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Abstract 
The quantitative reliability assessment of a thermal-hydraulic (T-H) passive safety system of a 

nuclear power plant can be obtained by i) Monte Carlo (MC) sampling the uncertainties of the 

system model and parameters, ii) computing, for each sample, the system response by a mechanistic 

T-H code and iii) comparing the system response with pre-established safety thresholds, which 

define the success or failure of the safety function. The computational effort involved can be 

prohibitive because of the large number of (typically long) T-H code simulations that must be 

performed (one for each sample) for the statistical estimation of the probability of success or 

failure. 

In this work, Line Sampling (LS) is adopted for efficient MC sampling. In the LS method, an 

“important direction” pointing towards the failure domain of interest is determined and a number 

of conditional one-dimensional problems are solved along such direction; this allows for a 

significant reduction of the variance of the failure probability estimator, with respect, for example, 

to standard random sampling. 

Two issues are still open with respect to LS: first, the method relies on the determination of the 

“important direction”, which requires additional runs of the T-H code; second, although the 

method has been shown to improve the computational efficiency by reducing the variance of the 

failure probability estimator, no evidence has been given yet that accurate and precise failure 

probability estimates can be obtained with a number of samples reduced to below a few hundreds, 

which may be required in case of long-running models. 

The work presented in this paper addresses the first issue by i) quantitatively comparing the 

efficiency of the methods proposed in the literature to determine the LS important direction; ii) 

employing Artificial Neural Network (ANN) regression models as fast-running surrogates of the 

original, long-running T-H code to reduce the computational cost associated to the determination 

of the LS “important direction” and iii) proposing a new technique for identifying the LS 
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“important direction”, based on the Genetic Algorithm (GA) minimization of the variance of the LS 

failure probability estimator. 

In addition, this work addresses the second issue by assessing the performance of the LS method in 

estimating small failure probabilities with a reduced (e.g., lower than one hundred) number of 

samples. 

The issues are investigated within two case studies: the first one deals with the estimation of the 

failure probability of a nonlinear structural system subject to creep and fatigue damages [1], [2]; 

the second one regards a passive decay heat removal system in a Gas-cooled Fast Reactor (GFR) 

of literature [3]. 

 

Keywords: Functional failure probability, passive system, Line Sampling, important direction, 

variance minimization, Artificial Neural Network, Genetic Algorithm, long-running code, 

computational cost. 

 

1 Introduction 

Modern nuclear reactor concepts make use of passive safety features [4], which do not need 

external input (especially energy) to operate [5] and, thus, are expected to improve the safety of 

nuclear power plants because of simplicity and reduction of both human interactions and hardware 

failures [6]-[8]. 

However, the uncertainties involved in the modelling and functioning of passive systems are usually 

larger than for active systems. This is due to: i) the random nature of several of the physical 

phenomena involved in the functioning of the system (aleatory uncertainty); ii) the incomplete 

knowledge on the physics of some of these phenomena (epistemic uncertainty) [9]. 

Due to these uncertainties, the physical phenomena involved in the passive system functioning (e.g., 

natural circulation) might develop in such a way to lead the system to fail its function: actually, 

deviations in the natural forces and in the conditions of the underlying physical principles from the 

expected ones can impair the function of the system itself [10]. 

In this view, a passive system fails to perform its function when deviations from its expected 

behavior lead the load imposed on the system to exceed its capacity [11]. In the reliability analysis 

of such functional failure behavior, the passive system is modeled by a detailed, mechanistic T-H 

system code and the probability of failing to perform the required function is estimated based on a 

Monte Carlo (MC) sample of code runs which propagate the epistemic (state-of-knowledge) 

uncertainties in the model and numerical values of its parameters/variables [3], [4], [12]-[19]. 
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In practice, the probability of functional failure of a passive system is very small (e.g., of the order 

of 10-4 or less), so that a large number of samples is necessary for acceptable estimation accuracy 

[20]. Given that the time required for each run of the detailed, mechanistic T-H system model code 

can be of the order of several hours [4], the MC simulation-based procedure typically requires 

considerable computational efforts. 

 

To reduce the computational burden of MC simulation-based approaches to reliability and risk 

analysis, efficient sampling techniques like Importance Sampling (IS) [21], Stratified Sampling [22] 

and Latin Hypercube Sampling (LHS) [23] have been widely used [24]. 

In this paper, we consider an advanced simulation method called Line Sampling (LS), which has 

been recently introduced in structural reliability analysis [25]. Lines, instead of random points, are 

used to probe the failure domain [26]; an “important direction” pointing towards the failure domain 

of interest is first determined and a number of conditional, one-dimensional problems are then 

solved along such direction [26]. The approach has been shown capable of substantially improving 

computational efficiency in a wide range of reliability applications [2], [19], [25]-[29]. If the 

boundary profile of the failure domain of interest is not too irregular and the “important direction” 

is almost perpendicular to it, the variance of the failure probability estimator could ideally be 

reduced to zero [25]. 

Two main issues of the LS method are still under study for its practical application in reliability and 

risk analysis: 

1. LS relies on the determination of the important direction, which requires additional runs of 

the T-H model, with an increase of the computational cost. 

2. LS has been shown to significantly reduce the variance of the failure probability estimator, 

but this must be achieved with a small number of samples (and, thus, of T-H model 

evaluations; say, few tens or hundreds depending on the application), for practical cases in 

which the computer codes require several hours to run a single simulation [4]. 

 

The present paper addresses the first issue above by: 

•  comparing the efficiency of a number of methods proposed in the literature to identify the 

important direction; 

•  employing Artificial Neural Network (ANN) regression models [30] as fast-running 

surrogates of the long-running T-H code, to reduce the computational cost associated to the 

identification of the LS important direction; 
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•  proposing a new technique to determine the LS important direction, based on the 

minimization of the variance of the LS failure probability estimator. 

With respect to the second issue above, this paper aims at: 

•  assessing the performance of the LS method in the estimation of small failure probabilities 

(e.g., of the order of 10-4) with a reduced number of samples (e.g., below 100). 

 

The novelties with respect to previous work performed by the authors on these issues [31] are the 

following: 

•  Genetic Algorithms (GAs) are employed as optimization algorithms, whereas in the 

previous work an algorithm based on Sequential Quadratic Programming-SQP was used; 

•  the ANN regression models are here trained according to a sequential, two-step algorithm 

(based on error back-propagation) in order to increase the accuracy of the ANN model 

estimates in proximity of the failure domain of interest; on the contrary, in the previous 

work a simple one-step algorithm was used; 

•  the performance of the LS method in the estimation of small failure probabilities (e.g., of the 

order of 10-4) is assessed with a very small number of samples drawn (of the order of 5–50); 

instead, in the previous work the performance of the LS method was assessed with a number 

of samples of the order of one-two hundreds; 

•  the following probabilistic simulation methods are compared in the estimation of small 

failure probabilities on the basis of a very small number of samples drawn: i) the optimized 

LS method proposed in this paper, ii) a combination of the optimized LS method and Latin 

Hypercube Sampling (LHS), also developed in this paper, iii) Importance Sampling (IS) 

[21] and iv) a combination of IS and LHS [32]; in the previous work, no comparison with 

other simulation methods was performed. 

 

The investigations are carried out with regards to two case studies. The first one (not considered in 

the previous paper [31]) deals with the estimation of the failure probability of a nonlinear structural 

system subject to creep and fatigue damages [1], [2]: thanks to its simplicity, it is here used as a toy-

problem to extensively test the proposed methods, with respect to both issues 1. and 2. above. The 

second one (considered also in the previous paper [31]) deals with the reliability analysis of a 

passive, natural convection-based decay heat removal system of a Gas-cooled Fast Reactor (GFR) 

[3]: on the basis of the investigations performed in the first case study, only issue 2. above is tackled 

in the second case study. 
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The remainder of the paper is organized as follows. In Section 2, the reliability analysis of T-H 

passive systems is framed in terms of the concepts of functional failure analysis. In Section 3, a 

general presentation of the LS procedure is provided. In Section 4, a detailed description of the 

techniques employed in this work to estimate the important direction for LS is given. In Sections 5 

and 6, the structural case study of literature and the case study concerning the passive cooling of a 

GFR are respectively presented, together with the corresponding results. Finally, a critical 

discussion of the results obtained is proposed in Section 7 and some conclusions are drawn in the 

last Section. 

2 Functional failure analysis of T-H passive systems 

The basic steps of a functional failure analysis of a T-H passive system are [33]: 

1. Detailed modeling of the system response by means of a deterministic, best-estimate 

(typically long-running) T-H code. 

2. Identification of the parameters/variables, models and correlations (i.e., the inputs to the T-H 

code) which contribute to the uncertainty in the results (i.e., the outputs) of the best-estimate 

T-H calculations. 

3. Propagation of the uncertainties through the deterministic, long-running T-H code in order to 

estimate the functional failure probability P(F) of the passive system. Formally, let x  = {x1, 

x2, …, xj, …, xn} be the vector of the relevant system uncertain parameters, Y( x ) be a scalar 

function indicating the performance of the T-H passive system (e.g., the fuel peak cladding 

temperature during an accidental transient) and αY a threshold value (imposed e.g. by the 

regulatory authorities) defining the criterion of loss of system functionality. For illustrating 

purposes, let us assume that the passive system fails if Y( x ) > αY; equivalently, introducing 

a variable called Performance Function (PF) as ( ) Yx Yg α−= xx)( , failure occurs if 

0)( >xxg . The probability P(F) of system functional failure can then be expressed by the 

multidimensional integral: 

( ) ( )∫∫ ∫= xxx dqIFP F )(...  (1) 

where ( )⋅q  is the joint Probability Density Function (PDF) representing the uncertainty in 

the parameters x , F is the failure region (where gx(·) > 0) and IF(·) is an indicator function 

such that IF(x) = 1, if x ∈  F and IF(x) = 0, otherwise. 

The evaluation of integral (1) above entails multiple (e.g., many thousands) evaluations of the T-H 

code for different sampled combinations of system inputs; if the running time for each T-H code 

simulation takes several hours (which is often the case for T-H nuclear passive systems), the 
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associated computing cost is prohibitive. In this paper, the computational issue is addressed by 

resorting to the Line Sampling (LS) technique [25], whose main concepts are given in the following 

Section. 

3 A synthetic illustration of the Line Sampling technique 

Line Sampling (LS) is a simulation method for efficiently computing small failure probabilities. 

The underlying idea is to employ lines instead of random points in order to probe the failure domain 

of the system analyzed [25], [26]. 

In extreme synthesis, the computational steps of the algorithm are [26], [28]: 

1. From the original multidimensional joint probability density function ( ) ),0[: ∞→ℜ⋅ nq , 

sample NT vectors { }T
k Nk ...,,2,1: =x , with { }k

n
k
j

kkk xxxx ...,,...,,, 21=x . 

2. Transform the NT sample vectors { }T
k Nk ...,,2,1: =x  defined in the original (i.e., physical) 

space into NT samples { }T
k Nk ...,,2,1: =θ  defined in the standard normal space; also the PFs 

( )⋅xg  defined in the physical space have to be transformed into ( )⋅θg  in the standard normal 

space [34]. 

3. In the standard normal space, determine the unit important direction 

{ }nj αααα ...,,...,,, 21=α T (hereafter also called “important unit vector” or “important 

direction”) pointing towards the failure domain F of interest (see Section 4 below). 

4. Reduce the problem of computing the high-dimensional failure probability integral (1) to a 

number of conditional one-dimensional problems, solved along the “important direction” α 

in the standard normal space: in particular, estimate NT conditional “one-dimensional” 

failure probabilities ( ){ }T
k NkFP ...,,2,1:ˆ ,1 =D , corresponding to each one of the standard 

normal samples { }T
k Nk ...,,2,1: =θ  obtained in step 2. Notice that 2·NT or 3·NT system 

performance analyses (i.e., runs of the T-H model code) have to be carried out to calculate 

each of the NT conditional one-dimensional failure probability estimates 

( ){ }T
k NkFP ...,,2,1:ˆ ,1 =D  (see [26] and [28] for details). 

5. Compute the unbiased estimator ( ) TNFP̂  for the failure probability ( )FP  and its variance 

( )[ ]TNFP̂2σ  as: 

( ) ( )∑
=

⋅=
T

T

N

k

k
T

N FPNFP
1

,1ˆ1ˆ D , (2) 

( )[ ]TNFP̂2σ  = ( ) ( ) ( )( )∑
=

−⋅−
T

T

N

k

NkD
TT FPFPNN

1

2,1 ˆˆ11 . (3) 
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The LS method here outlined can significantly reduce the variance (3) of the estimator (2) of the 

failure probability integral (1) [25]; however, its efficiency depends on the determination of the 

important direction α (step 3. above): the following Section delves further into this issue. 

4 Methods for the determination of the important direction α 

In what follows, the methods used in this work to determine the LS important direction α are 

presented in detail: in Section 4.1, the techniques proposed in the literature are critically reviewed; 

in Section 4.2, a new method based on the minimization of the variance of the LS failure probability 

estimator is proposed. 

4.1 Literature methods 

4.1.1 Normalized “center of mass” of the failure domain F 

The important unit vector α can be computed as the normalized “center of mass” of the failure 

domain F of interest [25]. A point 0
θ  is taken in the failure domain F: this can be done by 

engineering judgment when possible. Subsequently, 0
θ  is used as the initial point of a Markov 

chain which lies entirely in the failure domain F. For that purpose, a Metropolis-Hastings algorithm 

is employed to generate a sequence of Ns points { }s
u Nu ...,,2,1: =θ  lying in the failure domain F 

[35]. The unit vectors 
2

uu
θθ , u = 1, 2, …, Ns, are then averaged in order to obtain the LS 

important unit vector as ∑
=

⋅=
sN

u

uu

sN 1
2

1
θθα  (Figure 1, top, left). This direction provides a good 

“map” of the important regions of the failure domain (at least as the sample size Ns is large); on the 

other hand, the procedure implies Ns additional system analyses by the T-H model, which may 

substantially increase the computational cost associated to the simulation method. 

4.1.2 Direction of the design point in the standard normal space 

A plausible selection of α could be the direction of the “design point” in the standard normal space 

[27], [36]. According to a geometrical interpretation, the “design point” is defined as the point *
θ  

on the limit state surface ( ) 0gθ =θ  in the standard normal space, which is closest to the origin 

(Figure 1, top, right). It can be computed by solving the following constrained nonlinear 

minimization problem: 

( ) { }* *

22 0
Find : min

gθ =
=

θ
θ θ θ  (4) 

where 
2

⋅  denotes the usual Euclidean measure of a vector. 
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Then, the unit important vector α can be easily obtained by normalizing *
θ , i.e., * *

2
=α θ θ . 

In this work, Genetic Algorithms (GAs) [37], [38] are used to solve the constrained nonlinear 

minimization problem (4). In extreme synthesis, the main properties of GAs are that the 

optimization search is conducted i) using a (possibly) large population of multiple solution points or 

candidates, ii) using operations inspired by the evolution of species, such as breeding and genetic 

mutation, iii) using probabilistic operations and iv) using information on the objective or search 

function and not on its derivatives. With regards to their performance, it is acknowledged that GAs 

take a more global view of the search space than many other optimization methods. The main 

advantages are i) fast convergence to near global optimum, ii) superior global searching capability 

in complicated search spaces and iii) applicability even when gradient information is not readily 

achievable [38]. A thorough descriptions of the GA computational flow is not reported here for 

brevity sake: for further details, the interested reader may refer to the cited references and the 

copious literature in the field. 

Notice that checking the feasibility of a candidate solution θ  to (4) requires the evaluation of the PF 

( )gθ ⋅  at θ , which entails running the numerical T-H model code simulating the system. As a 

consequence, the computational cost associated with the calculation of the design point can be quite 

high, in particular if long-running numerical codes are used to simulate the response of the system 

to its uncertain input parameters [27], as it is the case in the functional failure analysis of T-H 

passive systems. 

4.1.3 Gradient of the performance function in the standard normal space 

In [26], the direction of α is taken as the normalized gradient of the PF ( )gθ ⋅  in the standard normal 

space. Since the unit vector α points towards the failure domain F, it can be used to draw 

information about the relative importance of the uncertain parameters { }njj ...,,2,1: =θ  with 

respect to the failure probability P(F): the more relevant an uncertain variable is in determining the 

failure of the system, the larger the corresponding component of the unit vector α will be [26]. Such 

quantitative information is obtained from the gradient of the performance function ( )θθg  in the 

standard normal space, ( )θθg∇ : 

( ) ( ) ( ) ( ) ( )
T

nj

gggg
g













∂
∂

∂
∂

∂
∂

∂
∂=∇

θθθθ
θθθθ

θ
θθθθ

θ ......
21

 (5) 

The gradient (5) measures the relative importance of a particular uncertain variable with respect to 

the failure probability P(F): the larger the (absolute) value of a component of (5), the greater the 
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“impact” of the corresponding uncertain variable on the performance function ( )θθg  in the standard 

normal space. Thus, it is reasonable to identify the LS important direction with the direction of the 

gradient (5) and compute the corresponding unit vector α as the normalized gradient of the 

performance function ( )⋅θg  in the standard normal space, i.e. ( ) ( )
2

θθα θθ gg ∇∇=  [26]. 

For clarity sake, Figure 1 bottom shows this procedure with reference to a two-dimensional 

problem: the important unit vector α = {α1, α2} associated to the two-dimensional performance 

function ( )21,θθθg  is computed at a proper (selected) point { }0 0 0
1 2,θ θ=θ

T (e.g., the nominal point 

of the system under analysis). Notice that since component 
( ) ( ) 0

0

1
2

1

g
gθ

θα
θ

∂
= ∇

∂ θ

θ

θ
θ  (Figure 1 

bottom, left) is significantly larger than component 
( ) ( ) 0

0

2
2

2

g
gθ

θα
θ

∂
= ∇

∂ θ

θ

θ
θ  (Figure 1 bottom, 

right), uncertain variable θ1 will be far more important than θ2 in leading the system to failure. 

Finally, notice that as the PF ( )θθg  is known only implicitly through the response of a numerical 

code, for a given vector { }T
nj θθθθ ...,,...,,, 21=θ  at least n system performance analyses are required 

to determine accurately the gradient (5) at a given point of the PF ( )⋅θg , e.g., by numerical 

differentiation [39], [40]. 

 

Figure 1 here 

 

All the techniques presented require additional runs of the T-H model code, with increase of the 

overall computational cost associated to the LS method. To improve on this issue, the substitution 

of the long-running T-H model code by a fast-running surrogate regression model is here 

investigated. The regression model is constructed on the basis of a limited-size set of data 

representing examples of the input/output nonlinear relationships underlying the original T-H code. 

Once built, the model can be used for performing, in an acceptable computational time, the 

evaluations of the system PF gθ(·) needed for an accurate estimation of the LS important direction α. 

In this work, a three-layered feed-forward Artificial Neural Network (ANN) regression model is 

considered. In extreme synthesis, ANNs are computing devices inspired by the function of the nerve 

cells in the brain [30]. They are composed of many parallel computing units (called neurons or 

nodes) interconnected by weighed connections (called synapses). Each of these computing units 

performs a few simple operations and communicates the results to its neighbouring units. From a 

mathematical viewpoint, ANNs consist of a set of nonlinear (e.g., sigmoidal) basis functions with 
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adaptable parameters that are adjusted by a process of training (on different input/output data 

examples), i.e., an iterative process of regression error minimization [41]. The details about ANN 

regression models are not reported here for brevity: for further details, the interested reader may 

refer to the cited references and the copious literature in the field. 

The particular type of ANN employed in this paper is the classical three-layered feed-forward 

ANN; in order to improve the accuracy in the approximation of the system PF gθ(·) (needed for an 

accurate estimation of the LS important direction α), the employed ANN models are trained by a 

properly devised sequential, two-step algorithm based on error back-propagation. In extreme 

synthesis, a first-step ANN regression model is built using a set '
trainD  of input/output data examples 

of size '
trainN ; further, a validation data set '

valD  (different from the training set) of size Nval’  is used 

to monitor the accuracy of the first-step ANN model during the training procedure in order to avoid 

overfitting of the training data [41]. The resulting ANN model is used (instead of the original, long-

running system model code) to provide an approximation to the design point of the problem 

(Section 4.1.2): this is meant to provide an approximate, rough indication of the real location of the 

failure domain F of interest. Subsequently, new training and validation data sets ''
trainD  and ''

valD  of 

sizes ''
trainN  and ''

valN , respectively, are randomly generated centred on the approximate design point 

previously identified: a second-step (i.e., definitive) ANN model is then constructed on these newly 

generated training and validation data sets. This should result in an ANN regression model which is 

more accurate in proximity of the failure domain F of interest, thus providing reliable estimates of 

the system PF gθ(·) for the identification of the LS important direction α. 

4.2 Minimization of the variance of the LS failure probability estimator 

The optimal important direction opt
α  for Line Sampling can be defined as the one minimizing the 

variance ( )[ ]TNFP̂2σ  (3) of the LS failure probability estimator ( ) TNFP̂  (2). Notice that opt
α  can be 

expressed as the normalized version of a proper vector opt
θ  in the standard normal space, i.e., 

2

optoptopt
θθα = . Thus, in order to search for a physically meaningful important unit vector opt

α  

(i.e., a vector that optimally points towards the failure domain F of interest), opt
θ  should belong to 

the failure domain F of interest, i.e. Fopt ∈θ  or, equivalently, ( ) 0>optg θθ . 

In mathematical terms, the optimal LS important direction opt
α  is obtained by solving the following 

nonlinear constrained minimization problem: 

( )[ ] ( )[ ]{ }
( )( ).0,i.e.tosubject

ˆminˆ:Find 22

2
2

>∈

==
=

θθ

θθα
θθα

θ

σσ

gF

FPFP TT NNoptoptopt

 (6) 
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The conceptual steps of the procedure for solving (6) are (Figure 2): 

1. An optimization algorithm proposes a candidate solution 
2

θθα =  to (6): as previously 

mentioned, in this work Genetic Algorithms (GAs) are employed. 

2. The LS failure probability estimator ( ) TNFP̂  (2) and the associated variance ( )[ ]TNFP̂2σ  (3) 

are calculated using the unit vector 
2

θθα =  proposed as important direction in step 1. 

above; notice that 2·NT or 3·NT system performance analyses (i.e., runs of the system model 

code) have to be carried out in this phase (see steps 4. and 5. in Section 3). 

3. The variance ( )[ ]TNFP̂2σ  obtained in step 2. above is the objective function to be 

minimized; it measures the quality of the candidate solution 
2

θθα =  proposed by the 

optimization algorithm in step 1. above. 

4. The feasibility of the proposed solution 
2

θθα =  is checked by evaluating the system PF 

gθ(·) (i.e., by running the system model code) in correspondence of θ: if the proposed 

solution 
2

θθα =  is not feasible (i.e., if F∉θ  or, equivalently, ( ) 0≤θθg ), it is penalized 

by increasing the value of the corresponding objective function ( )[ ]TNFP̂2σ  through an 

additive factor [37]. 

5. Steps 1. − 4. are repeated until a predefined stopping criterion is met and the optimization 

algorithm identifies the optimal unit vector 
2

optoptopt
θθα = . 

 

Notice that i) the optimization search requires the iterative evaluation of hundreds or thousands of 

possible solutions 
2

θθα =  to (6) and ii) 2·NT or 3·NT system performance analyses (i.e., runs of 

the system model code) have to be carried out to calculate the objective function ( )[ ]TNFP̂2σ  for 

each proposed solution; as a consequence, the computational effort associated to this technique 

would be absolutely prohibitive with a system model code requiring hours or even minutes to run a 

single simulation. Hence, it is unavoidable, for practical applicability, to resort to a regression 

model (ANN-based, in this work) as a fast-running approximator of the original system model for 

performing the calculations in steps 2. and 4. above, to make the computational cost acceptable. 

 

Figure 2 here 

 

The characteristics of the methods described in Sections 4.1 and 4.2 are summarized in Table 1, 

with the specification of the computational tools employed for their implementation. 
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Table 1 here 

5 Case study 1: structural system of literature 

The first case study deals with a probabilistic model for the reliability analysis of creep and fatigue 

failure phenomena in structural materials: the model was first proposed in [1] and then employed 

also in [2]. 

According to the above mentioned references, the nonlinear Performance Function (PF) gx(·) of a 

structural material subject to creep and fatigue damages can be expressed as 

( ) ( )

( ) ( ) f
DD

fcfcx

xx

De
e

e
ennNNg

xxxxxxgg

cc −−
−

−+−==

=

−
− 1

1

2
2,,,,,

,,,,,

2

2

1

1
21

654321

θ
θ

θ
θθθ

x
 (7) 

where Dc = nc/Nc and Df = nf/Nf are the creep and fatigue damages, respectively, Nc and Nf are the 

creep and fatigue lives, respectively, nc and nf are the numbers of the creep and fatigue load cycles, 

respectively, and θ1 and θ2 are characteristic parameters of the structural material obtained from 

experimental data. The structural material is supposed to fail when its PF (7) becomes lower than or 

equal to 0, i.e., gx(x) ≤ 0. 

The shapes and parameters (i.e., mean µ and standard deviation σ) of the probability distribution 

functions associated to the uncertain variables {xj: j = 1, 2, ..., 6} of the probabilistic model (7) for 

creep and fatigue in structural materials are summarized in Table 2 [2]. 

The true (i.e., reference) probability P(F) of the failure event F = {gx(x) ≤ 0} is 1.425·10-4, obtained 

as an average of S = 25000 failure probability estimates TN
sFP )(ˆ , s = 1, 2, …, S, each one computed 

by standard MCS with NT = 500000 samples. 

 

Table 2 here 

5.1 Application 1: comparison of the methods proposed in Section 4 for 

determining the important direction α for Line Sampling 

LS is here applied to the probabilistic model (7) described above for creep and fatigue in structural 

materials. In particular, in this Section a thorough comparison of the different methods proposed in 

Section 4 for determining the important direction α for Line Sampling is carried out: in Section 

5.1.1, the different experimental settings considered are described in details, together with the 

methods and models used, and the objectives; in Section 5.1.2, the quantitative indicators 
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introduced to compare the methods adopted are presented; finally, the results obtained in the 

different experimental settings of Section 5.1.1 are illustrated in Section 5.1.3. 

5.1.1 Experimental settings 

The simulations performed are intended to compare the efficiency of the different methods 

considered for the determination of the LS important direction α (Section 4). In each LS simulation, 

the system performance function gθ(·) is evaluated by running the original system model code and 

the LS point estimates ( ) TNFP̂  of the failure probability P(F) are computed with a large number NT 

(i.e., NT = 10000) of samples (steps 4. and 5. of Section 3): this allows a reliable assessment of the 

effect of different important directions α on the accuracy and precision of the obtained estimates 

( ) TNFP̂ . In this case the use of a large number of samples NT (i.e., NT = 10000) is possible because 

the system performance function (7) is a simple analytical function which can be evaluated in a 

negligible computational time. 

Three different experimental settings, namely settings 1, 2 and 3, are considered in this application. 

These settings differ by: 

i) the method used for determining the important direction α (Section 4); 

ii)  the model employed to evaluate the system performance function gθ(·) for the estimation of 

the important direction α; 

iii)  the number Nα of system performance evaluations used to determine α; 

iv) the total number Ncode,α of actual runs of the original system model code required by the 

whole process of determination of the important direction α. 

The characteristics of the three settings are summarized in Table 3. 

 

Table 3 here 

 

In setting 1, the MCMC (labeled A, Section 4.1.1), design point (labeled B, Section 4.1.2) and 

gradient (labeled C, Section 4.1.3) methods are considered. A large number Nα of evaluations of the 

system performance function gθ(·) are carried out to determine α: in particular, Nα = 10000 is 

chosen to provide an accurate and reliable estimate for the important direction α. In this setting, the 

system performance function is evaluated by running the original system model “code” (i.e., the 

original system performance function gθ(·)), so that Ncode,α = Nα = 10000. 

 

In setting 2, Nα = 10000 evaluations of the system performance function gθ(·) are carried out to 

determine α, like in the previous setting 1. However, in this setting the system performance function 
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gθ(·) is evaluated by resorting to a fast-running ANN regression model approximating the original 

system performance function. The objective is to verify the possibility of reducing the 

computational cost associated to the LS method by using ANN regression models in place of the 

original system model. In particular, the ANN regression model is constructed on the basis of a 

small set of data representing examples of the input/output nonlinear relationships underlying the 

original system model; once built, the regression model is used to evaluate (in a negligible 

computational time) the system performance function gθ(·) for the determination of the important 

direction α (steps 4. and 5. of Section 3). 

A classical three-layered feed-forward ANN (trained by the sequential, two-step error back-

propagation algorithm described at the end of Section 4.1) is here adopted: the number of inputs to 

the ANN regression model is 6 (i.e., the number of uncertain variables in Table 2 of Section 5), 

whereas the number of outputs is 1 (i.e., the value of the system performance function). The number 

of nodes in the hidden layer has been set equal to 5 by trial and error. The first-step ANN model is 

built using a set of input/output data examples of size Ntrain’  = 50; further, a validation data set 

(different from the training set) of size Nval’  = 10 is used to monitor the accuracy of the first-step 

ANN model during the training procedure, in order to avoid overfitting of the training data [41]. 

Subsequently, the second-step (i.e., definitive) ANN model is built using training and validation 

sets of sizes Ntrain’’  = 100 and Nval’’  = 20, respectively; finally, a test set of size Ntest = 10, not used 

during the training and validation phases, is employed to provide a realistic measure of the second-

step ANN model accuracy. Thus, the total number of system model runs performed to generate the 

two training sets, two validation sets and final test set is Ncode,α = (Ntrain’  + Nval’  + Ntrain’’  + Nval’’  + 

Ntest) = 50 + 10 + 100 + 20 + 10 = 190. 

Correspondingly, the total computational cost associated to the estimation of α in setting 2 is much 

lower than that of setting 1, in spite of the same number Nα of system performance evaluations. 

Actually, when a single run of the system model code lasts several hours (which is often the case 

for passive safety systems) the total number Ncode,α of simulations is the critical parameter which 

determines the overall computational cost associated to the method. 

Further, in setting 2, the methods A, B and C are compared to the new one proposed in this paper, 

i.e., the one based on the minimization of the variance of the LS failure probability estimator 

(labeled D, Section 4.2). 

 

The final setting 3 is similar to setting 1: methods A, B and C are used to determine α and the 

original system model is run to evaluate the system performance function gθ(·); however, like in the 

previous setting 2, the number Nα of system performance evaluations (and, thus, the actual number 
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Ncode,α of runs of the original system model) is Ncode,α = (Ntrain’  + Nval’  + Ntrain’’  + Nval’’  + Ntest) = 50 

+ 10 + 100 + 20 + 10 = 190. Notice that in this setting, method D, based on the minimization of the 

variance of the LS failure probability estimator, is not employed for determining α because the 

actual number of “allowed” code runs (i.e., Ncode,α  = 190) is too small to provide meaningful results 

for this method. 

5.1.2 Performance indicators 

The experimental settings described in the previous Section 5.1.1 are compared in terms of two 

quantities: the percentage relative error ε between the LS failure probability estimate ( ) TNFP̂  and 

the true (i.e., reference) value P(F) of the failure probability of the system, and the percentage 

relative width wCI of the 95% Confidence Interval (CI) of the LS failure probability estimator 

( ) TNFP̂ . These indicators are defined in (8) and (9), respectively: 

( ) ( )
( ) 100

ˆ
⋅

−
=

FP

FPFP TN

ε , (8) 

( ) ( )

( ) 100
ˆ,ˆ, ⋅

−
=

FP

LU
w

TNTN FPCIFPCI
CI , (9) 

where ( ) TNFPCI
U ˆ,

 and ( ) TNFPCI
L ˆ,

 are the upper and lower bounds of the 95% CI of the failure 

probability estimator ( ) TNFP̂ , respectively. 

Obviously, the lower is the value of ε, the higher is the accuracy of the failure probability estimate 

( ) TNFP̂ ; instead, the lower is the value of wCI, the higher the precision of the estimate. 

5.1.3 Results 

As previously mentioned, the example application has been set with the purpose of comparing 

different methods for determining the LS important direction α (Section 4). 

Figure 3 shows the values of the LS point estimates ( ) TNFP̂  (dots) of the failure probability P(F) 

obtained with NT = 10000 samples in settings 1, 2 and 3 (Table 3); the corresponding 95% 

Confidence Intervals (CIs) are also reported (bars). Finally, the true (i.e., reference) value of the 

system failure probability P(F) (i.e., P(F) = 1.425·10-4) is shown as a dashed line. Table 4 reports 

instead the values of the associated performance indicators ε and wCI (Section 5.1.2). 

 

Figure 3 here 

 

Table 4 here 
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The results obtained in setting 1 show that method A (i.e., MCMC simulation) provides more 

accurate (i.e., the estimates are closer to the true values) and precise (i.e., the confidence intervals 

are narrower) estimates than methods B (i.e., design point) and C (i.e., gradient): the percentage 

errors ε are 0.421, 0.702 and 1.965, whereas the percentage 95% CI widths wCI are 2.222, 2.282, 

and 7.323 for methods A, B and C, respectively. This can be explained by the fact that method A 

relies on a “map” approximating the failure domain F under analysis (given by the failure samples 

generated through a Markov chain) and thus it provides in principle the most realistic and reliable 

estimate for the LS important direction α. 

Moreover, it is evident that method B (i.e., design point) performs consistently better than method C 

(i.e., gradient). Actually, although design points do not always represent the most important regions 

of the failure domain F, especially in high-dimensional spaces [27], they still provide an acceptable 

indication of the real location of the failure region F of interest. On the contrary, calculating α 

through the normalized gradient of the performance function gθ(·) makes the values of the 

components of α strongly dependent on the point where the first-order, local approximations of the 

performance function gθ(·) are carried out, and thus would relate inherently local (and possibly 

misleading) information: this effect is particularly critical for nonlinear systems like that of the case 

at hand. 

 

In setting 2 the evaluation of the system performance function gθ(·) for the determination of α is 

performed by replacing the original system model with an ANN (with Ntrain’  = 50, Nval’  = 10, Ntrain’’  

= 100, Nval’’  = 20, Ntest = 10 input/output examples employed in the first- and second-step training, 

first- and second-step validation and test phases, respectively). The number Nα of system 

performance evaluations is the same as in setting 1 (i.e., Nα = 10000); however, the number Ncode,α 

of actual runs of the original system model code is much lower: indeed, in setting 1 Ncode,α = 10000, 

whereas in setting 2 Ncode,α = 190: this means that the overall computational effort associated to 

setting 2 is much lower than that of setting 1. 

It can be seen that the results obtained with methods A, B and C in setting 2 are comparable to 

those produced by the same methods in setting 1: the percentage errors ε are 0.421, 0.702 and 1.965 

for methods A, B and C, respectively, in setting 1, and 0.211, 0.351 and 0.772 for methods A, B and 

C, respectively, in setting 2; the percentage 95% CI widths wCI are 2.222, 2.282, and 7.323 for 

methods A, B and C, respectively, in setting 1, and 2.723, 2.516 and 7.199 for methods A, B and C, 

respectively, in setting 2. 
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Further, the proposed method D (Section 4.2) achieves more accurate and precise estimates than 

those of methods A, B and C in both settings 1 and 2: indeed, the percentage error ε and 95% CI 

width wCI are 0.070 and 2.204, respectively; these improved results are due to the fact that the 

proposed technique is based on the definition of the ideal (i.e., optimal) important direction α for 

LS (i.e., the one minimizing the variance of the LS failure probability estimator). 

Finally, an important remark is in order with respect to the comparison between settings 1 and 2; the 

results produced in setting 2 are at least comparable, if not better, than those of setting 1; yet, they 

are obtained at a much lower computational effort thanks to the fast-running ANN approximation of 

the system performance function gθ(·). 

 

A comparison can also be made between settings 2 and 3: actually, the number Ncode,α of runs of the 

original system model code (and thus the associated overall computational effort) is the same for 

both settings (i.e., Ncode,α = 190). However, in setting 2 the few system model code runs are directly 

used to estimate α (i.e., Ncode,α = Nα = 190), whereas in setting 3 they are used to build an ANN 

regression model, which is in turn employed to estimate α (i.e., Ncode,α = 190 ≠ Nα = 10000). It is 

evident that the methods A, B, C and D in setting 2 outperform the corresponding methods in 

setting 3: the percentage 95% CI widths wCI are 2.723, 2.516, 7.199 and 2.204 for methods A, B, C 

and D in setting 2, respectively, whereas they are 6.697, 5.345 and 7.502 for methods A, B, and C 

in setting 3, respectively. 

These findings bear an important practical implication: when a low number Ncode,α of system model 

evaluations is a priori imposed due to computational time limitations (which is the case for long-

running codes), superior results are obtained if the outcomes of the evaluations are employed to 

build a surrogate ANN regression model for determining the important direction α instead of 

directly using them for estimating α. 

 

Finally, let us compare settings 1 and 3. In both settings, the original system model is directly 

employed for estimating α: however, in setting 1 a large number of system model evaluations (i.e., 

Ncode,α = Nα = 10000) are performed, whereas in setting 2 only a small number is used (i.e., Ncode,α = 

Nα = 190). As expected, the precisions provided by methods A, B and C in setting 1 are 

significantly better than those produced by the same methods in setting 3: the percentage 95% CI 

widths wCI are 2.222, 2.282, and 7.323 for methods A, B and C in setting 1, respectively, whereas 

they are 6.697, 5.345 and 7.502 for methods A, B, and C in setting 3. 

In addition, it seems interesting to note that the difference between the performances of methods A, 

B and C is lower when Nα (= Ncode,α) is small (e.g., equal to 190) than when it is large (e.g., equal to 
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10000). This is due to the fact that the efficiency of methods A (based on MCMC simulation) and B 

(based on design point identification through optimization algorithms) strongly relies on the 

possibility of deeply exploring the uncertain parameter space within the failure region F of interest: 

if only a small number Nα (= Ncode,α) of system performance evaluations is available, such a deep 

search cannot be carried out, thus resulting in poor estimates of the important direction α. In such 

cases, even a simple procedure like method C (i.e., gradient estimation by straightforward 

numerical differentiation) may provide comparable results. 

 

The conclusions on the accuracy and precision in the estimates provided by the important direction 

α determined by method D (i.e., the one proposed in this paper, based on the minimization of the 

variance of the LS failure probability estimator) justify its adoption in the subsequent applications. 

5.2 Application 2: failure probability estimation using an optimized Line 

Sampling method with small sample sizes 

The objective of this application is verifying the possibility of obtaining accurate and precise 

estimates ( ) TNFP̂  of small failure probabilities P(F) (e.g., of the order of 10-4) even reducing the 

number of system model evaluations to below one hundred, which may be mandatory in practical 

applications of computer codes requiring several hours to run a single simulation. Thus, in the 

present analysis the system performance function gθ(·) is evaluated by means of the original system 

model; however, the number NT of samples drawn for the estimation of the system failure 

probability is much lower than in Application 1: indeed, sample sizes NT ranging from 5 to 50 are 

employed (more precisely, NT = 5, 10, 20, 30, 40 and 50). 

 

In addition, the benefits coming from the use of an optimized Line Sampling method with very 

small sample sizes NT is shown by means of a comparison between the estimation accuracies and 

precisions of the following simulation methods: 

i) optimized Line Sampling (LS) (Sections 3 and 4.2); 

ii)  an original combination of optimized Line Sampling (LS) and Latin Hypercube 

Sampling (LHS) (hereafter referred to as LS + LHS); 

iii)  standard Importance Sampling (IS) [21]; 

iv) a combination of standard Importance Sampling (IS) and Latin Hypercube Sampling 

(LHS) (hereafter referred to as IS + LHS) [32]. 

Thorough descriptions of methods ii) – iv) above (i.e., LS + LHS, IS and IS + LHS) are not reported 

here for brevity: the interested reader may refer to the cited references for details. 
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In Section 5.2.1, the quantitative indicators used to compare methods i) – iv) above are presented; 

then, the results produced by all the methods considered are investigated in Section 5.2.2. 

5.2.1 Performance indicators 

In order to properly represent the randomness of the probabilistic simulation methods adopted and 

provide a statistically meaningful comparison between their performances in the estimation of the 

system failure probability P(F), S = 2000 independent runs of each method have been carried out 

for each sample size NT: this is required by the fact that in this application the sample sizes NT are 

very small, such that they would produce poor statistics over a single simulation run. In each 

simulation s = 1, 2, …, S, the percentage relative absolute error εs between the true (reference) value 

of the system failure probability P(F) and the corresponding estimate TN
sFP )(ˆ  is computed as 

follows: 

100
)(

)(ˆ)(
⋅

−
=

FP

FPFP TN
s

sε , s = 1, 2, …, S (10) 

The accuracies of the simulation method of interest in the estimation of P(F) are then compared in 

terms of the mean percentage relative absolute error ε  over S = 2000 runs: 

∑
=

⋅=
S

s
sS 1

1 εε  (11) 

The quantity (11) provides a measure of the percentage relative absolute error in the estimation of 

the failure probability P(F) made on average in a single run by the simulation method with NT 

samples. 

The failure probability estimates TN
sFP )(ˆ , s = 1, 2, …, S, are then used to build a bootstrapped 95% 

Confidence Interval (CI) for the failure probability estimator ( ) TNFP̂ , i.e., 

( ) ( )[ ]
TNTN FPCIFPCI

UL ˆ,ˆ,
,  (12) 

where ( ) TNFPCI
U ˆ,

 and ( ) TNFPCI
L ˆ,

 are the 2.5th and 97.5th percentiles, respectively, of the bootstrapped 

empirical distribution of the failure probability estimator ( ) TNFP̂ . The percentage relative width 

CIw  of the bootstrapped 95% Confidence Interval (CI) of the LS failure probability estimator 

( ) TNFP̂  is then computed as 

( ) ( )
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5.2.2 Results 

Table 5 reports the values of the performance indicators ε  (11) and CIw  (13) obtained with NT = 5, 

10, 20, 30, 40 and 50 samples by the LS, LS + LHS, IS and IS + LHS methods in Application 2 of 

Case study 1. 

 

Table 5 here 

 

It is seen that: 

•  the optimized Line Sampling methods (i.e., both LS and LS + LHS) provide more 

accurate and precise failure probability estimates than the other methods (i.e., both IS and 

IS + LHS): for example with NT = 5, the mean percentage errors ε  are 16.305, 16.198, 

75.041 and 65.771, whereas the percentage 95% CI widths CIw  are 98.535, 92.477, 

390.881 and 319.972 for the LS, LS + LHS, IS and IS + LHS methods, respectively; 

•  the use of LHS in combination with the optimized LS method does not affect significantly 

the accuracy of the failure probability estimates in this application: for example with NT = 

5, the mean percentage errors ε  are 16.305 and 16.198 for the LS and LS + LHS methods 

respectively; conversely, the combination of LS and LHS increases the precision of the 

failure probability estimates: for example with NT = 5, the percentage 95% CI widths CIw  

are 98.535 and 92.477 for the LS and LS + LHS methods, respectively (a 6% increase in 

the precision of the estimate); 

•  the use of LHS in combination with the IS method significantly increases both the 

accuracy and the precision of the failure probability estimates: for example with NT = 5, 

the mean percentage errors ε  are 75.041 and 65.771, whereas the percentage 95% CI 

widths CIw  are 390.881 and 319.972 for the IS and IS + LHS methods, respectively. 

Summing up, the results obtained confirm the possibility of achieving accurate and precise 

estimates of small failure probabilities by an optimized LS with a very low number NT of samples 

drawn in a nonlinear (but monotonous) case study. 

6 Case study 2: thermal-hydraulic passive system 

This case study concerns the natural convection cooling in a Gas-cooled Fast Reactor (GFR) under 

a post-Loss Of Coolant Accident (LOCA) condition; the reactor is a 600-MW GFR cooled by 

helium flowing through separate channels in a silicon carbide matrix core [3]. 
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A GFR decay heat removal configuration is shown schematically in Figure 4; in the case of a 

LOCA, the long-term heat removal is ensured by natural circulation in a given number Nloops of 

identical and parallel loops; only one of the Nloops loops is reported for clarity of the picture: the 

flow path of the cooling helium gas is indicated by the black arrows. The loop has been divided into 

Nsections = 18 sections for numerical calculation; technical details about the geometrical and 

structural properties of these sections are not reported here for brevity: the interested reader may 

refer to [3]. 

 

In the present analysis, the average core power to be removed is assumed to be 18.7 MW, 

equivalent to about 3% of full reactor power (600 MW): to guarantee natural circulation cooling at 

this power level, a pressure of 1650 kPa in the loops is required in nominal conditions. Finally, the 

secondary side of the heat exchanger (i.e., item 12 in Figure 4) is assumed to have a nominal wall 

temperature of 90 °C [3]. 

 

Figure 4 here 

6.1 Uncertainties 

Uncertainties affect the modeling of passive systems. There are unexpected events, e.g. the failure 

of a component or the variation of the geometrical dimensions and material properties, which are 

random in nature. This kind of uncertainty, often termed aleatory [42]-[44], is not considered in this 

work. Additionally, there is incomplete knowledge on the properties of the system and the 

conditions in which the passive phenomena develop (i.e., natural circulation). This kind of 

uncertainty, often termed epistemic, affects the model representation of the passive system 

behaviour, in terms of both (model) uncertainty in the hypotheses assumed and (parameter) 

uncertainty in the values of the parameters of the model [16], [22], [45]. 

 

Only epistemic uncertainties are considered in this work. Epistemic parameter uncertainties are 

associated to the reactor power level, the pressure in the loops after the LOCA and the cooler wall 

temperature; epistemic model uncertainties are associated to the correlations used to calculate the 

Nusselt numbers and friction factors in the forced, mixed and free convection regimes. The 

consideration of these uncertainties leads to the definition of a vector x = { }9...,,2,1: =jx j  of nine 

uncertain model inputs, assumed described by normal distributions of known means and standard 

deviations (Table 6, [3]). 
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Table 6 here 

6.2 Failure criteria of the T-H passive system 

The passive decay heat removal system of Figure 4 fails to provide its safety function when the 

temperature of the coolant helium leaving the core (item 4 in Figure 4) exceeds either 1200 °C in 

the hot channel or 850 °C in the average channel: these values are expected to limit the fuel 

temperature to levels which prevent excessive release of fission gases and high thermal stresses in 

the cooler (item 12 in Figure 4) and in the stainless steel cross ducts connecting the reactor vessel 

and the cooler (items from 6 to 11 in Figure 4) [3]. Denoting by ( )xhot
coreoutT ,  and ( )xavg

coreoutT ,  the 

coolant outlet temperatures in the hot and average channels, respectively, the system failure event F 

can be written as follows: 

( ){ } ( ){ }850:1200: ,, >∪>= xxxx avg
coreout

hot
coreout TTF . (14) 

The probability P(F) of this event is 3.332·10-4, obtained by standard MCS with NT = 500000 

samples drawn. 

6.3 Application 

The objective of the application is the estimation of the small functional failure probability P(F) 

(i.e., P(F) = 3.332·10-4) of the T-H passive system described in Section 6 by means of LS with a 

very small number NT of samples; more precisely, values of NT = 5, 10, 20, 30, 40 and 50 are 

considered. 

Justified by the results obtained in the previous case study, method D of Section 4.2 (i.e., the one 

based on the minimization of the variance of the LS failure probability estimator) is employed to 

estimate the important direction α for LS. The ANN regression model used to this purpose is the 

classical three-layered feed-forward ANN: the number of inputs to the ANN regression model is 

equal to 9 (i.e., the number of uncertain inputs in Table 6 of Section 6.1), whereas the number of 

outputs is equal to 2 (i.e., the number of system variables of interest, the hot- and average-channel 

coolant outlet temperatures, as reported in Section 6.2). The number of nodes in the hidden layer 

has been set equal to 4 by trial and error. The ANN model is built using the sequential, two-step 

training algorithm described in Section 4.1: training sets of sizes Ntrain’ = 50 and Ntrain’’ = 70, 

validation sets of sizes Nval’ = 10 and Nval’’ = 10 and a test set of size Ntest = 10 have been generated 

to train, validate and test the ANN model; thus, the total number of T-H code runs performed to 

generate the training, validation and test sets in this case is Ncode,α = (Ntrain’  + Nval’  + Ntrain’’  + Nval’’  

+ Ntest) = 50 + 10 + 70 + 10 +10 = 150. 
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The accuracies and precisions of the optimized LS, LS + LHS, IS and IS + LHS methods are also 

compared on the basis of the performance indicators ε  (11) and CIw  (13) computed on S = 10 runs 

with NT = 5, 10, 20, 30, 40 and 50 samples each. Table 7 reports the values obtained for the 

performance indicators ε  (11) and CIw  (13). 

 

Table 7 here 

 

It is seen that: 

•  the optimized Line Sampling methods (i.e., both LS and LS + LHS) provide more 

accurate and precise functional failure probability estimates than the other methods 

considered (i.e., both IS and IS + LHS): for example with NT = 5, the mean percentage 

errors ε  are 16.045, 15.156, 84.801 and 38.671, whereas the percentage 95% CI widths 

CIw  are 84.175, 67.387, 386.026 and 212.079 for the LS, LS + LHS, IS and IS + LHS 

methods, respectively. 

•  the use of LHS in combination with the optimized LS method in this case slightly 

increases the accuracy of the functional failure probability estimates: for example with NT 

= 10, the mean percentage errors ε  are 12.547 and 7.378 for the LS and LS + LHS 

methods, respectively; moreover, the combination of LS and LHS in this case strongly 

increases the precision of the failure probability estimates: for example with NT = 10, the 

percentage 95% CI widths CIw  are 84.175 and 67.387 for the LS and LS + LHS methods, 

respectively (a 20% increase in the precision of the estimate). 

•  the use of LHS in combination with the IS method significantly increases both the 

accuracy and the precision of the functional failure probability estimates: for example 

with NT = 5, the mean percentage errors ε  are 84.801 and 38.671, whereas the percentage 

95% CI widths CIw  are 386.026 and 212.079 for the IS and IS + LHS methods, 

respectively; 

•  by way of example, the 95% CI associated to a standard MCS-based estimate of P(F) 

with NT = 100 is [0, 0.0296] and the corresponding percentage 95% CI width wCI is 

8793.8: this value is about two orders of magnitude larger (and conversely the precision is 

about two orders of magnitude lower) than that produced by LS with NT = 5 samples: in 

other words, the precision of the optimized LS method is two order of magnitude larger 

than that of standard MCS even using a number of samples 20 times lower. 
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In summary, the results obtained confirm the previous finding regarding the possibility of achieving 

accurate and precise estimates of small failure probabilities by an optimized LS method with a very 

low number NT of samples drawn; however, a much stronger conclusion can be drawn from this 

case study, regarding the actual feasibility of application of the method to the realistic, nonlinear 

and non-monotonous cases of practical interest in the reliability analysis of passive systems. 

7 Discussion 

In this paper, the Line Sampling (LS) method has been considered for improving the efficiency of 

Monte Carlo sampling in the estimation of the functional failure probability of a T-H passive 

system. A system designed to provide the safety function of natural convection cooling in a Gas-

cooled Fast Reactor (GFR) after a Loss of Coolant Accident (LOCA) has been taken as reference 

case study. 

Two relevant issues for the practical application of the LS method have been addressed: 

1. the determination of the important direction for LS; 

2. the reduction of the overall computational cost associated to the LS method in the 

estimation of the small functional failure probabilities characteristic of passive systems. 

Concerning the first issue, the main contributions of the work presented and its related findings are 

(Case study 1): 

•  from a critical comparison of the methods currently available in the literature for the 

estimation of the LS important direction, it turns out that: 

� the technique based on Markov Chain Monte Carlo (MCMC) simulation 

produces more accurate and precise failure probability estimates than those 

provided by the design point and gradient methods; 

� the technique based on the identification of the design point performs better than 

the one based on gradient estimation. 

•  an Artificial Neural Network (ANN) regression model has been built using a sequential, 

two-step training algorithm on a reduced-size set of examples of the input/output 

nonlinear relationships underlying the original system model code; then, the ANN model 

has been used as a fast-running surrogate of the original system model code in the 

determination of the LS important direction: 

� the accuracy and precision of the estimates provided by the ANN-based method 

have been shown to be comparable to those produced by running the original 

system code: however, they have been obtained at a much lower computational 

effort; 
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� conversely, when a low number of system model code simulations needs to be a 

priori  imposed due to computational time limitations (which is the case of the 

long-running system model codes, typical of nuclear safety), the accuracy and 

precision of the failure probability estimates provided by the ANN-based method 

have been shown to be consistently higher than those produced by running the 

original system model code. 

•  a new technique has been proposed based on the minimization of the variance of the LS 

failure probability estimator; since the proposed method relies on the definition of the 

optimal LS important direction, it produces more accurate and precise failure probability 

estimates than those provided by all the techniques of literature, as clearly shown by the 

numerical results obtained. 

Concerning the second issue, the main contributions of the work presented and the related findings 

are (Case studies 1 and 2): 

•  the performance of the LS method has been assessed in the estimation of a small failure 

probability (i.e., of the order of 10-4) with a reduced number of samples drawn (i.e., 

ranging from 5 to 50). The results have demonstrated that accurate and precise estimates 

can be obtained even reducing the number of samples to below one hundred and even in 

realistic, nonlinear and non-monotonous case studies; 

•  the optimized Line Sampling method (i.e., both LS and the combination of LS and LHS) 

provide more accurate and precise failure probability estimates than both the IS and the 

combination of IS and LHS methods; 

•  the use of LHS in combination with the optimized LS method slightly increases the 

accuracy of the failure probability estimates and strongly increases the precision of the 

failure probability estimates; 

•  the use of LHS in combination with the IS method significantly increases both the 

accuracy and the precision of the failure probability estimates. 

8 Conclusions 

The findings of the work presented (summarized in the previous Section 7) suggest the adoption of 

the following methodology for the accurate and precise estimation of the (typically small) 

functional failure probability of T-H passive systems (modelled by long-running, nonlinear and 

non-monotonous T-H codes): 
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1. build an Artificial Neural Network (ANN) regression model using a sequential, two-step 

training algorithm on a reduced (e.g., around one hundred) number of examples of the 

input/output nonlinear relationships underlying the original system model code; 

2. use the ANN model as a fast-running surrogate of the original system model code in the 

determination of the LS important direction; for this purpose, the technique proposed in this 

paper (based on the minimization of the variance of the LS failure probability estimator by 

means of Genetic Algorithms) is strongly suggested: since it relies on the definition of the 

optimal LS important direction, it produces more accurate and precise failure probability 

estimates than those provided by all the techniques of literature; 

3. estimate the functional failure probability of the T-H passive system by means of Line 

Sampling with a small number of samples (e.g., few tens); the accuracy and precision of the 

estimates can be enhanced by combining Line Sampling with Latin Hypercube Sampling. 

The outstanding performance of the optimized Line Sampling method presented in this paper in the 

estimation of very small failure probabilities makes it a rather attractive tool for passive system 

functional failure analyses and possibly one worth considering for extended adoption in full scale 

PRA applications, provided that the numerous possible accident scenarios and outcomes can be 

handled computationally in an efficient way. 
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FIGURES 

 

    
 

       

Figure 1. Methods for estimating the Line Sampling important unit vector α. Top, left: normalized 

“center of mass” of the failure domain F in the standard normal space [25]; top, right: 

direction of the design point of the problem in the standard normal space [27], [36]; bottom, 

left and right: normalized gradient of the PF gθ(·) evaluated at a selected point θ
0 (e.g., the 

nominal point) in the standard normal space [26] 
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Figure 2. Proposed method for estimating the LS important direction α: minimization of the 

variance ( )[ ]TNFP̂2σ  of the LS failure probability estimator ( ) TNFP̂  
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Figure 3. Point estimates ( ) TNFP̂  (dots) of the failure probability P(F) obtained with NT = 10000 

samples in settings 1, 2 and 3 (Table 3) of Application 1 of Case study 1, along with the 

corresponding 95% CIs (bars) and the true (i.e., reference) value of the system failure probability 

P(F) (i.e., P(F) = 1.425·10-4) (dashed line) 
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Figure 4. Schematic representation of one loop of the 600-MW GFR passive decay heat removal 

system [3] 
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TABLES 

 

Methods of literature 

Concept Evaluations to be performed Computational tools adopted 

“Center of mass” of F 
(Section 4.1.1) 

- Evaluation of the performance function gθ(θ) during MCMC to verify if θ belongs to the  
  failure domain F, i.e., if gθ(θ) > 0 

Original system model code 

ANN 

Design point 
(Section 4.1.2) 

 

- Minimization of the distance ||θ||2 in (4) 
 

GA 
 

- Evaluation of the performance function gθ(θ) to verify if θ is a feasible solution to (4),  
   i.e., if θ belongs to the failure surface gθ(θ) = 0 
 

Original system model code 

ANN 

Gradient 
(Section 4.1.3) 

 

- Evaluation of the performance function gθ(θ) to estimate the gradient ( )θθg∇  (5) by  

   numerical differentiation 
 

Original system model code 

ANN 

Method proposed in this paper 

Concept Function to be performed Computational tools adopted 

Variance minimization 
(Section 4.2) 

 

- Minimization of the variance ( )[ ]TNFP̂2σ  of the LS failure probability estimator ( ) TNFP̂  
 

GA 
 

- Calculation of the variance ( )[ ]TNFP̂2σ  of the LS failure probability estimator ( ) TNFP̂  
 

LS algorithm 

- Evaluation of the performance function gθ(θ) for the estimation of the failure probability  

  ( ) TNFP̂  and its variance ( )[ ]TNFP̂2σ  during the LS simulation 
ANN 

- Evaluation of the performance function gθ(θ) to verify if θ is a feasible solution to (6),  
   i.e., if θ belongs to the failure domain F (where gθ(θ) > 0) 

ANN 

Table 1. Summary of the methods employed in this work for estimating the LS important direction α  
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Name Shape Mean, µ Standard deviation, σ (% of µ) 

Nc, x1 Log-Normal 5490 20% 

Nf, x2 Log-Normal 17100 20% 

nc, x3 Log-Normal 549 20% 

nf, x4 Log-Normal 4000 20% 

θ1, x5 Normal 0.42 20% 

θ2, x6 Normal 6 20% 

Table 2. Shapes and parameters (i.e., mean µ and standard deviation σ) of the probability 

distribution functions associated to the uncertain variables {xj: j = 1, 2, ..., 6} of the probabilistic 

model (7) for creep and fatigue in structural materials [2] 
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Experimental settings considered for the determination of the important direction α 

Setting number 
Method 

used to estimate α 
Model used to evaluate the  

system performance function gθ(·) 
Number of system  

performance function evaluations, Nα 
Number of  

system model code runs, Ncode,α 

1 

A MCMC 

Original system model code 

10000 10000 

B Design point ≤ 10000* ≤ 10000* 

C Gradient 
10000 10000 

Not available** Not available** 

2 

A MCMC ANN 

(Ntrain = 50; Nval = 10;  

Ntrain’’= 100; Nval’’= 20; 

Ntest = 10) 

10000 (Ntrain + Nval + Ntrain’’ + Nval’’ + Ntest) = 190 

B Design point ≤ 10000* (Ntrain + Nval + Ntrain’’ + Nval’’ + Ntest) = 190 

C Gradient 10000 (Ntrain + Nval + Ntrain’’ + Nval’’ + Ntest) = 190 

D Variance minimization Not available** (Ntrain + Nval + Ntrain’’ + Nval’’ + Ntest) = 190 

3 

A MCMC 

Original system model code 

(Ntrain + Nval + Ntrain’’ + Nval’’ + Ntest) = 190 (Ntrain + Nval + Ntrain’’ + Nval’’ + Ntest) = 190 

B Design point ≤ (Ntrain + Nval + Ntrain’’ + Nval’’ + Ntest) = 190* ≤ (Ntrain + Nval + Ntrain’’ + Nval’’ + Ntest) = 190* 

C Gradient (Ntrain + Nval + Ntrain’’ + Nval’’ + Ntest) = 190 (Ntrain + Nval + Ntrain’’ + Nval’’ + Ntest) = 190 

Table 3. Different experimental settings 1, 2 and 3 considered for Application 1 of Case study 1. The three settings differ by i) the method for 

determining the important direction α; ii) the model for evaluating the system performance function gθ(·); iii) the number Nα of system performance 

evaluations and iv) the total number Ncode,α of actual runs of the original system model code required by the whole process of determination of the 

LS important direction α 

 

* The number Nα of system performance evaluations depends on the speed of convergence of the GA optimization algorithm 

** The number Nα of system performance evaluations depends on the speed of convergence of the GA optimization algorithm and on the number NT of samples drawn in step 2.  

     of Section 4.2 
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Case study 1: Structural material subject to creep and fatigue - Application 1: NT = 10000 

Setting 1 
Method ε [%] wCI [%] 

A 0.421 2.222 
B 0.702 2.282 
C 1.965 7.323 

Setting 2 
Method ε [%] wCI [%] 

A 0.211 2.723 
B 0.351 2.516 
C 0.772 7.199 
D 0.070 2.204 

Setting 3 
Method ε [%] wCI [%] 

A 0.070 6.697 
B 0.632 5.345 
C 2.175 7.502 

Table 4. Values of the performance indicators ε and wCI obtained with NT = 10000 samples in 

settings 1, 2 and 3 (Table 3) of Application 1 of Case study 1 



 39

 

Case study 1: Structural material subject to creep and fatigue - Application 2 
LS 

Sample size, NT ε  [%] CIw  [%] 

5 16.305 98.535 
10 11.506 68.619 
20 8.663 52.973 
30 7.130 39.595 
40 6.373 34.321 
50 5.654 29.361 

LS + LHS 
Sample size, NT ε  [%] CIw  [%] 

5 16.198 92.477 
10 11.504 61.820 
20 8.349 48.107 
30 7.111 37.655 
40 6.084 32.094 
50 5.266 27.393 

IS 
Sample size, NT ε  [%] CIw  [%] 

5 75.041 390.88 
10 55.433 285.60 
20 39.523 201.56 
30 32.014 160.43 
40 27.349 140.39 
50 25.537 135.03 

IS + LHS 
Sample size, NT ε  [%] CIw  [%] 

5 65.771 319.97 
10 33.745 219.21 
20 25.321 161.70 
30 22.437 150.84 
40 19.826 105.93 
50 17.593 90.315 

Table 5. Values of the performance indicators ε  (11) and CIw  (13) obtained with NT = 5, 10, 20, 

30, 40 and 50 samples by the LS, LS + LHS, IS and IS + LHS methods in Application 2 of Case 

study 1 
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 Name Mean, µ Standard deviation, σ (% of µ) 

Parameter 

uncertainty 

Power (MW), x1 18.7 1% 

Pressure (kPa), x2 1650 7.5% 

Cooler wall temperature (°C), x3 90 5% 

Model 

uncertainty 

Nusselt number in forced convection, x4 1 5% 

Nusselt number in mixed convection, x5 1 15% 

Nusselt number in free convection, x6 1 7.5% 

Friction factor in forced convection, x7 1 1% 

Friction factor in mixed convection, x8 1 10% 

Friction factor in free convection, x9 1 1.5% 

Table 6. Epistemic uncertainties considered for the 600-MW GFR passive decay heat removal 

system of Figure 4 [3] 

 

Case study 2 – Thermal-hydraulic passive system 
LS 

Sample size, NT ε  [%] CIw  [%] 

5 16.045 84.175 
10 12.547 58.292 
20 8.313 39.095 
30 7.459 34.832 
40 5.466 27.728 
50 3.848 19.324 

LS + LHS 
Sample size, NT ε  [%] CIw  [%] 

5 15.156 67.387 
10 7.378 31.264 
20 6.179 26.682 
30 5.486 26.419 
40 3.092 16.345 
50 2.373 13.590 

IS 
Sample size, NT ε  [%] CIw  [%] 

5 84.801 386.026 
10 45.982 223.828 
20 36.499 154.531 
30 33.846 115.521 
40 21.790 93.308 
50 18.281 85.22 

IS + LHS 
Sample size, NT ε  [%] CIw  [%] 

5 38.671 212.079 
10 30.174 122.647 
20 22.943 106.231 
30 21.195 100.854 
40 18.461 73.522 
50 16.916 71.069 

Table 7. Values of the performance indicators ε  and CIw  obtained with NT = 5, 10, 20, 30, 40 and 

50 samples by the LS, LS + LHS, IS and IS + LHS methods in Case study 2 


