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ABSTRACT

In this work, an extension of a data-driven appitodor estimation of the available
Recovery Time (RT) is presented. The improvememtaigoiding the need of resorting
to a fault detection module for the identificatiohthe anomalous system behavior: the
algorithm proposed jointly detects the onset ofgbeidental transient and performs the
estimation of the available RT. This is achievedfimzy similarity analysis of the
currently developing scenario and reference muttieinsional trajectory patterns of
failure scenarios; the RT remaining before the dgpieg trajectory pattern hits a
failure threshold is predicted by combining thedswof failure of the reference patterns,
weighed by their similarity with the developing teat.

For illustration purposes, failure scenarios of thead Bismuth Eutectic eXperimental

Accelerator Driven System (LBE-XAD&S¥ considered

Key Words: Failure Detection, Recovery Time Estimation, Egegicy Accident Management,
Lead-Bismuth Eutectic eXperimental Accelerator Briv System (LBE-XADS), Fuzzy

Similarity Analysis, Pattern Recognition.



1. Introduction

Nuclear Power Plant (NPP) accident management vegothe anticipation of paths of
potentially dangerous behaviors, the predictiorihef related effects and the setting of actions to
avoid undesired impacts on the safety of the NREA, 2003].

In case of an accident, or an initiating event tinaly develop into an accident, the plant
personnel must perform various tasks before takoumteracting actions:

» Identification of the plant state: this diagnostask aims at identifying the cause of the
problem and the states of a number of parametiticacfor the plant operation and safety;

* Prediction of the future development of the accidéms involves prediction of the future
evolution of the states of the critical parametangl of the plant residual Recovery Time

(RT), which is the time remaining for taking cotige actions to avoid system failure;

* Planning of accident mitigation strategies, to b#vated if the actions to safely control the
accident evolution were not successful.

Computerized procedures can be used to aid thatmpern the tasks of obtaining reliable
information, following procedures, identifying plarstates, predicting the future accident
progression and planning accident control and @ity actions. Indeed, it is a shared belief that
the complicated phenomena taking place in a NPiglan accident situation need to be supported
by computerized procedures rather than left onlgjuman expert evaluation [@wre, 2001]. On the
other hand, the problem of what kind of supporptovide to nuclear power plant operators, in
particular during transients leading up to accidemd far from trivial [NEA, 1992; EC, 1999;
USNRC, 1999; IAEA, 2003].

Fortunately, NPP personnel have the capability ffecevely manage a broad range of
accidents; their successful handling of complexidmrt behaviors requires that they detect the
occurrence of the accident, determine the extentcltadllenge to plant safety, monitor the

performance of active, passive, automatic and aliglystems, select strategies to prevent or
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mitigate the safety challenge, implement the acsivategies, and monitor their effectiveness. The
capability to effectively carry out these tasksidgran accident is influenced by the availability o
timely and accurate plant status information aredaWwareness of the RT available for action. Poor
decisions may be taken under a perceived short éwadlable for sorting out the information
relevant to the plant status [Glasstone et al.81t3#h the contrary, timely and correct decisioas ¢
prevent an event from developing into a severedatotior mitigate its undesired consequences.

The existing computer-based tools which can aiddaot management can be categorized
according to their complexity and specific applicatpurpose [IAEA, 2003]:

e Compact simulators;

Plant analyzers;

Full-scope training simulators;

Multifunctional simulators;

Severe accident simulators;

Accident management support tools.

In particular, the accident management supportstaambine tracking and predictive
simulators of the developing accidental transiefnte tracking simulators monitor the plant status
and provide calculated values also of those paemndhat are not directly observable by the
monitoring systems.

One of the main quantities of interest to be de#ideby predictive simulators for accident
management use is the available RT. Approached tprBdiction can be categorized broadly into
model-based and data-driven [Chiang et al., 2Q@b[del-based approaches attempt to incorporate
physical models of the system into the estimatibrthe RT. However, uncertainty due to the
assumptions and simplifications of the adopted rsoohay pose significant limitations. Moreover,
the requirement of high computational speed folimresponse necessarily leads to limited details

in the phenomena modeled, with consequent limitdiracy in the representation of the actual



plant behavior [Berglund et al., 1995; Serranoletl®99]. On the contrary, data-driven techniques
utilize monitored operational data related to gysteealth. They can be beneficial when

understanding of first principles of system op@maiis not straightforward or when the system is so
complex that developing an accurate model is piody expensive. Data-driven approaches can
often be deployed quickly and cheaply, and stidivite wide coverage of system behavior.

Data-driven approaches can be divided into twogmates: statistical techniques (regression
methods, ARMA models, etc.) and Atrtificial Intekigce (Al) techniques (neural networks, fuzzy
logic systems, etc.).

With respect to Al techniques, Neural Networks (Ndad Fuzzy Logic (FL) techniques
have gained considerable attention in the past fears, due to their ability to deal with the
uncertainties and non-linearities of the real psses, especially in abnormal conditions [@wre,
2001]. Successful prediction models have been nwmisd based on Neural Networks [Barlett et
al., 1992; Campolucci et al., 1999; Peel et alQ8io et al., 2008; Santosh et al., 2009] and
Neuro-Fuzzy (NF) systems [Wang et al., 2004]. Iitespf the recognized power of neural network
modeling techniques, skepticism against their useafety-critical applications relates to their
black-box character which limits intuition with pesct to the understanding of their performance
[Wang et al., 2008].

An opportunity for increased transparency and opssiof data-driven models is offered by
fuzzy logic methods, which are increasingly progbse@ modern control and diagnostic
technologies. Based on the principles of Zadehzzyuset theory, fuzzy logic provides a formal
mathematical framework for dealing with the vagussnef everyday reasoning [Zadeh, 1965]. As
opposed to binary reasoning based on ordinaryhsery, measurement uncertainty and estimation
imprecision can be properly accommodated withinftiezy logic framework [Yuan et al., 1997,

Zio et al., 2005].



The work presented in this paper extends the mulédsional approach previously
presented by the authors for the prediction of dkailable RT during an accident [Zio et al.,
2009Db]. In particular, the need is avoided of altfaletection module that from the beginning
matches the evolving trajectory with the trajeasristored in the database; in view of a
simplification of the procedure for its practicgpdication and an increase of the reliability oé th
overall accident management support system, thee®imation module is devised so as to
automatically identify the anomalous behavior @& ftant and proceed to the RT evaluation.

The computational framework considers a set of idialensional trajectory patterns arising
from different system failures (hereafter callederence trajectory patterns) and uses a fuzzy-
based, data-driven similarity analysis for predigtthe RT of a newly developing failure trajectory
(hereafter called test trajectory pattern). Thetgpat matching process is based on a fuzzy
evaluation of the distance between the signals@intultidimensional test pattern and the patterns
of reference [Angstenberger, 2001]; the fuzzy disés from all reference patterns are then
combined to transform the multidimensional data mtone-dimensional similarity indicator, which
is used in the estimation of the available RT.

An application of the method is illustrated witlgaeds to the dynamic failure scenarios of
the Lead Bismuth Eutectic eXperimental Accelerdboiven System (LBE-XADS) with digital
Instrumentation and Control (1&C) [Cammi et al.,0B). The focus of the application is on the RT
estimation and, therefore, the modeling is tailotedhe purpose of showing the feasibility of
effectively identifying the onset of a failure segio and estimating the RT during an accident: thus
the analysis does not cover the software failuteabi®r, the benefits of fault tolerant featureg th
interactions of the software with the hardware &ndan components; it is understood that the
actual implementation of the method in a qualifiedl of accident management will require full
dynamic accident calculations, inclusive of compredive models of hardware, software and

human failure modes and their interactions.



The paper is structured as follows. Section 2 mesia detailed description of the
computational algorithm for the multidimensionalz2y data similarity evaluation and the
associated RT prediction. Section 3 presents thehamestic model of the LBE-XADS, with the
description of the monitored signals. In Sectiornh#, results of the application of the approach to

LBE-XADS failure scenarios are presented. Finalyme conclusions are drawn in Section 5.

2. Methodology of the RT estimation by fuzzy similariyy analysis

It is assumed thall trajectories (reference trajectory patterns) aa@lable, representative
of the evolution of relevant signals during refaxemfailure scenarios. These trajectories lasthall t
way to system failure, i.e., to the time when amyai the signals reaches the threshold value
beyond which the system loses its functionality.

At any time, a multidimensional signal trajectotgst trajectory pattern) is compared for
similarity with theN multidimensional reference trajectory patternsestan the database and the
residual lifes of these are used to estimate thaRillable in the developing transient.

Figure 1 shows a schematics of the computatioreahdéwork in the general case of

multidimensional trajectories @monitored signalsf (X, X,,...,% ,1).
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Figure 1 The flowchart of the procedure for RT estimaion by fuzzy similarity analysis




For completeness of the paper, procedural Stepsfliie algorithm, already presented in [Zio et
al., 2009a], are reported in Appendix. Here, orfig key modifications with respect to the
previously presented procedure (i.e., the addibbrStep 6) are highlighted, together with the
motivation behind it.
- Step 1: signal monitoring.
See Appendix.
- Step 2: pointwise difference computation of multidimensional trajectory patterns.
See Appendix.
- Step 3: computation of trajectory pointwise similarity and corresponding distance score.
See Appendix.
- Step 4: weight definition.
See Appendix.
- Step 5: RTj(t) and RT(t) estimation.
See Appendix.
- Step 6: Stationary signal identification and RT(t) estimation as MTTF(t).

Starting from timet =1, at each discrete timé, the devised algorithm is qualified to

continuously provide the predictio?ﬁ'(t). However, in case that the developing signal is

actually stationaryfﬁ' ( t) would be biased towards too conservative estimatiecause of
the “max” assumption adopted in Eq. (10) in the Apgix for the computation df ; under
this assumption, an 141)-long stationary segment entails that
F/ﬁ'(t):fQ\T( t-1) :/ﬁ'l( t+2) :/F\Q'( t), 1=12,..T, as shown in Figure 2. The
detection of such string of RT estimates allowsi¥dhe classification of the signal as of no

abnormal deviationi) the corresponding qualification of the systemtestas working in

nominal conditions (in other words, no fault hasmeéetected and the system reaches safely



the time horizon of observatioh) and, therefordii) the correction of the bias of extremely
low (i.e., pessimistic) RT predictions. With respéx the latter point, when at tintethe

signal is classified as stationary, the correcttonsists in the substitution of the estimate

ﬁ(t) with the system Mean Time to Failuﬂ&ITTF(t), obtained from the available
recovery timesR'Ii'(t) of the entire population of failure trajectoriesthe reference library:

RT(1)= MTTF(I):(lilt—::N) ihz;t(;i -1 :(ﬁTl-N) ;Z‘t RT( } (1)

wheret, is the system failure time along thtn trajectory,(|i |tfi >t) is the cardinality of

the set of reference trajectories whose failureetis larger thant and R'Ii'(t) is their

residual life starting front.
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Figure 2 The flowchart of the procedure for RT estim#éion by fuzzy similarity analysis applied to a staibnary signal



In the subsequent time steps, as the scenario esjothe procedure restarts from Step 1 and

continues to update the estimateﬁﬁ’(t): in case that non-stationarity in the signal itedeed, the

F/ﬁ'(t) is computed through steps 1-5 of the procedureeraiise, F/ﬁ'(t) is taken equal to the

MTTF(t).

3. Case study

The case study considered is the same as in [460,6009a], concerning the RT in failure
trajectories of the Lead-Bismuth Eutectic eXperitabAccelerator Driven System (LBE-XADS), a
sub-critical, fast reactor in which the fission gess for providing thermal powé*(t) is sustained
by an external neutron source through spallatiactien by a proton bear@(t) accelerated by a
synchrotron on a lead-bismuth eutectic target [Bawrat al., 1992Carminati et al., 1993; Rubbia
et al.,, 1995; Van Tuyle et al., 1993; Venneri et 4093]. The physical description of the LBE-
XADS and of the failures considered are here regugdbr completeness of the information in the
paper. The primary cooling system is of pool-tygtéhviLead-Bismuth Eutectic (LBE) liquid metal
coolant leaving the top of the core, at full poweminal conditions, at temperature equal to 400 °C
and then re-entering the core from the bottom tiinaihe down-comer at a temperature of 300 °C.
The average in-core temperature of the LBE® is taken as the mean of the entrance and exit
temperatures. The secondary cooling system issadfaan organic diathermic oil at 290-320 °C, at
full power conditions. Cooling of the diathermid oi each loop is obtained through an air flow
. (t) provided by three air coolers connected in series.

A dedicated, dynamic simulation model has beenemginted in SIMULINK for providing
a simplified, lumped and zero-dimensional desaiptof the coupled neutronic and thermo-

hydraulic evolution of the system [Cammi et al.08D The model allows the simulation of the
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system controlled dynamics as well as of the fngeachics when the control module is deactivated
and the air cooler flow is kept constant.

Both feedforward and feedback digital control scherhave been adopted for the operation
of the system. The control is set to keep a ststate value of approximately 300 °C of the average
temperature of the diathermic of|*®: this value represents the optimal working poihtthe
diathermic oil at the steady state, full nominawpo of 80 MWth. On the contrary, an oil

temperature beyond the upper threshiid =340 °C would lead to degradation of its physicad a
chemical properties, whereas a temperature beleviotlier thresholdr™' =280 °C could result in

thermal shocks for the primary fluid and, eventydibr the structural components [Cammi et al.,
2006]. Conservatively, no dependence on the duratfoexposition to temperatures beyond the
threshold values has been assumed: in other wdhndssystem is considered to fail at such
temperatures regardless of the time during whietxéeeds the thresholds.

Multiple component failures can occur during theteyn life. To simulate this, the model
has been embedded within a Monte Carlo (MC) sammiocedure for injecting faults at random
times and of random magnitudes. Samples of compdadures are drawn within a time horizon of
3000 s. The set of faults considered are:

» The PID controller fails stuck, with a random floate output valuem sampled from a
uniform distribution in [0,797] Kg/s.
* The air coolers fail stuck in a random positiont theovides a corresponding air flow mass

m, uniformly distributed in [0,1000] Kg/s.

» The feedforward controller fails stuck with a cepending flow rate valuen, uniformly
distributed in [0,797] Kg/s.
» The communication between air coolers actuatorsRdBdcontroller fails so that the PID is

provided with the same input value of the previtoee step.
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The first three faults are applicable to both agaad digital systems, whereas the last one is
typical of digital systems. Furthermore, the fanlignitude probability distributions are assumed to
be uniform, even if the components may more likaly in a certain mode than in others. This
includes also rare multiple events in the set d@ifa scenarios and further tests the robustness of
the RT prediction procedure.

The sequence of multiple failures is generated dying the first failure time from the
uniform distribution [0,3000] s and the succesdaiture times from the conditional distributions,
uniform from the last sampled time to 3000 s. T&ssumption is conservative, favoring larger
number of failures in the sequence [Di Maio et2009].

The evolution of the failure scenarios may leathtee different end states, within the time
horizon of 3000 s:

1. Low-temperature failure modg {"°<T"")

2. Safe mode ;"' <T;"°<T,")

3. High-temperature failure moda{ *>T."")

The following three signals are taken for the eation of the available RT:

» Mean in-core LBE temperaturgy:©

» Mean oil temperature of the secondary heat exchamgeside ,T*

+ Mean air flow rate at the secondary heat exchacgérside,r, (t)

It is important to stress that the procedure fon@gang the fault events here implemented is
not intended to reproduce the actual stochastiaréabehavior of the system components; rather,
the choices and hypotheses for modeling the féudts the time horizon of the analysis, the number
and typology of faults, the distributions of fagutimes and magnitudes) have been arbitrarily made

with the aim of favoring multiple failures. In alegse, the components considered subjected to fault

and their types are not intended to provide a cehmasive description of the system fault behavior
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but are only taken as exemplary for generatingleamic failure scenarios to be used as reference

and test patterns.

4. Results

4.1 Application of the procedure for RT(t) prediction
For the present case studs2-dimensional reference trajectories of evolutdnTy© and
TS, relative to N= 6400 failure scenarios (differing in faulty conmgmts, times of faults

occurrence and faults magnitudes), have been usead fio et al., 2009b]. The database of

. L . : = T .
reference trajectories is organized in the strectkxkxz , wherek =—=30. The generic element
n

r(i N ,z) of the reference structure will be compared fonisirity with the z-th signal of the test
trajectory pattern containing the values of thedat=100 time steps of the trajectory. For each of
the test trajectories the six steps of the proee¢sge Appendix) are performed as follows:

Step 1: signal monitoring.

The 2-dimensional trajectory (X, %,,t) is followed starting from tim¢ =1 s to the end of

the time horizonT =3000 s, with time steps of 1 s. At each time gteijts value is appended
and stored in the matrix containing the-1=99 values of the two trajectory signals
collected at the previous times. The fuzzy simijaralgorithm for RT estimation is
activated.

Step 2: pointwise difference computation of multidimensional trajectory patterns.

The total pointwise differencé(i, j) is evaluated by resorting to Eq. (3) in the Append
with z=1, 2.

Step 3: computation of trajectory pointwise similarity and corresponding distance score.
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The pointwise differenced(i,j) are mapped into values of membershifi,j) of the

“approximately zero” FS. The bell-shaped functidriEq. (5) in the Appendix is taken with

parameters valueg =0.2 and £ =0.02, implying strong sharpness in the FS and thus in
the similarity requirement [Zio et al., 2009a]. Tdlistance scored (i, j) are then computed
by Eq. (4) in the Appendix,=1,2,...,640( j=1,2,...,30

Step 4: weight definition.

The minimum distancesd, are evaluated (Eq. (7) in the Appendix), and thktive
normalized weightsy calculated through Egs. (8) and (9) in the Append+1,2,...,640C

Step 5: RTj(t) and RT(t) estimation.

For each reference trajectory in the library, atineste RT (t) for the test trajectory is

computed (Eqg. (10) in the Appendix,=1,2,...,6400; then, the valuesfﬁ'i(t) are

aggregated in the weighted sum (Eqg. (6) in the Adpg with the weightsw previously

calculated.

Step 6: stationary signal identification and RT(t) estimation as MTTF(t).
In case a stationary signal is detected (i.(t)=T?\T( t1) :/FE'I( +2) :/F\Q'( t),
1 =1,2,..T), the Mean Time to FailurdlTTF(t) is calculated resorting to Eq. (1) and

fﬁ'(t) is set equal to it, for each time step.

The estimates of thMTTF(t) for five 2-D test pattern trajectories taken fr@fm et al.,
2009a] are plotted in Figures 3-7, in thin contimsitines with the bars of one standard deviation of

the samples(tfi —tt, >t), wheret, is the time at which the diathermic oil temperatprofile of

thei-th reference trajectory exceeds either thresh@jts or T™', with corresponding system loss

14



of functionality; theﬁ(t) estimates obtained based on trajectory segmetesgth n =100 s are

also plotted in bold circles. Initially, the estitaaof the RT matches thMTTF(t), because the

algorithm has not yet acquired enough informatitwoud the developing trajectory; then, the

algorithm starts to provide théﬁ'(t), based on the results of the fuzzy similarity gsiat the

RAT(t) values matches th&/TTF(t) in case of a stationary signal, or drifts awaynfrohe

MTTF(t) values and towards the rd@l(t) (dashed thick line), if an anomalous signal di&erais

detected. In the Figures, the bold vertical lin€liéates the time of diathermic oil threshold

exceedance; notice that none of the estimates dsc¢be actual failure time.
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4.2 Performance evaluation of the RT(t) estimation procedure

The performance of the available RT estimation @doce has been tested extensively on a
batch ofP=1280 multidimensional test trajectories, differ&oim the reference trajectories used in
the fuzzy similarity analysis upon which the RTimsttion is based. Figure 8 shows tﬁﬁ'(t)
predictions (continuous line with dark bullets) quared to the actual remaining lives for 25 failure
trajectories (graphically appended in sequence)tisg from the time in which the trajectories
deviates from the stationary nominal value. Theiagdion made in step 5 of the procedure for the
evaluation of Eg. (7) in the Appendix results icanservative trend of initial anticipation of the
available RT associated to trajectories whose raifictually occurs late in life. Also, as expected,
the largest available RT estimation errors occurthmse trajectories in which the component

failure is of low-magnitude, whose effect only slpwdrives the system to failure and
ﬁ'( t) estimation away fronMTTF(t), towards the trudRT(1).
To globally quantify the performance of the proaeguhe mean relative error (RE) at time

t, between the estima@'(t) and its true valueRT(t), is introduced:
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_12[RT()-RT(}
P& RT, (1)

RE( 1) (2)

where RTp(t) is the actual available recovery time at tinef test patterrp, and ﬁp(t) its
estimate,p=1,2,...,P.

Figure 9 shows the empirical probability densityndtion of the mean relative error
evaluated on 3000 s of evolution of the 1280 tegecttories; the distribution is skewed towards
small error values, with mean and median equal@8 @nd 0.03, respectively: this proves that the
procedure most frequently makes small relativevesdion errors.

The computational time required for the estimatidong one complete test trajectory of 3000 s is

of 20 s on an IntélCeleron M of 900 MHz.

40 T T [ T [ T
—— — Actual Remaining Life

350 | —e— Predicted Available Recovery Time ||

30+ .

N
[6)]
T

1

Available Recovery Time x50 s
o S

N
o

Figure 8 Predicted and actual remaining life for 2&est failure scenarios
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Figure 9 Empirical probability density function of the relative errors on the 3000 s of the 1280 teshjectories

Figure 10 compares the RE evaluated at time step8 e in the last 600 s when the LBE
temperature and the oil temperature are simultasigononitored. In one case, the fault detection
module is activated as in [Zio et al., 2009b] whiiethe other case the results have been obtained
with the algorithm as implemented in this work,.,i.@ithout resorting to any “a priori” fault

detection module. In both case8, in Egs. (5) and (8) of the Appendix is set equali02. It is

seen that:
- the accuracy in the estimation of the availableiRproves over time: as the available RT
decreases, the relative errors approximate thewnmalues approximately equal to 0.05.
- In the latest steps, the accuracy in the estimatiotihe available RT never exceeds a RE
value of 0.1.
- The accuracy of the unattended RT estimation dlgorinere implemented is comparable
with the one that resorts to the fault detectiordute for the identification of an anomalous

transient.
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- Also, it is expected that, by avoiding the faulte#ion task, the RT estimation procedure is
made free of possible errors in the fault deteatmdule, so that the reliability of the whole

operator support system for emergency accident gegmant is increased.

I I I I I I I I I I I I
©— signals: LBE temperature, oil temperature - Fault detection
—+— signals: LBE temperature, oil temperature - No Fault detection

L0 e e s A A B e B sy

| |
g | |
w | |
[} | |
= I I | | I
© (O [ [ |
© I €D I I I
o | [ \ | |
I | \ | | |
| | \ \ T | | | T T
| | | | | | | | |
| | \ | | | | | | |
| | \ | | | | | | |
0.05F - 1 — 1o \ o e N NN N ,éf R
o T e e
I I I I I I I I I I T N
I | I | | | I | | | I I\
0 ! ] | | | ! 1 | ! ! | | \m
12 11 10 9 8 7 6 5 4 3 2 1 0
RUL x50s

Figure 10 Relative Error evaluated each 50 s startipfrom 600 s before failure, for 1280 test trajectges, usingZ=2 signals:
in one case the fault detection module is activatddio et al., 2009b] (circles), in the other caséhé fault detection module is
not implemented (squares)

5. Conclusions

This paper extends a fuzzy similarity-analysis rodtfor estimating the available Recovery
Time (RT) during the evolution of a failure traject of a system.

The extension to the method is aimed at freeinfgoitn the need of resorting to a fault
detection module for the identification of the araous system behavior. This is expected to
increase the reliability of the method by avoidipgtential errors in the detection module. The
method of RT estimation relies on data from différegansient failure scenarios to create a library
of reference patterns of evolution; for estimating available RT of a test pattern, its evolutiated
are, then, matched to the patterns in the librad/their known residual life times are used for the

estimation, based on a multidimensional fuzzy puise similarity analysis procedure.
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The RT estimation procedure involves six main st€bsmonitoring the signal evolution;
(2) computing the pointwise difference between tbest pattern evolution monitored and the
available reference patterns; (3) evaluating thaiftidimensional fuzzy pointwise similarity and
distance score; (4) defining the weights of theividial RT estimates provided by the fuzzy
similarity of the reference patterns; (5) aggreygatinese to evaluate the system residual RT; and
(6) setting to the MTTF value the RT estimation,ewhthe system is identified as working in
stationary conditions.

Application to a literature case study concernimg RT estimation for fault scenarios in the
Lead Bismuth Eutectic eXperimental Accelerator Bnv System (LBE-XADS) has given
satisfactory results from the point of view of battcuracy of the estimation and computing time.
The increased computing time required by matchigttajectories at each time step, and not just
after the fault detection module has indicated wdt,fas expected to be repaid by the increased
reliability of the RT estimation system. Relialyiland computational time are two objectives which
can be compromised case-by-case through a projesmtisa of the number of monitored signals
upon which to base the pointwise similarity evaluatand with the use or not of a fault detection

module.
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APPENDIX

The procedure of fuzzy similarity analysis and Rlireation follows according to six steps:

23

Step 1: signal monitoring.
The Z-dimensional trajectory of signalsf (xlxzxzt) is continuously monitored

throughout the time horizon of observatidn starting from (discrete) timé=1; at each
discrete timet, its values are recorded and appended to thexdtthe values collected at

the previous time steps. For reasons which wilbbee clear in the following, the database

containing the reference trajectory patterns isaoized in a 3-D structurE[kaxz] , Where
k=— and its generic element(i,j,z) is the projection on theth signal axis ofr (i, ] )
n

which is thej-th segment, of lengthn, of values of thei-th reference trajectory,
i=1,2,..N, j=12,..k, z=1,2,....Z, normalized in the range [0.2,0.8]. For clarity’s
sake, in Figures 11 and 12 a 2-D reference trajgend its partition into 15 elements are
shown, respectively (i.eZ=2 andk=15).

At each time, the algorithm for the estimation loé available RT matches the similarity of
the developing signal trajectory to those in thienence library and combines their end

times to provide an estimate of the available Rihefcurrent trajectory.



Monitored signal Xy
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Figure 11 A bidimensional reference trajectory

Time x50 s

on a time horizonT=3000 s

Monitored signal X,

|

= i-th reference trajectory
------ Upper safety threshold
Y ——— Lower safety threshold

-

Monitored signal Xy

Figure 12 Bidimensional reference trajectory of Figre 11
partitioned into k=15 segments of length=3000/15=200 s,

i=1,2,...,15

Step 2: pointwise difference computation of multidimensional trajectory patterns.

At the current timet, the latestn-long segment of values of the test trajectory guatt

f (X0 %%, = (%, %% &= Lt= m+ 2,..} is normalized in [0.2,0.8]. The

pointwise differenced() between the-Z values of patternf (x, %, ...,% ,t) and those of

the generic reference trajectory segmefitj ,z), is computed:

(f(xt)-r(ijz)),i=12..N, j=12,.k, 2=12,..Z

3)

The matrixg[ka] contains the difference measurééi,j) between alh-long segments of

the Z-dimensional reference trajectories and the tegedtory pattern of the monitored

signals.

Step 3: computation of trajectory pointwise similarity and corresponding distance score.

In general, there are numerous practical caseshichwthe classification of objects as

‘similar’ or ‘non similar’ is gradual; in these a&s then, the similarity measure should allow

for a gradual transition [Binaghi et al., 1993; digen et al., 1999]. In the case of interest

here, this can be achieved by evaluating the paetwlifference of two trajectories with
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reference to an “approximately zero” fuzzy set (Bfgcified by a function which maps the
elementsd (i, j) of the difference matriE[ka] into their valuesx(i, j) of membership to

the condition of “approximately zero”. The distarmmred(i, j) between two trajectory

segments is then computed as:
di,j)=1-p(i,j), i=12,..N, j=12,.Kk (4)

Common membership functions can be used for thmitdeh of the FS, e.g. triangular,
trapezoidal, and bell-shaped [Dubois et al., 19B8{he application illustrated in this work,

the following bell-shaped function is used:

) -

The arbitrary parametersr and [ can be set by the analyst to shape the desired
. . o ~In(a)
interpretation of similarity into the fuzzy setetlarger the value of the ratreﬁT, the
narrower the fuzzy set and the stronger the defmibf similarity [Zio et al., 2009a].

Step 4: weight definition.

The F/ﬁ'(t) is estimated as a similarity-weighted sum of Rig( )

RT()=> wRT(),i=12,..N (6)

ity >t

The ideas behind the weighting of the individlEa'Ii'(t) Is that:i) all failure trajectories in

the reference library bring useful information fdetermining the available RT of the
trajectory currently developingi) those segments of the reference trajectorieshware

most similar to the most recent segment of lengtlof the currently developing failure
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trajectory should be more informative in the extdagion of the occurring trajectory to

failure.
To assign the weighty , the minimum distance;’ along the™ row of the matrix of

Eq. (4) is first identified:
d =min,_, , d(i,j),i=12,..N (7)

The weightw is then computed as:

W =(1—cf)[¢£_ﬁd;j i=1,2,..N (8)
and normalized:
W =W iV\é 9

Note that the smaller the minimum distance, thgdathe weight given to theth trajectory

[Zio et al., 2009a].

Step 5: RT(t) and RT(t) estimation.
Referring to the generieth trajectory in the library for which the systdailure timet, >t

(i.e., the time when the signal value exceedshheshold beyond which the system loses its

functionality), the valueRT, (1) is determined as:
RT()=t -t ,i=12..N (10)

wheret; = nmnjax( arg{cf(i ,j) :di*)) is the final time index of the latest-in-life segnt of

the i-th trajectory among those with minimum distande from the developing test



trajectory ( is the test trajectory pattern length amﬂax( argid(i ,j):di* )) gives the
J

largest column indek of r(i,») whose element is equal iy ). Thus, RT (1) is the time

available before reaching the failure thresholdim reference trajectory starting from the

end time of the latest-in-life segment of minimumtance from the developing trajectory

(Figure 13).
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Figure 13 The RT () for the i-th bidimensional reference trajectory starts fromthe end time of the latest-in-life segment of
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minimum distance from the developing trajectory

Then, the estimateﬁ'(t) of the remaining useful life along the developingjectory is

simply computed as in Eq. (6), with weights evaluated by Eq. (9).

It has to be noted that the assumptile:nmnax( arg(d(i ,j)=di*)) allows for a
J

conservative RT estimation, biased towards “pessiaiipredictions of the available RT,
because in the case that more than one segmet thieinth reference trajectory is closest
to the developing test trajectory, the latest aniaken, i.e., the one closest to failure. This is

even more conservative in case of stationary ssgadgure 2 in the main body of the paper
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provides a heuristic explanation of this and theplemented modification for its
improvement, which leads to the addition of step e procedure.

Step 6: stationary signal identification and RT(t) estimation as MTTF(t).

This is the key modification with respect to thepously presented procedure [Zio et al.,

2009a]. The details are presented in Section Beofriain body of the paper.



