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Abstract. Commonly used centrality measures identify the most important elements in 
networks of components, based on the assumption that flow occurs in the network only along 
the shortest paths. This is not so in real networks, where different operational rules drive the 
flow. For this reason, a different model of flow in a network is here considered: rather than 
along shortest paths only, it is assumed that contributions come essentially from all paths 
between nodes, as simulated by random walks. Centrality measures can then be coherently 
defined. An example of application to an electrical power transmission system is presented. 
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1. Introduction   
 
Modern society is witnessing a continuous growth in the complexity of the infrastructure networks which it 
relies upon. Reliable electric power supply, for example, is crucial for many of the services that are taken for 
granted today; disturbances in the power supply have the potential of severely disrupting these indispensable 
services. This raises significant concern about reliability and resilience to disturbances and failures of various 
types of infrastructure systems, and a corresponding demand for methods capable of analyzing the vulnerabilities 
of these systems [1]. 
The developments contained in this paper are motivated by the interest in the analysis of electric power 
networks. In this context, the network analysis paradigm set up to study the dynamics of the relations in social 
networks has been previously utilized to analyze the vulnerability of electric power infrastructure systems [2, 3]. 
The focus of these types of studies is typically on analyzing the structural properties of the system from a 
topological point of view, i.e., considering only the connectivity properties of the network and not the actual 
physical flow through it [4, 5]. Three drawbacks associated with the related measures of network performance 
are that they are based on: 

− binary links among network nodes (or components), thus neglecting the strength of the connections (or 
links or arcs or edges); this has been pointed at as a limitation both in social networks, where the 
strength and depth of interpersonal relationships is of relevance [6, 7, 8] and in engineered network 
infrastructures, where the capacities of the arcs connecting the components limit the flow among them 
[5]; 
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− a simplified modeling scheme which assumes that flow (communication, in the social case) between a 
pair of components (persons, in the social case) in the network takes place only along the shortest path 
linking them [8, 9]; this has been considered a limitation in many cases, because the flow from one node 
of a network to another is typically a global phenomenon which does not depend only on the links on the 
direct and shortest paths, since it is quite possible that information will take a more circuitous route; this 
is true both in social networks, where information may travel by random communication or be 
intentionally channeled through intermediaries, and in network infrastructures, where flow is channeled 
through selected routes, following the specific operative rules and constraints which apply to the system; 

− a simplified modeling scheme which neglects the possibility of failures in the interconnections between 
pairs of linked components; this is particularly relevant for the engineered infrastructure networks made 
of fallible hardware and software, operated by (unfortunately) not error-free human operators. 

 
In synthesis, when looking at the safety, reliability and vulnerability characteristics of an infrastructure such as 
the electric power transmission network, one should take into account the capacities of the transmission elements 
and their probability of failure, and examine the different transmission routes available to the flow. This would 
entail undertaking a complex and detailed mechanistic modeling effort of the entire network system, which is in 
practice often unfeasible, both with respect to its development and its computation. For this reason, a framework 
of analysis has been proposed to integrate models at different levels of detail, in a problem-driven approach to 
solution; complementation of network analysis, for performing an initial screening of the vulnerabilities of a 
critical infrastructure with object-oriented modeling, to further deepen the vulnerability assessment of the 
screened scenarios has been investigated as a feasible way to proceed in such direction [10]. 
To improve the physical description of the network characteristics within a network analysis for preliminary 
screening, a model based on random walks is here introduced as an extension of the model in [8] giving proper 
consideration to the following facts: 
 

− each link connecting two nodes is characterized by a transmission capacity which cannot be exceeded; 

− the capacities of the network lines are assumed to stochastically vary, to account for the inherent 
uncertainties; 

− not only the links on the direct and shortest paths are considered in the analysis of the transmission of 
flow; this is achieved by a randomization of the direction of the flow in output from a node; the 
randomization is driven by the capacities of the outgoing links, with the highest capacity links most 
probably channeling the flow;   

− the network interconnecting links are assumed fallible, with given probabilities; 
− source generation and load demands are assumed to vary stochastically, to account for the fluctuations 

inherent in the network behavior and operation. 
 
From the analysis of the network characteristics and behavior, it is also important to gain an understanding of the 
role that the elements of the infrastructure network play in determining the flow through it, as this can be of great 
practical aid to network designers and operators in providing indications for network protection. From a 
topological viewpoint, various measures of the importance of a network node, can be introduced. These so-called 
centrality measures, take into account the different ways in which a node interacts/communicates with the rest of 
the network. Classical topological centrality measures are the degree centrality [11, 12], the closeness centrality 
[12; 13; 14], the betweenness centrality [12] and the information centrality [15]. The major drawback of these 
measures is that to assess the node importance they rely only on topological information based on the three 
previously mentioned model simplifications. Then, based on the model proposed in this paper an extension of 
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the betweenness centrality measure of [16] is computed, to more realistically capture the importance of the role 
played by the different components in determining the flow through the network.  

An application of the proposed approach is illustrated with reference to a power transmission network system of 
literature [17]. 
The paper is organized as follows. In Section 2, a description of the random walk flow propagation model is 
provided. In Section 3, the topological concept of betweenness centrality measure is recalled and then extended 
to its randomized flow definition. The results obtained on a case study of literature are discussed in Section 4. 
Conclusions are drawn in Section 5. 
 
 

2. Randomized flow model of a power transmission network infrastructure 
 
The topological interconnection of a power transmission system can be modeled as a network consisting of N 
nodes (also called vertexes) and K edges (also called arcs or lines): the buses of the electric grid are represented 
as nodes interconnected by undirected edges representing the transmission lines; NS nodes are power sources 
(generators), NT nodes are targets (loads) and the rest are transmission nodes. The N×N adjacency matrix {aij} 
defines the topological structure of the network, i.e., the pattern of connectivity among its nodes, with the matrix 
entry aij being equal to 1 if there is an edge linking i and j and 0 otherwise; the entries on the diagonal elements, 
aii, are undefined and for convenience they are set equal to 0.  
The matrix {qij} defines the probabilities of failure of the links.  
The capacities of the links are assumed to vary stochastically, to account for the uncertainties inherent in their 
behavior and operation; then, to each capacity value wij is associated a probability distribution �(wij) of the 
possible values. 

The underlying strategy to model the flow in the network is to choose a source node, follow at random one of the 
departing links to one of its neighbors, take this as the source and iterate this process until the required target is 
reached. The random choice of the arc to follow is based on the actual capacity of each arc outgoing from the 
node: higher capacity arcs have larger probability to be selected as flow carriers. 

Accordingly, the algorithm to evaluate the service reliability performance characteristics of the network, and its 
related vulnerabilities, consists of three nested cycles of randomization; the steps are as follows: 
1. Sample the fault configuration of the network on the basis of the failure probabilities of each element (node 

or arc) of the system. 
2. Sample the production from the sources, the demand at the targets and the capacity of the arcs. 
3. Build the discrete cumulative distribution function of the capacities of the arcs leaving the source node and 

sample the flow direction from it. 
4. Develop the flow propagation cycle, for each source: 

4.1 the random walk of flow follows the arc sampled on the basis of the actual capacities of the arcs 
departing from the successive nodes traversed by the flow; 

4.2 if the flow goes into an isolated node with no departing connections, the cycle ends; 
4.3 the flow between a pair of nodes is accounted once (repeated flows between the same pair of nodes 

are neglected); 
4.4 once the flow arrives at a target node, the capacities of the incoming arcs are checked: if their sum is 

larger than the maximum capacity of the node, an overload is recorded; 
4.5 if the flow does not reach the target, a new source of random walk is sampled. If no flow arrives at 

any of the targets, then a blackout is recorded. 
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3. Randomized betweenness centrality measure 
 
Determining the critical elements of large-scale network infrastructures is an important issue for the reliability 
and the protection of the network. From a topological point of view, a number of centrality indices have been 
introduced as measures of the importance of the nodes in a network [18]. These indices take into account the 
different ways in which a node interacts and communicates with the rest of the network and have proved of 
value in the analysis and understanding of the role played by the elements in the network. 
A classical topological centrality measure is the betweenness centrality [12]. This measure is based on the idea 
that a node is central if it lies between many other nodes, in the sense that it is traversed by many of the shortest 
paths connecting pairs of nodes. The topological betweenness centrality Ci

B of a given node i in a network G(N, 
K), where N is the number of nodes and K is the number of links connecting them, is quantitatively defined as: 
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where njk is the number of topological shortest paths between nodes j and k, and njk(i) is the number of 
topological shortest paths between nodes j and k which contain node i. Ci

B assumes values between 0 and 1 and 
reaches its maximum when node i falls on all geodesics (paths of minimal length between pairs of nodes). 
From the definition, betweenness centrality can be regarded as a measure of the influence a node has on the 
spread of the flow through the network, of the extent to which a node has control over the flow between other 
nodes. In a network in which flow is entirely or at least mostly distributed along geodesic paths, the betweenness 
of a vertex measures how much flow will pass through that particular vertex. 
In most networks, however, flow does not occur only along geodesic paths; in some cases, flow may not follow 
the ideal route to get from one place to another, and “wander around” in a random-like fashion or as directed by 
the system operative rules and constraints. In most cases, a realistic betweenness measure should include non-
geodesic paths in addition to geodesic ones [19]. 
To account for this issue, a betweenness centrality measure based on the concept of network flow has been 
suggested [8]. The edges of a network are considered as channels of communication linking pairs of nodes; the 
value of the connection of two nodes i and j determines the capacity wij of the channel linking them, or the 
amount of information that can pass between them. Information is assumed to flow along these channels. If f ij is 
the amount of information passing on a channel linking node i directly to node j then fij  wij, i.e., the amount 
of information flowing along a channel that links directly connected vertices cannot exceed the capacity of that 
channel. What is relevant here is not just the direct flow between connected nodes, but the overall flow between 
pairs of nodes along all the paths that connect them: if a node i is chosen as an information source, or transmitter, 
and another node j as an information sink, or receiver, information from i may reach j along an edge linking i 
directly to j or along any and all indirect paths that begin at i, pass through one or more intermediate nodes and 
end at j. 
Thus, the flow between two nodes is a global phenomenon: it depends, not just on the capacity of the channel 
linking two nodes directly, but on the capacities of all the channels on all the paths – both direct and indirect – 
that connect the two. 
Ford and Fulkerson [16] introduced a model to determine the maximum flow from any source i to any sink j. Let 
mjk be the maximum flow from a node i to a node k and let mjk(i) be the maximum flow from j to k that passes 
through node i; then, the flow betweenness centrality measure may be quantitatively defined as [8]: 
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Flow betweenness is based on the idea of maximum flow; the flow betweenness of a node i is defined as the 
amount of flow through i when the maximum flow is transmitted from source (s) to target (t), averaged over all s 
and t. Each edge in a network can be thought of as a transmission line carrying a flow of current. In general, 
more than a single unit of current can be carried between s and t by making simultaneous use of several different 
paths through the network. 
In practical terms, the flow betweenness measures the betweenness of nodes in a network in which a maximal 
amount of information is continuously pumped between all sources and targets. Necessarily that flow still needs 
to “know” the ideal route (or one of the ideal routes) from each source to each target in order to realize the 
maximum flow. This still seems an unrealistic definition, in that it is often the case that flow does not take any 
sort of ideal path from source to target. To model this, a new betweenness centrality measure has then been 
introduced, the random walk betweenness [20]. Roughly speaking, the random walk betweenness of a node i is 
equal to the number of times that a random walk starting at s and ending at t passes through i along the way, 
averaged over all s and t. This measure is appropriate to a network in which information wanders about 
essentially at random until it finds its target, and it includes contributions from many paths that are not optimal in 
any sense. Let Ii

st be the current flowing from s to t, through node i. Quantitatively the random betweenness 
centrality measure is defined as: 
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This measure seems an intuitively reasonable one to describe the fact that current will flow along all paths from 
source to target, and nodes that lie on no path from source to target get a betweenness of zero. 
In this paper, an attempt to evaluate random betweenness centrality measures is made considering the physical 
characteristics of the transmission network in terms of length, capacity and failure probability of each 
transmission line, and types of nodes. 
 
 

4. Application 
 
The artificial transmission network system IEEE 14 BUS [17] is taken as reference case study. The network 
represents a portion of the American Electric Power System and consist of 14 bus locations connected by 20 
lines and transformers, as shown in Figure 1. The transmission lines operate at two different voltage levels, 132 
kV and 230 kV. The system working at 230 kV is represented in the upper half of Figure 1, with 230/132 kV tie 
stations at Buses 4, 5 and 7. The system is also provided with voltage corrective devices in correspondence of 
Buses 3, 6 and 8 (synchronous condensers). Buses 1 and 2 are the generating units. 
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Table I provides the adjacency matrix that defines the topological structure of the network. 
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                                                                                    Table I. The IEEE 14 BUS adjacency matrix 

 

Table II reports the failure rate values of the components of the transmission network, as inferred from literature 
data [22].  
 
 

From BUS To BUS Failure rate/yr/100km Failure rate/yr Equipment 
1 2 1.0858  132 kV transmission line 
1 5 1.0858  132 kV transmission line 
2 3 1.0858  132 kV transmission line 
2 4 1.0858  132 kV transmission line 
2 5 1.0858  132 kV transmission line 
3 4 1.0858  132 kV transmission line 
4 5 1.0858  132 kV transmission line 
4 7  0.01045 132/230 kV transformer 
4 9  0.01045 132/230 kV transformer 
5 6  0.01045 132/230 kV transformer 
6 11 0.5429  230 kV transmission line 
6 12 0.5429  230 kV transmission line 
6 13 0.5429  230 kV transmission line 
7 8  0.01045 132/230 kV transformer 
7 9  0.01045 132/230 kV transformer 
9 10 0.5429  230 kV transmission line 
9 14 0.5429  230 kV transmission line 
10 11 0.5429  230 kV transmission line 
12 13 0.5429  230 kV transmission line 
13 14 0.5429  230 kV transmission line 

 
                                             Table II. Failure data of the arcs of the IEEE 14 BUS transmission network 

 
 
The failure probability of edge ij is defined as: 

0 1 0 0 1 0 0 0 0 0 0 0 0 0 
1 0 1 1 1 0 0 0 0 0 0 0 0 0 
0 1 0 1 0 0 0 0 0 0 0 0 0 0 
0 1 1 0 1 0 1 0 1 0 0 0 0 0 
1 1 0 1 0 1 0 0 0 0 0 0 0 0 
0 0 0 0 1 0 0 0 0 0 1 1 1 0 
0 0 0 1 0 0 0 1 1 0 0 0 0 0 
0 0 0 0 0 0 1 0 0 0 0 0 0 0 
0 0 0 1 0 0 1 0 0 1 0 0 0 1 
0 0 0 0 0 0 0 0 1 0 1 0 0 0 
0 0 0 0 0 1 0 0 0 1 0 0 0 0 
0 0 0 0 0 1 0 0 0 0 0 0 1 0 
0 0 0 0 0 1 0 0 0 0 0 1 0 1 
0 0 0 0 0 0 0 0 1 0 0 0 1 0 
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where �ij is the constant failure rate per unit time of the edge ij linking nodes i and j (column 4 in Table II) and T 
is the reference time for the analysis, here chosen equal to 1 year. 
Because the failure rate data are usually given as function of the length of each transmission line (column 3 in 
Table II), in order to compute the failure probability (4.1) transmission line lengths must be known. In this work, 
these have been inferred from the available data as follows. The total impedance Zij of a transmission line ij is 
dependent on the length of the line lij: 
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where rij is the resistance per unit length of arc ij and xij is its reactance per unit length. While the resistance of 
the line depends both on the length and on the thickness of the wire, the reactance of the line depends only on the 
length [23]. Based on relation (4.2), the lengths of the transmission lines in the IEEE 14 BUS system have been 
obtained from literature data by taking a system power base of 100 MVA and a conversion factor of 0.48 �/km 
[24]; lines containing transformers are considered to be zero-length lines (Table III). 
 
 

From BUS 
i 

To BUS 
j 

Length (km) 
l ij 

Failure Probability 
qij  

1 2 22 0.2125 
1 5 81 0.5768 
2 3 72 0.5338 
2 4 64 0.4932 
2 5 63 0.4884 
3 4 62 0.4828 
4 5 15 0.1498 
4 7 - 0.0104 
4 9 - 0.0104 
5 6 - 0.0104 
6 11 220 0.6970 
6 12 283 0.7847 
6 13 144 0.5425 
7 8 - 0.0104 
7 9 - 0.0104 
9 10 93 0.3978 
9 14 299 0.8027 
10 11 212 0.6843 
12 13 221 0.6999 
13 14 385 0.8762 

 

                                               Table III. Length and failure probabilities of the transmission lines 

 
 
The shortest lines are concentrated in the lower half of the network, which contains the generating units, while 
the longest lines belong to the upper half of the network, which contains the loads. The largest failure 
probabilities are concentrated on the edges directly connected with sources and with loads (edges 1 – 5, 2 – 3, 2 
– 4 and 12 – 13, 9 – 14, 13 – 14). 
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Source generation is sampled from a normal distribution with a mean value of 30 and a variance of 100, in 
arbitrary units (a.u.). The values of the capacities of the network links are assumed all distributed according to a 
normal distribution of mean value 100 a.u. and a standard deviation of 10 a.u. The direction of flow is sampled 
on the actual capacities of the arcs. Once the flow arrives at a target node, the capacities of the incoming arcs are 
checked: if their sum is larger than the maximum capacity value of the node, an overload is recorded. The targets 
are absorbing nodes: the flow stops and the received flow is recorded for evaluating the network lost load and 
the network service efficiency; if no flow reaches any target, a service blackout is recorded.  
The network performance characteristics computed on the basis of the above data are reported in Table IV: 
 
 
 

Blackout (%)  0.82 
Overload (%)  0.00 

  
Network service efficiency  0.18 

  
Network demanded load (a.u.) 59.93 
Network received load (a.u.) 10.92 
Network lost load (a.u.) 49.01 

   
                                                                      Table IV. Network performance indicators 
 
 

where: 
- blackouts and overloads are evaluated considering the average value of the flow that does not reach the 

targets or that exceeds the capacities of the transmission lines, respectively; 
- the network demanded load is the average sum of the power generated from all the sources si, i=1, 2,…, 

NS: 
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- the network received load is the average sum of the flow reaching the targets ti, i=1, 2, …, NT: 
  

                                                                            1�3 � �B 7�
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- the network lost load is obtained as the difference between demanded and received loads: 
 
                                                                        133 � 123 % 1�3                                                              (4.5) 
 
- the network service efficiency is obtained as the ratio between received and demanded loads:  
 

                                                                           19: � ��;<
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                                                                        (4.6) 
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In the artificial case considered, the network service efficiency is low and the blackout probability is high: very 
little of the generated power is received from the loads. This is caused by the high probability of failure of the 
transmission lines, due to their relatively high failure rates and large lengths. 
To see the effect of the lines lengths, a second computation has been made using average transmission line 
lengths inferred from literature [24]. Two line lengths of 48 and 50 km have been considered (Table V). 
 
 

From BUS 
i 

To BUS 
j 

Length (km) 
l ij 

Failure probability 
qij  

1 2 48 0.4079 
1 5 48 0.4079 
2 3 48 0.4079 
2 4 48 0.4079 
2 5 48 0.4079 
3 4 48 0.4079 
4 5 48 0.4079 
4 7 - 0.0104 
4 9 - 0.0104 
5 6 - 0.0104 
6 11 50 0.2372 
6 12 50 0.2372 
6 13 50 0.2372 
7 8 - 0.0104 
7 9 - 0.0104 
9 10 50 0.2372 
9 14 50 0.2372 
10 11 50 0.2372 
12 13 50 0.2372 
13 14 50 0.2372 

 
                                                               Table V. Length and failure probabilities of the arcs 

 
In this case, the lower half of the network has the largest failure probability. The network performance 
characteristics are reported in Table VI. 

 
 
 

Blackout (%)  0.44 
Overload (%)  3.33�10-4 

  
Network service efficiency  0.60 

  
Network demanded load (a.u.) 59.93 
Network received load (a.u) 36.24 
Network lost load (a.u) 23.70 

 
                                                                        Table VI. Network performance indicators 
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With respect to the previous case, targets now receive a larger load, the service efficiency is higher and the 
blackout probability is lower. This is due to the values of the transmission lines failure probabilities, which are 
smaller than in the previous case because of the smaller line lengths. 
Finally, the centrality betweenness based on the proposed random walk model has been computed for the two 
examples. The results are shown in Figure 3. 
 
 

                     
 
                                        Figure 3. Betweenness centrality according to the random flow model proposed. 

 
 
Betweenness values evaluated for case 1 (×, Figure 3) using higher lengths computed from eq. (4.2), are equal or 
higher than the values obtained for case 2 using smaller average lengths (�, Figure 3), due to the associated 
larger failure probabilities. Equal values are obtained for nodes 1 and 2, i.e., the source nodes, for node 3 and for 
node 8 which is an isolated node (Figure 1). The lower half of the network (nodes 1, 2, 3, 4 and 5), which 
contains the generating units (nodes 1 and 2), has higher values of betweenness than the upper half, which 
contains the load nodes 13 and 14. Nodes 10, 11 and 12 act as a tie for the flow. Node 2, which represents a 
source node and a transfer node as well, is the most important from the betweenness point of view, in both 
studies. 
 
 

5. Conclusions 
 
In previous works, network analysis has been shown suitable for a preliminary analysis of complex 
infrastructures aimed at identifying structural criticalities, e.g. the most connected nodes, shortest path lengths of 
connection, most vulnerable nodes, etc. Limitations of the analysis relate to the neglecting of the actual 
capacities of the links, their probabilities of failures and the fact that flow among network nodes is typically a 
global phenomenon, not restricted to only direct, shortest paths as typically assumed. 

B

BC�

BC�

BC�

BC�

BC�

BC�

BC�

BC	

BCA

�

B � � � � � � � 	 A �B �� �� �� ��

DEF����������

DEF����������

Node index

B
et

w
ee

nn
es

s 
 C

en
tr

al
it

y



���

�

To overcome some of these limitations, in this paper a model of random flow propagation has been introduced 
and the topological concept of betweenness centrality has been accordingly extended to account for the random 
flow propagation across the network. The randomization of the flow out of a node is driven by the capacity 
values of its outgoing links and allows non-geodesic paths to be travelled by the flow. Variability in the behavior 
and operation of the links, source and target nodes is also accounted for by varying stochastically the capacities, 
the productions and demands, respectively. 
The modeling approach has been applied to the artificial transmission network system of the IEEE 14 BUS and 
indications derived from the betweenness centrality measure values have been analyzed for different 
transmission lines lengths. Each equipment of the system has been transposed into a node or edge of the 
representative network and the length of the arcs has been calculated for two cases: case 1, in which the lengths 
have been obtained from the impedances of the lines and case 2, in which average line lengths have been 
considered from literature data. The network performance characteristics and the random walk betweenness 
centrality measures have highlighted the weaknesses of the network structure, for the failure data used.  
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