection at could be the direction of the “design point” iretstandard normal space
[27], [36]. According to a geometrical interpretatj the “design point” is defined as the poiht
on the limit state surface,(#)=0 in the standard normal space, which is closesheoorigin

(Figure 1, top, right). It can be computed by swodvithe following constrained nonlinear

minimization problem:

Findo’ :HH* HZ = mggo{||0||2} (4)

90(0

where|ii denotes the usual Euclidean measure of a vector.



Then, the unit important vectarcan be easily obtained by normalizifig, i.e., a = 0*/H0* H2

In this work, Genetic Algorithms (GAs) [37], [38yeaused to solve the constrained nonlinear
minimization problem (4). In extreme synthesis, thmin properties of GAs are that the
optimization search is conducted i) using a (pdgsiarge population of multiple solution points or
candidates, ii) using operations inspired by thel@ion of species, such as breeding and genetic
mutation, iii) using probabilistic operations ang using information on the objective or search
function and not on its derivatives. With regardghteir performance, it is acknowledged that GAs
take a moregglobal view of the search space than many other optimizanethods. The main
advantages are i) fast convergence to near glgitethom, ii) superior global searching capability
in complicated search spaces and iii) applicabiéitgn when gradient information is not readily
achievable [38]. A thorough descriptions of the G@mputational flow is not reported here for
brevity sake: for further details, the interestedder may refer to the cited references and the
copious literature in the field.

Notice that checking the feasibility of a candidstéution @ to (4) requires the evaluation of the PF
gg([)] at @, which entails running the numerical T-H model ea&mulating the system. As a
consequence, the computational cost associatedhetbalculation of the design point can be quite
high, in particular if long-running numerical coda® used to simulate the response of the system

to its uncertain input parameters [27], as it i8 tase in the functional failure analysis of T-H
passive systems.

4.1.3 Gradient of the performance function in the standad normal space
In [26], the direction o is taken as the normalized gradient of thegg({)] in the standard normal
space. Since the unit vectar points towards the failure domain, it can be used to draw

information about the relative importance of thecentain parameteri&’j )= 12,...,n} with

respect to the failure probabiliB(F): the more relevant an uncertain variable is itexdeining the
failure of the system, the larger the correspondmmponent of the unit vectarwill be [26]. Such

guantitative information is obtained from the geadi of the performance functiogg(a) in the

standard normal spacig,(f):

0g,(0)= 699(0) 699(0) 699(0) 699(0) ' (5)
? 06, 096, 06, " a6,

The gradient (5) measures the relative importarice articular uncertain variable with respect to

the failure probabilityP(F): the larger the (absolute) value of a componér(6) the greater the



“impact” of the corresponding uncertain variabletbea performance functioge(a) in the standard

normal space. Thus, it is reasonable to identigyltB important direction with the direction of the

gradient (5) and compute the corresponding unitoree as thenormalized gradient of the

performance functiory,(J) in the standard normal space, iwe= 0g,(0)/|0g, (¢)], [26].

For clarity sake, Figure 1 bottom shows this procedwith reference to a two-dimensional

problem: the important unit vecter = {1, a2} associated to the two-dimensional performance

function g,(6,,6,) is computed at a proper (selected) patfi={6°, 65} T (e.g., the nominal point

0

. : : 0
of the system under analysis). Notice that sincepmmenta, = ggé )

7, a0,

a 1

(Figure 1
2

, (Figure 1 bottom,

00

bottom, left) is significantly larger than compohern :69659(0)‘ A Cg, (0)
2 o°

right), uncertain variablé, will be far more important thafy in leading the system to failure.

Finally, notice that as the PEH(H) is known only implicitly through the response ohamerical

code, for a given vecta? ={6?1,6?2 weerl) eens, }T at leasn system performance analyses are required

to determine accurately the gradient (5) at a gipemt of the PFge(E)], e.g., by numerical
differentiation [39], [40].

Figure 1 here

All the techniques presented require additionakrahthe T-H model code, with increase of the
overall computational cost associated to the LShotktTo improve on this issue, the substitution
of the long-running T-H model code by a fast-rumnisurrogate regression model is here
investigated. The regression model is constructedti® basis of dimited-size set of data
representing examples of the input/output nonlimekationships underlying the original T-H code.
Once built, the model can be used for performimg,an acceptable computational time, the
evaluations of the system BI-) needed for an accurate estimation of the LSmapt directioru.

In this work, a three-layered feed-forward ArtifitiNeural Network (ANN) regression model is
considered. In extreme synthesis, ANNs are comgutavices inspired by the function of the nerve
cells in the brain [30]. They are composed of maayallel computing units (called neurons or
nodes) interconnected by weighed connections ¢aimapses). Each of these computing units
performs a few simple operations and communicdtesésults to its neighbouring units. From a

mathematical viewpoint, ANNs consist of a set oflireear (e.g., sigmoidal) basis functions with
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adaptable parameters that are adjusted by a pradesaining (on different input/output data
examples), i.e., an iterative process of regressroor minimization [41]. The details about ANN
regression models are not reported here for brefotyfurther details, the interested reader may
refer to the cited references and the copiousalitee in the field.

The particular type of ANN employed in this papsrthe classical three-layered feed-forward
ANN; in order to improve thaccuracyin the approximation of the system BJ-) (needed for an
accurate estimation of the LS important directsignthe employed ANN models are trained by a

properly devisedsequentigl two-step algorithm based on error back-propagation. In eswg

synthesis, dirst-stepANN regression model is built using a €&t of input/output data examples

of size N further, avalidationdata setD,,, (different from the training set) of si®&,/ is used

train ;
to monitor the accuracy of the first-step ANN modefing the training procedure in order to avoid
overfitting of the training data [41]. The resuiANN model is used (instead of the original, long-
running system model code) to provide amproximationto the design pointof the problem

(Section 4.1.2): this is meant to provide an appnaxe, rough indication of the real location of the

failure domainF of interest. Subsequently, new training and véiitadata setd, ., and D, of

train

and N/

val !

sizesN.

train

respectively, are randomly generatethtredon the approximate design point

previously identified: aecond-steffi.e., definitive) ANN model is then constructed thhese newly
generated training and validation data sets. Thosilsl result in an ANN regression model which is
more accurate in proximity of the failure domé&irof interest, thus providing reliable estimates of
the system PEy(+) for the identification of the LS important diten a.

4.2 Minimization of the variance of the LS failure probability estimator

The optimal important directiona® for Line Sampling can be defined as the one miziimgi the
varianceazlls(F)NTJ (3) of the LS failure probability estimatdt(F )™ (2). Notice thatz*® can be
expressed as the normalized version of a propeioveé™ in the standard normal space, i.e.,

aopt - Hopt/ Hopt

- Thus, in order to search for a physically meafihgnportant unit vectora®

(i.e., a vector that optimally points towards théure domainF of interest),0°™ should belong to

the failure domairr of interest, i.e#°*™ OF or, equivalently,gg(0°pt)> 0.

t

In mathematical terms, the optimal LS importanediion a° is obtained by solving the following

nonlinear constrained minimization problem:

Finda®™ =0°/|0°" - o[F(F)" |= aﬁn,,/ig‘z{gzlls(F)NTl} (6)

00pt

subjecto ¢ OF (i.e. g, (@) > 0).
10



The conceptual steps of the procedure for solv@ie (Figure 2):
1. An optimization algorithm proposes a candidate timtua =6/|6], to (6): as previously
mentioned, in this work Genetic Algorithms (GAsg amployed.

2. The LS failure probability estimatdf’(F)NT (2) and the associated variarm:éllS(F)NTJ (3)

are calculated using the unit vectar=6/|6|, proposed as important direction in step 1.

above; notice that Ry or 3Ny system performance analyses (i.e., runs of thieisymodel
code) have to be carried out in this phase (s@s gteand 5. in Section 3).

3. The varianceazllf’(F)NT] obtained in step 2. above is the objective fumctio be

minimized; it measures the quality of the candidsatution a =6/|d|, proposed by the
optimization algorithm in step 1. above.

4. The feasibility of the proposed solutian=6/6], is checked by evaluating the system PF
0o(*) (i.e., by running the system model code) in spomdence of: if the proposed

solution & = 0/]6|, is not feasible (i.e., iP OF or, equivalently,g,(0)<0), it is penalized

by increasingthe value of the corresponding objective functiaﬁ[lf’(F)NT] through an

additivefactor [37].

5. Steps 1. — 4. are repeated until a predefined stgpgiterion is met and the optimization

algorithm identifies theptimal unit vectora®" = 0°p‘/

0Opt
2

Notice that i) the optimization search requires iteeative evaluation of hundreds or thousands of

possible solutions: =6/|||, to (6) and ii) 2Nr or 3Ny system performance analyses (i.e., runs of

the system model code) have to be carried out ltulege the objective functiowzlﬁ(F)NTJ for

each proposed solution; as a consequence, the commahteffort associated to this technique
would be absolutely prohibitive with a system mocladle requiring hours or even minutes to run a
single simulation. Hence, it is unavoidable, foagiical applicability, to resort to a regression
model (ANN-based, in this work) as a fast-runnipgraximator of the original system model for

performing the calculations in steps 2. and 4. abtty make the computational cost acceptable.
Figure 2 here

The characteristics of the methods described ini®@ec4.1 and 4.2 are summarized in Table 1,

with the specification of the computational tootspoyed for their implementation.
11



Table 1 here

5 Case study 1: structural system of literature

The first case study deals with a probabilistic elddr the reliability analysis of creep and faigu
failure phenomena in structural materials: the rhedes first proposed in [1] and then employed
also in [2].

According to the above mentioned references, thdimear Performance Function (P§):) of a
structural material subject to creep and fatigumalges can be expressed as

9, (%) = 9, (%, % X5 X, %6, %)

= ™
= gX(NC’ Nf 1nc,nf ,91,92):2—351Dc +e_—2

g% -1

whereD. = n/N; andD; = ni/N; are the creep and fatigue damages, respectiMglgndN; are the

(%> -1)-Dp,

creep and fatigue lives, respectivaty,andn; are the numbers of the creep and fatigue loacesycl
respectively, and), and #, are characteristic parameters of the structurdenah obtained from
experimental data. The structural material is sgpddo fail when its PF (7) becomes lower than or
equal to 0, i.egu(x) <O0.

The shapes and parameters (i.e., meamd standard deviatias) of the probability distribution
functions associated to the uncertain variablgs & 1, 2, ..., 6} of the probabilistic model (7) for
creep and fatigue in structural materials are sunz@@in Table 2 [2].

The true (i.e., reference) probabil@¢F) of the failure evenE = {gy(x) < 0} is 1.425-1d, obtained

as an average &= 25000 failure probability estimatef%(F)sNT ,s=1, 2, ....S each one computed

by standard MCS withit = 500000 samples.

Table 2 here

5.1 Application 1: comparison of the methods proposedni Section 4 for
determining the important direction « for Line Sampling

LS is here applied to the probabilistic model (scribed above for creep and fatigue in structural
materials. In particular, in this Section a thordowgpmparison of the different methods proposed in
Section 4 for determining the important directi@rfor Line Sampling is carried out: in Section
5.1.1, the different experimental settings consideare described in details, together with the
methods and models used, and the objectives; irioBe&.1.2, the quantitative indicators

12



introduced to compare the methods adopted are nieskefinally, the results obtained in the
different experimental settings of Section 5.14 ilustrated in Section 5.1.3.

5.1.1 Experimental settings
The simulations performed are intended dompare the efficiency of the different methods
considered for the determination of the LS impdrtirectiona (Section 4). In each LS simulation,

the system performance functigg(-) is evaluated by running theiginal system model code and
the LS point estimateEA’(F)NT of the failure probability?(F) are computed with &rge numberNy

(i.e., Ny = 10000) of samples (steps 4. and 5. of Sectioth®) allows a reliable assessment of the

effect of different important directions on theaccuracyand precisionof the obtained estimates
I5(F)NT . In this case the use of a large number of sanipi€ge., Nt = 10000) is possible because

the system performance function (7) isimple analyticalfunction which can be evaluated in a
negligiblecomputational time.
Three different experimental settings, namely sg#til, 2 and 3, are considered in this application.
These settings differ by:
i) the method used for determining the important diveex (Section 4);
i) the model employed to evaluate the system perfocenumctiongy(-) for the estimation of
the important directiom;
iii) the numbeN, of system performance evaluations used to deterain
iv) the total numbeNgqe, Of actual runs of theoriginal system model code required by the
wholeprocess of determination of the important direco
The characteristics of the three settings are sumathin Table 3.

Table 3 here

In setting 1, the MCMC (labeled A, Section 4.1.d¢sign point (labeled B, Section 4.1.2) and
gradient (labeled C, Section 4.1.3) methods arsidened. Alarge numberm, of evaluations of the
system performance functiog(-) are carried out to determine in particular,N, = 10000 is
chosen to provide an accurate and reliable estifoatihe important directiom. In this setting, the
system performance function is evaluated by runmimggoriginal system model “code” (i.e., the

original system performance functigg()), so thaiNgoge, = N, = 10000.

In setting 2,N, = 10000 evaluations of the system performancetiommgy(-) are carried out to

determinen, like in the previous setting 1. However, in thetting the system performance function

13



0o(*) is evaluated by resorting tofast-runningANN regression model approximating the original
system performance function. The objective is taifyethe possibility of reducing the
computational cost associated to the LS methoddnyguANN regression models in place of the
original system model. In particular, the ANN reggien model is constructed on the basis of a
small set of data representing examples of the inpyildutonlinear relationships underlying the
original system model; once built, the regressioodeh is used to evaluate (in a negligible
computational time) the system performance functign for the determination of the important
directiona (steps 4. and 5. of Section 3).

A classical three-layered feed-forward ANN (trainbyg the sequentigl two-step error back-
propagation algorithm described at the end of 8eatil) is here adopted: the number of inputs to
the ANN regression model is 6 (i.e., the numbeumndertain variables in Table 2 of Section 5),
whereas the number of outputs is 1 (i.e., the vafube system performance function). The number
of nodes in the hidden layer has been set equabtptrial and error. Thérst-stepANN model is
built using a set of input/output data examplesiaé Ny,i,' = 50; further, avalidation data set
(different from the training set) of si2&’ = 10 is used to monitor the accuracy of the fitsp
ANN model during the training procedure, in orderalvoid overfitting of the training data [41].
Subsequently, theecond-stefi.e., definitive) ANN model is built using tramy and validation
sets of sizedlyain” = 100 and\yy” = 20, respectively; finally, testset of sizeNst= 10, not used
during the training and validation phases, is erygdioto provide a realistic measure of the second-
step ANN model accuracy. Thus, ttedal number of system modalns performed to generate the
two training sets, two validation sets and finait teet iSNcogeq = (Nirain® + Nva' + Nirain” + Nyal” +
Nees) =50 + 10 + 100 + 20 + 10 = 190.

Correspondingly, the total computational cost aiséed to the estimation @f in setting 2 is much
lower than that of setting 1, in spite of the same nunifyeof system performance evaluations.
Actually, when a single run of the system modelectabts several hours (which is often the case
for passive safety systems) the total num¥gge, of simulations is theritical parameter which
determines the overall computational cost assattatéhe method.

Further, in setting 2, the methods A, B and C amamared to the new one proposed in this paper,
i.e., the one based on the minimization of theararé of the LS failure probability estimator
(labeled D, Section 4.2).

The final setting 3 is similar to setting 1: methodl, B and C are used to determinend the
original system model is run to evaluate the sygtenformance functiogy(-); however, like in the

previous setting 2, the numbigy, of system performance evaluations (and, thusatiieal number
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Neode, Of runs of the original system model)Nsoge; = (Nirain® + Nval' + Nirain” + Nva” + Nies) = 50

+ 10 + 100 + 20 + 10 = 190. Notice that in thigiegt method D, based on the minimization of the
variance of the LS failure probability estimatos, not employed for determining because the
actual number of “allowed” code runs (i.Hgge, = 190) is too small to providmeaningfulresults

for this method.

5.1.2 Performance indicators

The experimental settings described in the previdestion 5.1.1 are compared in terms of two
guantities: the percentage relateeor ¢ between the LS failure probability estimaﬁ’eéF)NT and

the true (i.e., reference) vall&F) of the failure probability of the system, and thercentage

relative width wg, of the 95% Confidence Interval (Cl) of the LS tmé probability estimator

P(F)" . These indicators are defined in (8) and (9), eetipely:

P(F)" ~P(F)

E= 100, 8

P(F) (8)

ey =S e g, 9)
P(F)

where U B(E™ and L seyw are the upper and lower bounds of the 95% CI ef fdilure

probability estimatoP(F )", respectively.
Obviously, the lower is the value afthe higher is thaccuracyof the failure probability estimate

IZA’(F)NT ; instead, the lower is the valuews;, the higher th@recisionof the estimate.

5.1.3 Results
As previously mentioned, the example applicatios baen set with the purpose of comparing
different methods for determining the LS importdimectiona (Section 4).

Figure 3 shows the values of the LS point estim&fs)"" (dots) of the failure probabilit(F)

obtained withNy = 10000 samples in settings 1, 2 and 3 (Table I8; dorresponding 95%
Confidence Intervals (CIs) are also reported (bdss)ally, the true (i.e., reference) value of the
system failure probabilitfP(F) (i.e., P(F) = 1.425-10) is shown as a dashed line. Table 4 reports

instead the values of the associated performanteaitorse andwg, (Section 5.1.2).
Figure 3 here

Table 4 here
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The results obtained in setting 1 show that methAofl.e., MCMC simulation) provides more
accurate(i.e., the estimates are closer to the true valaedprecise(i.e., the confidence intervals
are narrower) estimates than methods B (i.e., dgsagnt) and C (i.e., gradient): the percentage
errorse are 0.421, 0.702 and 1.965, whereas the perce@&igpeCl widthswc, are 2.222, 2.282,
and 7.323 for methods A, B and C, respectivelysTdan be explained by the fact that method A
relies on a “map” approximating the failure dom&iminder analysis (given by the failure samples
generated through a Markov chain) and thus it pleiin principle the most realistic and reliable
estimate for the LS important directian

Moreover, it is evident that method B (i.e., desigint) performs consistently better than method C
(i.e., gradient). Actually, although design poidtsnot always represent th@st importantegions

of the failure domairr, especially in high-dimensional spaces [27], th#y provide an acceptable
indication of thereal location of the failure regiorF of interest. On the contrary, calculating
through the normalized gradient of the performafoection gy(-) makes the values of the
components ok strongly dependent on tip@int where thdirst-order, local approximations of the
performance functiomy(-) are carried out, and thus would relate inhéyelocal (and possibly
misleading) information: this effect is particubadritical for nonlinearsystems like that of the case
at hand.

In setting 2 the evaluation of the system perforoeafunctiongy(-) for the determination af is
performed by replacing the original system modehwin ANN (WithNyain” = 50,Nva’ = 10, Nirain”

= 100,Nva” = 20,Nwst= 10 input/output examples employed in the fiestd second-step training,
first- and second-step validation and test phasespectively). The numbeN, of system
performance evaluations is the same as in settifig.1N, = 10000); however, the numbiEyge,

of actualruns of the original system model code is muchelowndeed, in setting N¢oge, = 10000,
whereas in setting Rleoge, = 190: this means that the overatimputational efforiassociated to
setting 2 ianuch lowerthan that of setting 1.

It can be seen that the results obtained with nasthy B and C in setting 2 amomparableto
those produced by the same methods in settingelpahcentage erroesare 0.421, 0.702 and 1.965
for methods A, B and C, respectively, in settingidd 0.211, 0.351 and 0.772 for methods A, B and
C, respectively, in setting 2; the percentage 95Pavidths wg, are 2.222, 2.282, and 7.323 for
methods A, B and C, respectively, in setting 1, 2n@3, 2.516 and 7.199 for methods A, B and C,

respectively, in setting 2.
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Further, the proposed method D (Section 4.2) aelsimore accurateand preciseestimates than
those of methods A, B and C in both settings 1 Znithdeed, the percentage erroand 95% ClI
width wg, are 0.070 and 2.204, respectively; these improesdlts are due to the fact that the
proposed technique is based on the definition efidbal (i.e., optimal) important directioa for

LS (i.e., the one minimizing the variance of thefaBure probability estimator).

Finally, an important remark is in order with resp®® the comparison between settings 1 and 2; the
results produced in setting 2 are at leashparable if not better, than those of setting 1; yet, they
are obtained at a mudbwer computational efforhanks to the fast-running ANN approximation of

the system performance functigs-).

A comparison can also be made between settings 3:aactually, the numbeéN.oqe, Of runs of the
original system model code (and thus the assoc@atedall computational effojtis the same for
both settings (i.eNcoge, = 190). However, in setting 2 tiiew system model code runs atieectly
used to estimate (i.e., Ncoge, = N, = 190), whereas in setting 3 they are used tadbam ANN
regression model, which is in turn employed toreatea (i.e., Ncogex, = 190# N, = 10000). It is
evident that the methods A, B, C and D in settinguBperformthe corresponding methods in
setting 3: the percentage 95% CI widiing are 2.723, 2.516, 7.199 and 2.204 for methods,AC B
and D in setting 2, respectively, whereas they6a$87, 5.345 and 7.502 for methods A, B, and C
in setting 3, respectively.

These findings bear an important practical impiaatwhen dow numberNgyge, Of System model
evaluations isa priori imposeddue to computational time limitations (which i®tbase for long-
running codes), superior results are obtainedeaf dntcomes of the evaluations are employed to
build a surrogate ANN regression model for detemgnthe important directio instead of

directly using them for estimating

Finally, let us compare settings 1 and 3. In badttirsys, the original system model dgectly
employed for estimating: however, in setting 1 large number of system model evaluations (i.e.,
Ncodex = N, = 10000) are performed, whereas in setting 2 arsiyall number is used (i.6Ncodeq =

N, = 190). As expected, the precisions provided bythodws A, B and C in setting 1 are
significantly better than those produced by the esanethods in setting 3: the percentage 95% ClI
widthswg, are 2.222, 2.282, and 7.323 for methods A, B and §etting 1, respectively, whereas
they are 6.697, 5.345 and 7.502 for methods AnB,@ in setting 3.

In addition, it seems interesting to note thatdtiterence between the performances of methods A,

B and C is lower wheN|,, (= Ncoge,) IS sSmall (e.g., equal to 190) than when it igéate.g., equal to
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10000). This is due to the fact that the efficien€ynethods A (based on MCMC simulation) and B
(based on design point identification through ojation algorithms) strongly relies on the
possibility of deeply exploring the uncertain paeden space within the failure regiénof interest:
if only a small numbeN, (= Ncode,) Of System performance evaluations is availahlehsa deep
search cannot be carried out, thus resulting i pgsomates of the important directian In such
cases, even a simple procedure like method C (@@eadient estimation by straightforward

numerical differentiation) may provide comparaldsuits.

The conclusions on the accuracy and precisionaretitimates provided by the important direction
a determined by method D (i.e., the one proposeithigipaper, based on the minimization of the

variance of the LS failure probability estimatarijify its adoption in the subsequent applications.

5.2 Application 2: failure probability estimation using an optimized Line
Sampling method with small sample sizes

The objective of this application is verifying thmssibility of obtaining accurate and precise
estimateslS(F)NT of small failure probabilitiesP(F) (e.g., of the order of 1) even reducing the

number of system model evaluations to below onalted) which may be mandatory in practical
applications of computer codes requiring severalrfido run a single simulation. Thus, in the
present analysis the system performance fungibhis evaluated by means of the original system
model; however, the numbé¥; of samples drawn for the estimation of the systamure
probability is much lower than in Application 1:.deed, sample sizéér ranging from 5 to 50 are
employed (more preciselij{r =5, 10, 20, 30, 40 and 50).

In addition, the benefits coming from the use ofagmimized Line Sampling method with very
small sample sizeNr is shown by means of a comparison between theattin accuraciesand
precisionsof the following simulation methods:
)] optimized Line Sampling (LS) (Sections 3 and 4.2);
i) an original combination of optimized Line SamplifgS) and Latin Hypercube
Sampling (LHS) (hereafter referred to as LS + LHS);
iii)  standard Importance Sampling (IS) [21];
iv) a combination of standard Importance Sampling @8J Latin Hypercube Sampling
(LHS) (hereafter referred to as IS + LHS) [32].
Thorough descriptions of methods ii) — iv) above.(iLS + LHS, IS and IS + LHS) are not reported

here for brevity: the interested reader may raedehe cited references for detalils.
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In Section 5.2.1, the quantitative indicators usedompare methods i) — iv) above are presented;

then, the results produced by all the methods densd are investigated in Section 5.2.2.

5.2.1 Performance indicators
In order to properly represent the randomness efptiobabilistic simulation methods adopted and
provide a statistically meaningful comparison betwéheir performances in the estimation of the
system failure probability?(F), S = 2000 independent runs of each method have baeied out
for each sample sizd:: this is required by the fact that in this appiica the sample sizasr are
very small, such that they would produce poor &ia8 over asingle simulation run. In each
simulations =1, 2, ...,S the percentage relative absolute estdretween the true (reference) value
of the system failure probabiliti?(F) and the corresponding estimafE(F)sNT is computed as
follows:

_|P(F)-P(F)"

£, = n0o,s=1,2, ...S (10)
P(F)

The accuracies of the simulation method of interesihe estimation oP(F) are then compared in
terms of the mean percentage relative absolute erraverS= 2000 runs:
E==0D ¢ 11

s =5 (11)
The quantity (11) provides a measure of the peagentelative absolute error in the estimation of
the failure probabilityP(F) madeon average in a single ruby the simulation method witNt

samples.

The failure probability estimatelé(F)sNT ,s=1, 2, ...,S are then used to buildumotstrappe®5%

Confidence Interval (Cl) for the failure probal;il'ﬂestimatorls(F)NT ,l.e.,

L U (12)

CLP(F)N = c1,p(F)T ]

whereU and L are the 2.8 and 97.5 percentiles, respectively, of theotstrapped

Cl,P(F)M Cl,P(F)M
empirical distributionof the failure probability estimatolf’(F)NT. The percentage relatiweidth

W, of the bootstrapped 95% Confidence Interval (Ql)tree LS failure probability estimator

P(F)" is then computed as

=R B 0 (13)
P(F)

=
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5.2.2 Results
Table 5 reports the values of the performance atdis £ (11) andw,, (13) obtained witiNr = 5,

10, 20, 30, 40 and 50 samples by the LS, LS + UB&nd IS + LHS methods in Application 2 of
Case study 1.

Table 5 here

It is seen that:
» the optimized Line Sampling methods (i.e., both &%l LS + LHS) provide more
accurate and precise failure probability estim#tas the other methods (i.e., both IS and
IS + LHS): for example witiN = 5, the mean percentage err@rsare 16.305, 16.198,
75.041 and 65.771, whereas the percentage 95% @hsiv,, are 98.535, 92.477,

390.881 and 319.972 for the LS, LS + LHS, IS and I3HS methods, respectively;

» the use of LHS in combination with the optimized m®thod does not affect significantly
theaccuracyof the failure probability estimates in this applion: for example witiNr =
5, the mean percentage err@rsare 16.305 and 16.198 for the LS and LS + LHS ouh
respectively; conversely, the combination of LS &ntb increasesthe precisionof the
failure probability estimates: for example with = 5, the percentage 95% CI widtihs,
are 98.535 and 92.477 for the LS and LS + LHS nusthcespectively (a 6% increase in
the precision of the estimate);

» the use of LHS in combination with the IS methsidnificantly increasesoth the
accuracyand theprecisionof the failure probability estimates: for examplggh Nt = 5,
the mean percentage errags are 75.041 and 65.771, whereas the percentage@5%
widths w,, are 390.881 and 319.972 for the IS and IS + LH&aus, respectively.

Summing up, the results obtained confirm the pdggibof achieving accurate and precise
estimates of small failure probabilities by an opged LS with a very low numbédr of samples

drawn in anonlinear(butmonotonoupgcase study.

6 Case study 2: thermal-hydraulic passive system

This case study concerns the natural convectiohngpm a Gas-cooled Fast Reactor (GFR) under
a post-Loss Of Coolant Accident (LOCA) conditiohgtreactor is a 600-MW GFR cooled by

helium flowing through separate channels in aailicarbide matrix core [3].
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A GFR decay heat removal configuration is shownesddtically in Figure 4; in the case of a
LOCA, the long-term heat removal is ensured by ratairculation in a given numbeMoops Of
identical and parallel loops; only one of tNgps loops is reported for clarity of the picture: the
flow path of the cooling helium gas is indicatedtbg black arrows. The loop has been divided into
Nsections = 18 sections for numerical calculation; technicgtails about the geometrical and
structural properties of these sections are nadrteg here for brevity: the interested reader may
refer to [3].

In the present analysis, the average core powdsetaemoved is assumed to be 18.7 MW,
equivalent to about 3% of full reactor power (600M)M to guarantee natural circulation cooling at
this power level, a pressure of 1650 kPa in th@dads required in nominal conditions. Finally, the
secondary side of the heat exchanger (i.e., itenm E2gure 4) is assumed to have a nominal wall

temperature of 90 °C [3].

Figure 4 here

6.1 Uncertainties

Uncertainties affect the modeling of passive systefmere are unexpected events, e.g. the failure
of a component or the variation of the geometrdialensions and material properties, which are
random in nature. This kind of uncertainty, oftemted aleatory [42]-[44], is not considered in this
work. Additionally, there is incomplete knowledge ¢he properties of the system and the
conditions in which the passive phenomena develap, (natural circulation). This kind of
uncertainty, often termed epistemic, affects thedehorepresentation of the passive system
behaviour, in terms of bothmpode) uncertainty in the hypotheses assumed gratafnete)
uncertainty in the values of the parameters ohtloeel [16], [22], [45].

Only epistemic uncertainties are considered in thiskw@&pistemic parameter uncertainties are
associated to the reactor power level, the presauitee loops after the LOCA and the cooler wall
temperature; epistemic model uncertainties arecésa to the correlations used to calculate the
Nusselt numbers and friction factors in the forcedxed and free convection regimes. The

consideration of these uncertainties leads to &imition of a vectox = {xj j= l2,...,9} of nine

uncertain model inputs, assumed described by nodistibutions of known means and standard
deviations (Table 6, [3]).
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Table 6 here

6.2 Failure criteria of the T-H passive system

The passive decay heat removal system of Figuralgl tb provide its safety function when the
temperature of the coolant helium leaving the ddesn 4 in Figure 4) exceeds either 1200 °C in
the hot channel or 850 °C in the average chanheket values are expected to limit the fuel
temperature to levels which prevent excessive sel@ fission gases and high thermal stresses in
the cooler (item 12 in Figure 4) and in the staslsteel cross ducts connecting the reactor vessel

and the cooler (items from 6 to 11 in Figure 4). [Benoting by T. (x) and T2 (x) the

out,core out,core
coolant outlet temperatures in the hot and avecageanels, respectively, the system failure e¥ent

can be written as follows:

The probabilityP(F) of this event is 3.332-10 obtained by standard MCS witiy = 500000

samples drawn.

6.3 Application

The objective of the application is the estimatainthe small functional failure probabilityP(F)
(i.e., P(F) = 3.332-10) of the T-H passive system described in Sectidyy Bneans of LS with a
very small numbeNy of samples; more precisely, valuesMf = 5, 10, 20, 30, 40 and 50 are
considered.

Justified by the results obtained in the previoasecstudy, method D of Section 4.2 (i.e., the one
based on the minimization of the variance of thefaifure probability estimator) is employed to
estimate the important directianfor LS. The ANN regression model used to this pggis the
classical three-layered feed-forward ANN: the numieinputs to the ANN regression model is
equal to 9 (i.e., the number of uncertain input§able 6 of Section 6.1), whereas the number of
outputs is equal to 2 (i.e., the number of systamables of interest, the hot- and average-channel
coolant outlet temperatures, as reported in Se@&i@h The number of nodes in the hidden layer
has been set equal to 4 by trial and error. The Ahddel is built using the sequential, two-step
training algorithm described in Section 4.1: tragisets of size®yain’ = 50 andNyain” = 70,
validation sets of sizdd,5’ = 10 andN,5” = 10 and a test set of sid.s;= 10 have been generated
to train, validate and test the ANN model; thug tibtal number of T-H codeuns performed to
generate the training, validation and test sethisicase iNcogeq = (Nirain” + Nval + Nigrain” + Nva”

+ Nies) =50 + 10 + 70 + 10 +10 = 150.
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The accuracies and precisions of the optimizedUSS+ LHS, IS and IS + LHS methods are also

compared on the basis of the performance indica&o($1) andw,, (13) computed o0& = 10 runs

with Nr = 5, 10, 20, 30, 40 and 50 samples each. Tablep@rts the values obtained for the

performance indicators (11) andw,, (13).

Table 7 here

It is seen that:

» the optimized Line Sampling methods (i.e., both &%l LS + LHS) provide more
accurate and precise functional failure probabilstimates than the other methods
considered (i.e., both IS and IS + LHS): for exaangith Nt = 5, the mean percentage
errors € are 16.045, 15.156, 84.801 and 38.671, whereapeifeentage 95% CI widths
W, are 84.175, 67.387, 386.026 and 212.079 for thellSS+ LHS, IS and IS + LHS

methods, respectively.

» the use of LHS in combination with the optimized b®thod in this casslightly
increasegheaccuracyof the functional failure probability estimatesr Example witiNy
= 10, the mean percentage err@rsare 12.547 and 7.378 for the LS and LS + LHS
methods, respectively; moreover, the combinatioh®fand LHS in this casstrongly
increaseghe precisionof the failure probability estimates: for exampligh Nt = 10, the

percentage 95% CI widths,, are 84.175 and 67.387 for the LS and LS + LHS pudh

respectively (a 20% increase in the precision efdstimate).

* the use of LHS in combination with the IS methsidnificantly increasedoth the
accuracyand theprecision of the functional failure probability estimatesr fexample
with Nt = 5, the mean percentage err@rsaare 84.801 and 38.671, whereas the percentage

95% CI widths w,, are 386.026 and 212.079 for the IS and IS + LHShaus,

respectively;

* by way of example, the 95% CI associated to a stahtYCS-based estimate B{F)
with Ny = 100 is [0, 0.0296] and the corresponding peemgnt95% CI widthwg, is
8793.8: this value is abotwo orders of magnitudarger (and conversely the precision is
about two orders of magnitude lower) than that poed by LS withNt = 5 samples: in
other words, the precision of the optimized LS rodtis two order of magnitude larger

than that of standard MCS even using a numberropkess 20 times lower.
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In summary, the results obtained confirm the pnesibnding regarding the possibility of achieving
accurate and precise estimates of small failurbabiities by an optimized LS method with a very
low numberNr of samples drawn; however, a much stronger comriusan be drawn from this
case study, regarding the actual feasibility oflipfion of the method to theealistic, nonlinear

andnon-monotonousases of practical interest in the reliability lgse of passive systems.

7 Discussion

In this paper, the Line Sampling (LS) method hasnbeonsidered for improving the efficiency of
Monte Carlo sampling in the estimation of the fumacal failure probability of a T-H passive
system. A system designed to provide the safetgtiom of natural convection cooling in a Gas-
cooled Fast Reactor (GFR) after a Loss of Coolartident (LOCA) has been taken as reference
case study.
Two relevant issues for the practical applicatibthe LS method have been addressed:

1. the determination of the important direction for;LS

2. the reduction of the overall computational costoasged to the LS method in the

estimation of the small functional failure probéi®k characteristic of passive systems.

Concerning the first issue, the main contributiohshe work presented and its related findings are
(Case study 1):

» from a critical comparison of the methods currerglailable in the literature for the

estimation of the LS important direction, it tuims that:
= the technique based on Markov Chain Monte Carlo NMOE simulation
producesmore accurateand precise failure probability estimates than those
provided by the design point and gradient methods;
= the technique based on the identification of th&@giepoint perform$&etterthan
the one based on gradient estimation.

« an Artificial Neural Network (ANN) regression modehs been built using sequential
two-step training algorithm on areduced-sizeset of examples of the input/output
nonlinear relationships underlying the originalteys model code; then, the ANN model
has been used as a fast-running surrogate of tigenar system model code in the
determination of the LS important direction:

= the accuracy and precision of the estimates prdvijethe ANN-based method
have been shown to lmmparableto those produced by running the original
system code: however, they have been obtainedraich lower computational
effort;
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= conversely, when bbow number of system model code simulations needg & b
priori imposeddue to computational time limitations (which ietbase of the
long-running system model codes, typical of nuckeafiety), the accuracy and
precision of the failure probability estimates pdmd by the ANN-based method
have been shown to m®nsistently highethan those produced by running the
original system model code.

a new technique has been proposed based on thmization of the variance of the LS
failure probability estimator; since the proposedtimod relies on the definition of the
optimal LS important direction, it produces more accueatd precise failure probability
estimates than those provided by all the technigiidiserature, as clearly shown by the

numerical results obtained.

Concerning the second issue, the main contributddribe work presented and the related findings

are (Case studies 1 and 2):

the performance of the LS method has been assess$ieel estimation of a small failure
probability (i.e., of the order of 1 with areducednumber of samples drawn (i.e.,
ranging from 5 to 50). The results have demongtrttat accurate and precise estimates
can be obtained even reducing the number of sanmpleslow one hundred and even in
realistic, nonlinearandnon-monotonousase studies;

the optimized Line Sampling method (i.e., both Ifsl $he combination of LS and LHS)
provide more accurate and precise failure prolgbéistimates than both the IS and the
combination of IS and LHS methods;

the use of LHS in combination with the optimized b#thodslightly increaseshe
accuracyof the failure probability estimates astfonglyincreasesthe precisionof the
failure probability estimates;

the use of LHS in combination with the IS methsidnificantly increasesoth the

accuracyand theprecisionof the failure probability estimates.

8 Conclusions

The findings of the work presented (summarizechgrevious Section 7) suggest the adoption of

the following methodology for the accurate and @m®cestimation of the (typically small)

functional failure probability of T-H passive syste (modelled byong-running nonlinear and

non-monotonous-H codes):
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1. build an Artificial Neural Network (ANN) regressiomodel using asequential two-step
training algorithm on aeduced(e.g., around one hundred) number of exampleshef t
input/output nonlinear relationships underlying trginal system model code;

2. use the ANN model as a fast-running surrogate efdahginal system model code in the
determination of the LS important direction; foistipurpose, the technique proposed in this
paper (based on thminimizationof the variance of the LS failure probability estitor by
means of Genetic Algorithms) is strongly suggesssace it relies on the definition of the
optimal LS important direction, it produces more accurae precise failure probability
estimates than those provided by all the technigtiégerature;

3. estimate the functional failure probability of tAHeH passive system by means of Line
Sampling with asmallnumber of samples (e.g., few tens); the accuradypaecision of the
estimates can be enhanced by combining Line Sagwditlhh Latin Hypercube Sampling.

The outstanding performance of thytimizedLine Sampling method presented in this paperén th
estimation of very small failure probabilities makie a rather attractive tool for passive system
functional failure analyses and possibly one waxthsidering for extended adoption in full scale
PRA applications, provided that the numerous péssiiscident scenarios and outcomes can be

handled computationally in an efficient way.
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Figure 1. Methods for estimating the Line Sampimgortant unit vector. Top, left: normalized
“center of mass” of the failure domain F in the steard normal space [25]; top, right:
direction of the design point of the problem in si@ndard normal space [27], [36]; bottom,
left and right: normalized gradient of the P§{Q evaluated at a selected po#fit(e.g., the
nominal point) in the standard normal space [26]
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)((Zﬁaa study 1: Structural material subject to creep and fatigue - Application 1: NT = 10000
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TABLES

Methods of literature

Concept Evaluations to be performed Computational tools adpted
“Center of mass” oF - Evaluation of the performance functigi@) during MCMC to verify ifd belongs to the ~ Original system model code
(Section 4.1.1) failure domairf, i.e., ifgy(8) > 0 ANN
- Minimization of the distanced||, in (4) GA
Design point —
(Section 4.1.2) - Evaluation of the performance functigg(d) to verify if @ is a feasible solution to (4), Original system model code
i.e., ifd belongs to the failure surfagg(d) = 0 ANN
Gradient - Evaluation of the performance functigi(®) to estimate the gradieritg, (6) (5) by Original system model code
(Section 4.1.3) numerical differentiation ANN

Method proposed in this paper

Concept Function to be performed Computational tools adoptd
- Minimization of the variancelels(F)NTJ of the LS failure probability estimatdf’(F)NT GA
- Calculation of the variance” [IS(F)NT] of the LS failure probability estimatd%(F)NT LS algorithm

Variance minimization

) - Evaluation of the performance functigg(@) for the estimation of the failure probability
(Section 4.2)

- - ANN
P(F)NT and its varianceUZ[P(F)NT] during the LS simulation

- Evaluation of the performance functigi() to verify if 8 is a feasible solution to (6), ANN
i.e., if@ belongs to the failure domakh(wheregy(8) > 0)

Table 1. Summary of the methods employed in this fwpestimating the LS important directian
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Name Shape Meanu Standard deviation,e (% of u)

Ng, X1 Log-Normal 5490 20%
N;, X Log-Normal 17100 20%
N, X3 Log-Normal 549 20%
n, X,  Log-Normal 4000 20%
61, X5 Normal 0.42 20%
65, X Normal 6 20%

Table 2. Shapes and parameters (i.e., meand standard deviatios) of the probability
distribution functions associated to the uncertaamiables {x j = 1, 2, ..., 6}of the probabilistic
model (7) for creep and fatigue in structural méaaés [2]
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Experimental settings considered for the determinabn of the important direction a

Setting number Method Model used to evaluate the Number of system Number of
9 used to estimatex system performance functiongy(-) performance function evaluations,N, system model code runNeode.q
MCMC 10000 10000
B Design point o < 10000* < 10000*
1 Original system model code
) 10000 10000
C Gradient i i
Not available** Not available**
A MCMC ANN 10000 Ntrain + Nvell + Ntrain” + NvaI” + Ntesa =190
2 B DeSign point (Ntrain = 50;Nval = 10; < 10000* q\ltrain + Nvell + Ntrain” + NvaI” + Ntesa =190
C Gradient N'(rain”: 100; NvaI”: 20; 10000 Ntrain + Nvell + Ntrain” + NvaI” + Ntesa =190
D Variance minimization Niest= 10) Not available** Nirain + Nvar + Niain” + Nua”” + Nees) = 190
A MCMC (Ntrain + Nvell + Ntrain” + NvaI” + Ntesa =190 Ntrain + Nvell + Ntrain” + NvaI” + Ntesa =190
3 B DeSign point Original SyStem model code < (Ntrain + Nval + N'(rain” + NvaI” + Ntesa = 190* < (Ntrain + Nval + N'(rain” + NvaI” + Ntesa =190*
C Gradient (Ntrain + Nvell + Ntrain” + NvaI” + Ntesa =190 (Ntrain + Nvell + Ntrain” + NvaI” + Ntesa =190

Table 3. Different experimental settings 1, 2 arabBsidered for Application 1 of Case study 1. ffinee settings differ by i) the method for
determining the important directiar ii) the model for evaluating the system perfore@function g(-); iii) the number N of system performance
evaluations and iv) the total numbegN, of actual runs of the original system model coelguired by the whole process of determination ef th

LS important directior

* The numbemN, of system performance evaluations depends orpéedsof convergence of the GA optimization algonith
** The numberN, of system performance evaluations depends orptedsof convergence of the GA optimization algonidnd on the numb&é: of samples drawn in step 2.
of Section 4.2
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Case study 1: Structural material subject to cree@nd fatigue - Application 1: Nt = 10000

Setting 1

Method g [%0] W [%]

A 0.421 2.222

B 0.702 2.282

C 1.965 7.323
Setting 2

Method g [%0] W [%]

A 0.211 2.723

B 0.351 2.516

C 0.772 7.199

D 0.070 2.204
Setting 3

Method g [%] Wey [%0]

A 0.070 6.697

B 0.632 5.345

C 2.175 7.502

Table 4. Values of the performance indicatoesnd v, obtained with N= 10000 samples in

settings 1, 2 and 3 (Table 3) of Application 1 k€ study 1
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Case study 1: Structural material subject to cree@nd fatigue - Application 2

LS

Sample sizeN+ g [%] w,, [%]
5 16.305 98.535
10 11.506 68.619
20 8.663 52.973
30 7.130 39.595
40 6.373 34.321
50 5.654 29.361

LS + LHS

Sample sizeN+t g [%] w,, [%]
5 16.198 92.477
10 11.504 61.820
20 8.349 48.107
30 7.111 37.655
40 6.084 32.094
50 5.266 27.393

IS

Sample sizeNt ¢ [%] W, [%]
5 75.041 390.88
10 55.433 285.60
20 39.523 201.56
30 32.014 160.43
40 27.349 140.39
50 25.537 135.03

IS + LHS

Sample sizeNt z [%] W, [%]
5 65.771 319.97
10 33.745 219.21
20 25.321 161.70
30 22.437 150.84
40 19.826 105.93
50 17.593 90.315

Table 5. Values of the performance indicaterg11) andw,, (13) obtained with N=5, 10, 20,

30, 40 and 50 samples by the LS, LS + LHS, IS @&nrdlUHS methods in Application 2 of Case
study 1
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Name Mean,u Standard deviation,s (% of u)

Parameter Power (MW),x, 18.7 1%

_ Pressure (kPa, 1650 7.5%
uncertainty Cooler wall temperature (°C); 90 5%
Nusselt number in forced convectiog, 1 5%

Nusselt number in mixed convectiog, 1 15%

Model Nusselt number in free convectiog, 1 7.5%
uncertainty Friction factor in forced convectiory 1 1%
Friction factor in mixed convectiomg 1 10%

Friction factor in free convectiony 1 1.5%

Table 6. Epistemic uncertainties considered foraé@@-MW GFR passive decay heat removal

system of Figure 4 [3]

Case study 2 — Thermal-hydraulic passive system

LS

Sample sizeN+ z [%] w, [%]
5 16.045 84.175
10 12.547 58.292
20 8.313 39.095
30 7.459 34.832
40 5.466 27.728
50 3.848 19.324

LS + LHS

Sample sizeNy £ [%] w, [%]
5 15.156 67.387
10 7.378 31.264
20 6.179 26.682
30 5.486 26.419
40 3.092 16.345
50 2.373 13.590

IS

Sample sizeNy g [%] w, [%]
5 84.801 386.026
10 45,982 223.828
20 36.499 154,531
30 33.846 115.521
40 21.790 93.308
50 18.281 85.22

IS + LHS

Sample sizeN+ ¢ [%] w, [%]
5 38.671 212.079
10 30.174 122.647
20 22.943 106.231
30 21.195 100.854
40 18.461 73.522
50 16.916 71.069

Table 7. Values of the performance indicatersind w,, obtained with N=5, 10, 20, 30, 40 and

50 samples by the LS, LS + LHS, IS and IS + LH®a@dstin Case study 2
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