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Abstract 

On-line sensor monitoring aims at detecting anomalies in sensors and reconstructing their correct signals during operation. 

The techniques used for signal reconstruction are commonly based on auto-associative regression models. In full scale 

implementations however, the number of sensors to be monitored is often too large to be handled effectively by a single 

reconstruction model. In this paper we propose to tackle the problem by resorting to a pool (ensemble) of reconstruction 

models, each one handling an individual group of signals. This approach involves two main technical steps: firstly, a 

procedure for constructing signal groups, and secondly a procedure for combining the outputs of the reconstruction models 

associated to the groups. For the signal grouping step, a wrapper optimization search is proposed to identify the optimal 

number of groups in the ensemble and the size of the groups. For the model output aggregation step, a simple arithmetic 

average is adopted. Ensemble accuracy and robustness is achieved by promoting diversity between the signal groups 

through the use of the Random Feature Selection Ensemble (RFSE) technique in combination with the Bootstrapping 

AGGregatING (BAGGING) technique for training data selection. The individual reconstruction models are based on 

Principal Components Analysis (PCA). The proposed approach has been applied to a real case study concerning 215 

signals monitored at a Finnish nuclear pressurized water reactor. The results obtained have been compared with those 

achieved by an equivalent ensemble of models based on a grouping directly optimized by a Multi-Objective Genetic 

Algorithm (MOGA). 
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1. Introduction 

Sensors contribute to the safe and efficient operation of modern plants by conveying information on the plant state to the 

automated controls and the operators. To avoid misleading information which may lead to unsafe and/or inefficient states 

of operation, it is important to detect sensor malfunctions and possibly reconstruct the incorrect signals. This requires 

monitoring the sensor performance and has the potential benefits of reducing unnecessary sensor maintenance and 

increasing confidence in the recorded values of the monitored parameters, with important consequences on system 

operation, production and accident management [1, 2]. 

The problem of validating the signals recorded by sensors can be tackled by means of empirical models based on fuzzy 

logic [3, 4] and neural networks [5, 6]. In particular, auto-associative models have been applied to the validation of nuclear 

signals [7-9]. Nevertheless, the single-model approaches typically used for signal validation can only handle a limited 

number of signals whereas practical applications often deal with a very large number of signals [1, 2].  

In this work, a procedure is proposed for the reconstruction of signals coming from faulty sensors among a large set. The 

procedure is tailored for realistic applications where the number of measured signals is too large to be handled effectively 

by a single reconstruction model [2, 10-12]. The approach is based on the subdivision of the set of signals into overlapping 

groups, the development of a reconstruction model for each group of signals and the combination of the outcomes of the 

models within an ensemble approach [13-22] (Figure 1). 

An additional advantage of adopting ensembles of diverse models is an increased robustness of the ensemble-aggregated 

output [17, 21-26]. Indeed, the conjecture is that, when performing the ensemble signal reconstruction, if the signal 

predictions obtained by the individual models are diverse (e.g. the reconstruction errors are different in magnitude and 

sign), their opportune aggregation will provide a more accurate and robust signal reconstruction [23, 24, 26]. Theoretical 

studies have investigated the concept of diversity amongst the models of an ensemble [20-23, 25, 26] and the ways of 

appropriately aggregating the outcomes of the diverse models [19, 22, 25]. 



This work intends to contribute a practical application of theoretical concepts of empirical ensemble modeling to a large-

scale problem of monitoring and reconstructing a large amount of signals recorded by sensors at a nuclear power plant. 

 

Figure 1. The multi-group ensemble approach to signal reconstruction 

Two issues are central to the ensemble approach: (1) the construction of the signal groups and (2) the combination of the 

outcomes of the individual models developed on the basis of the groups.  

In practice, the aspects most relevant to the grouping of signals are:  

(i) the groups size: groups made of a reasonably small number of signals are both more accurate and easier to handle 

[10-12, 16-18];  

(ii) the ensemble size: limiting the number of groups in the ensemble helps reducing the computational cost;  

(iii) the diversity of the groups and of the associated models: ensembles based on diverse models are generally more 

reliable and robust [17, 19, 21, 23-26]. 

In this work, the groups and ensemble sizes are derived by means of a wrapper optimization. To promote group diversity, 

signals groups are randomly generated resorting to the Random Feature Selection Ensemble (RFSE) technique [27]. The 

groups thereby created are then used to develop a corresponding number of signal reconstruction Principal Component 

Analysis (PCA) [28-31] models. The models are then trained on different data sets randomly generated using the 

Bootstrapping AGGregatING (BAGGING) approach [23, 24, 27] in order to inject further diversity in the ensemble of 

models. The methods for both signal grouping and reconstruction modelling have been chosen simple, consistently with the 

idea that simplicity is an added value in nuclear safety, where possible. Other more sophisticated methods to generate 

different training data sets exist, e.g. AdaBoost [24], which seem worth consideration in future research for nuclear 

applications. 

Regarding the integration of the outcomes of the individual models, many techniques can be adopted ranging from the 

simple arithmetic average to weighted average [17], local fusion [32] and dynamic integration techniques [19, 20], with 

increasing computational costs. In practice, there is no single combination rule that is universally recognized better than the 

others and it is still not clear that more sophisticated and complicated aggregation techniques are actually beneficial to the 

ensemble performance; then, for the same reason stated above and in absence of any other prior information, the simple 

arithmetic average is used as a valid choice for combining the models predictions [24, 33, 34].  

The paper is organized as follows. Section 2 presents the problem of signal grouping in general terms. In Section 3, the 

wrapper randomized approach for generating diverse groups of signals is described in details. An application is illustrated 

in Section 4, with regards to a real case study concerning the reconstruction of a data set of 215 signals measured at a 

Finnish nuclear Pressurized Water Reactor (PWR) located in Loviisa. Two more case studies have been considered for 

verification: the first concerns 84 signals measured at a Swedish nuclear Boiling Water Reactor (BWR) situated in 

Oskarshamn, the second the reconstruction of 920 simulated signals of the Swedish Forsmark-3 Boiling Water Reactor 

(BWR). For the Loviisa case study, a comparison is made with a Multi-Objective Genetic Algorithm (MOGA) 

optimization procedure [35-38] for ensemble group signals selection developed in [17, 18]. A discussion on the advantages 

and limitations of the proposed procedure is offered in the last Section. Finally, in an attempt to make the paper self-

consistent an Appendix reports a brief synthesis of the basic concepts of Principal Components Analysis for signal 

reconstruction. 

2. Grouping signals for diversity and optimal ensemble performance 

Given a set of available 1n  sensors’ signals if , ni ,...,2,1 , signal grouping aims at constructing K  groups of 

nmk   signals, Kk ,...,2,1 , with given required characteristics.  



The selection of the signals to insert in each group should be driven by both the individual properties of the groups and the 

global properties of the ensemble. Properties individually related to a group are, for example, the mutual information 

content of the signals in the group and the reconstruction performances of the associated model [11, 12, 16]; global 

properties of the groups ensemble are, for example, the diversity among the groups and a good redundancy of the signals in 

the ensemble, i.e., an adequate number of diverse groups containing a same signal [2, 10, 17, 18]. 

Heuristic methods such as Multi-Objective Genetic Algorithms (MOGAs) [38] have proved effective in scanning the large 

search space of possible groups
1
 to optimize their individual properties, e.g. by maximizing the correlation of the signals in 

the groups [11, 16-18] and minimizing their reconstruction errors [12]. MOGA approaches have however shown some 

limitations in guaranteeing the mentioned global ensemble properties, e.g. diversity among the groups, adequate signal 

inclusion and redundancy, at the basis of the optimality and robustness of the performance of the ensemble [18]. 

Furthermore, the high computational cost required to run a MOGA search renders the method unfeasible for large-scale 

applications involving thousands of signals.  

In this work, the RFSE technique is exploited to ensure good global ensemble properties of group diversity, signal 

coverage, and redundancy. The group size parameters, i.e. the number of signals in the groups and the number of groups in 

the ensemble, are determined by means of a wrapper search aimed at maximizing the ensemble performance in terms of 

minimum reconstruction error. PCA signal reconstruction models are trained on data sets constructed by BAGGING to 

inject further diversity in the models themselves. 

3. The randomized wrapper approach to signal grouping 

As previously stated, high diversity in the ensemble of models is beneficial to its performance of signal reconstruction. To 

this aim, in this work diversity is imposed onto the PCA models by randomizing the features of the groups upon which they 

are built with the RFSE technique [27] and the data upon which they are trained with the BAGGING technique [23, 24, 

27]. Optimization of the group size m  and ensemble size K , is also carried out to improve the performance of the 

ensemble. 

3.1 Injecting and verifying (input) diversity in the signal groups by RFSE 

The RFSE technique consists in randomly sampling, with replacement, from the n  available signals K  subsets kF , 

1,2,...,k K , each constituted by m  signals. This guarantees high signal diversity in the groups upon which the PCA 

models are built and provides a much faster construction of the signal groups compared to the optimality-driven searches, 

e.g. MOGA-based [17, 18]). Indeed, RFSE is a completely random technique in which no optimization of the composition 

of the individual groups is sought, i.e. no relevance is given, for example, to the correlation between the signals in the 

groups (as in the filter MOGA search presented in [11, 16-18]) or to their capability of efficiently reconstructing one 

another (as in the wrapper MOGA search presented in [12]). The coverage of all the signals is not a priori guaranteed by 

the random nature of the RFSE approach itself; nevertheless, since the probability that a signal does not appear in any 

group is 

K
n m

n

 
 
 

, a reasonable choice of the values of the ensemble parameters m  and K  can in practice guarantee 

coverage of all the signals in the ensemble with adequate redundancy, as shown in Section 4.  

As previously mentioned, an optimal signal grouping structure should ensure on one side a good signal redundancy in the 

groups (i.e., for any signal there is a suitable number of groups containing it) but, on the other side, a diverse composition 

of the groups in terms of the signals contained. In other words, the groups must partially overlap (in order to have each 

signal included in more than one group), while being sufficiently diverse among each other. 

An empirical measure is here proposed to verify the diversity injected by the RFSE in the resulting ensemble grouping 

structure in terms of the diversity in the signal composition of the different groups (the so-called input diversity). Let us 

consider a generic ensemble of K  groups with different sizes km , Kk ,...,2,1 . The pairwise diversity between two 

generic groups 1k  and 2k  of sizes 
1km and 

2km , respectively, is computed as: 
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 Considering n  signals, the number of possible groups of different sizes nm ,...,2,1  that can be generated is equal to 
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  is the normalized fraction of signals ( 21 ,kk
comn ) in common between the two groups. The 

measure takes the form of a reversed sigmoid function on the compact support  1,021 ,


kk
com , as shown in Figure 2. It is 

such that, high pairwise input diversity values are assigned to those pairs of groups whose fraction of common signals is 

relatively low (e.g. lower than 30%), whereas it penalizes group pairs with too many signals in common (e.g. more than 

50%). 

 

Figure 2. Group pairwise input diversity function, Eq. (1)  
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) if the 

two sets of signals are completely disjoint; if, instead, the sizes of the two groups differ, then the maximum number of 

signals in common for the two groups is  1 2

1 2

,
, min ,

k k
k kcom MAXn m m  and thus 121,

, 
kk

MAXcom . This well represents the fact 

that even if a group 1k  is completely included in another one 2k , i.e. 21 kk  , their pairwise input diversity is not zero due 

to the presence in 2k  of some signals not included in the smaller set 1k . 

To compute input diversity at the level of the ensemble of groups, first the diversity for each signal ni ,...,2,1  is 

calculated. Considering the generic signal i  included in iK  groups, the signal input diversity 
i
ind  is taken as the average 

of its iK  groups’ pairwise diversities 21 ,kk
indiv , iKkk ,...,2,1, 21  , 1 2k k , viz.: 
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The ensemble input diversity in  is, then, simply computed as the average of the signals diversities: 
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3.2 Injecting diversity in the training data sets through BAGGING 

Further diversity can be injected in the ensemble of models by training them on different data sets. In this work, this is 

achieved by the BAGGING technique which has proved successful in many applications [23, 27]. 

First of all, the data set X  of N  patterns available is partitioned into a training set XTRN  (made of TRNN  patterns) and a 

test set XTST  (made of TSTN  patterns). The former is used to train the individual models, whereas the latter is used to 

verify the ensemble performance in the reconstruction task.  

In general, BAGGING amounts to generating a number BN  of bootstrapped replicates hB
trn

,
X , BNh ,...,2,1  of the training 

set trnX  by randomly sampling (with replacement) for each replicate a fraction  1,0B  of the total number of training 

patterns trnN . If the fraction B  is large, the individual BAGGING training sets overlap significantly and the probability 

of not including a training pattern in any of the BAGGING training sets is very small, so that all the training patterns are 

likely to appear in at least one BAGGING training set and some patterns will appear multiple times in a given set; instead, 

if the fraction is small, some BAGGING training sets can be completely disjoint and some training patterns might not 

appear in any BAGGING training set. 

3.3 Verifying (output) diversity in the ensemble of models 

Figure 3 illustrates the combination of the RFSE and BAGGING techniques to inject diversity in the ensemble. As a result 

of the RFSE, K  signal-diverse groups are identified, upon which K  PCA models are constructed; BAGGING then 

proceeds to sampling (with replacement) a number BN K  of different training sets 
kB

trn
,

X , 1,2,...,k K , each constituted 

by a fraction B  (equal for all the BAGGING subsets) of the original number of training patterns trnN , i.e.  
B
trn B trnN N ; 

finally, the generic k -th model based on the signals of group k , randomly selected by RFSE, is trained with the set of data 
kB

trn
,

X , randomly sampled by BAGGING, for 1,2,...,k K . 

 

Figure 3. Combined scheme of the RFSE and BAGGING techniques to inject diversity in the ensemble 

The total amount of diversity injected in the ensemble, hereby called output diversity, is the result of the combination of the 

RFSE and BAGGING randomizations.  



To verify the amount of output diversity effectively injected in the ensemble, a measure is here proposed, which is directly 

related to the signal reconstruction performances obtained by the models of the ensemble. Let us consider a generic signal 

i  included in iK  groups, 1,2,...,i n . For a given test pattern t , different from those used for the training of the iK  

models, each group k  provides the individual reconstruction ˆ ( )k
if t  of the signal ( ),  1,2,..., ,  1,2,...,i i tstf t k K t N  . For 

an accurate and robust reconstruction of the test values, the groups’ reconstructions, or, analogously, their associated 

reconstruction errors, must be diverse. In this sense, let )()(ˆ)( tftft i
k

i
k
i  , iKk ,...,2,1 , tstNt ,...,2,1 , be the 

reconstruction error on the t -th test pattern of signal i  by group k . If the errors ( ), 1,2,...,k
i it k K   have all the same 

magnitude and sign, then their aggregation (i.e., the ensemble reconstruction of the t -th point of signal i ) will be affected 

by a bias and will not be accurate; on the other hand, if errors are diverse in magnitude and sign (i.e. if the groups provide 

diverse reconstructions), their combination provides a more accurate estimation of the test pattern of the signal.  

In practice, this means requiring errors to have different signs and magnitudes distributed around zero, so that, from a 

mathematical point of view, this favourable situation for the generic signal i  could be described in terms of a quasi-normal 

Gaussian distribution, with mean equal to zero and standard deviation  , of the iK  groups’ reconstruction errors of each 

t -th test value, i.e.  1 2( ), ( ),..., ( )iKk k
i i it t t   ~ ),0( N .  

On this basis, we define a procedure to measure the output diversity of the iK  groups in reconstructing the generic point t  

of signal i . First, the empirical cumulative distribution function (cdf) )(t
K i

F  of the groups’ reconstruction errors )(tk
i , 

iKk ,...,2,1 , is computed: 
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where 
 )(tk

i

I  is the indicator function equal to 1 if  )(tk
i  and 0 viceversa. 

The empirical (real) cdf of the reconstruction errors is compared with the (ideal) cdf of a quasi-normal Gaussian 

distribution ( )GF   of mean zero and given   and the maximum absolute distance 
1,2,...,
max ( ( )) ( ( ))

i
i

t k k
t K i G i

k K
D F t F t 


  , 

 1,0tD , between the two cdf’s is computed (Figure 4)
 2

. A small distance tD  corresponds to a good distribution of the 

reconstruction errors, whereas a large distance reveals the presence of a bias in the reconstruction of the t -th signal’s 

value. 

 

Figure 4. Comparison in terms of maximum absolute distance )( tD  between the empirical )( t
K i

F  and Gaussian )( GF  

cdfs. 
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 Operatively and without loss of generality, we consider an ideal Normal distribution ( ) (0,1)GF N   and, for an honest 

comparison, we pre-normalize the group reconstruction errors ( ), 1,2,...,k
i it k K   in order to have a standard deviation 

equal to 1 in the real distribution ( )
i

t
KF  . 



The pointwise output diversity between the iK  groups in reconstructing the t -th value of the i -th signal is simply 

computed as t
t
i Ddiv 1 . The output diversity i

outd  for signal i  is taken as the average of the pointwise diversities: 
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Finally, the ensemble output diversity is the average of the signals output diversities: 
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3.4 Determining the group size and number 

In this work, a wrapper optimization of the ensemble performance is carried out in order to determine the group size optm  

(i.e. the optimal number of signals to have in each group, equal for all groups in the ensemble) and the ensemble size optK  

(i.e. the number of groups in the ensemble, each one constituted by optm  signals). 

The optimal group size optm  is a problem-dependent parameter [27], which is chosen within a pre-defined range of group 

sizes, i.e.  maxmin , mmmopt  . A crude, exhaustive wrapper approach is here adopted. Operatively, for each candidate 

group size  maxmin , mmm , an ensemble of K  groups of m  signals is generated by randomly sampling the signals of the 

groups by RFSE, K  corresponding PCA-based reconstruction models are trained on different data sets obtained by 

BAGGING and the ensemble reconstruction performance is computed. Since the scope of the work is to provide a robust 

ensemble of groups, the ensemble performance is computed also on a set of test signals artificially disturbed (see Section 

4.1 for details on the disturbance procedure). The optimal group size optm  is the one corresponding to the ensemble of 

groups providing the best reconstruction performances on both undisturbed and disturbed signals. Notice that searching for 

an optimal group size equal for all groups is necessary in practice to reduce the number of parameters to be optimized. 

A relevant issue for robust signal reconstruction is that each signal i  be included in a suitable number of groups 1iK , 

i.e. to have appropriate redundancy of signals representation in the ensemble. The average signal redundancy in the groups 

of the ensemble can be computed as: 
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Considering that different overlapping groups have some signals in common, or, dually, different signals have some groups 

in common, the total number of signals (with repetitions) in the ensemble of groups can be expressed either by summing 

the number of signals km  constituting each group Kk ,...,2,1  (i.e., the groups’ sizes) or by summing the number of 

groups iK  including each signal ni ,...,2,1  (i.e., the signals’ redundancies), viz.: 
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In the case in which each group includes the same number of signals (i.e., mmk  , k ) and each signal is included in the 

same number of groups (i.e., RK i  , i ), Eq. (8) becomes: 

 RnmK             (9) 

For a given (optimal) group size optm , the (optimal) number of groups optK  in the ensemble can be determined by fixing 

the desired (optimal) signal redundancy optR , viz.: 



 opt
opt

opt R
m

n
K            (10) 

The optK  groups, each one constituted by optm  signals, are then generated resorting to the RFSE technique and the 

corresponding PCA-based reconstruction models are BAGGING-trained. 

Figure 5 sketches the scheme of the overall algorithm for devising and verifying the ensemble of models for signal 

reconstruction. 

 

Figure 5. Sketch of the ensemble algorithm for signal reconstruction 

3.5 Combination of the outcomes of the models in the ensemble 

The combination of the outcomes of the ensemble of models is performed by simple averaging [13, 22, 23]. This way of 

combining the models outputs can be seen as an extension to a regression problem of the Simple Voting (SV) technique 

adopted in classification problems to combine the class assignments of the single classifiers constituting the ensemble [14, 

28].  

When the TSTN  patterns of the test set are fed in input to the generic k -th PCA model, based on the optm  signals of group 

k  and trained on the 
B
TRNN  BAGGED patterns, this gives in output the predictions ˆ ( )k

if t , 1,2,..., TSTt N , optmi ,...,2,1

. The ensemble reconstruction of the TSTN  patterns of the generic i -th signal, ˆ ( )E
if t , 1,2,..., TSTt N , 1,2,...,i n , is then 

obtained by averaging of the predictions ˆ ( )k
if t  of the iK  groups including signal i : 
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To evaluate the ensemble performance, first the absolute signal reconstruction error is computed as
3
: 

                                                 
3
 In the application that follows, each signal of the validation set has been previously normalized in the range [0.2, 1], for 

convenience. 
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Then, an ensemble performance index is computed as the average of the absolute signal reconstruction errors: 
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4. Application 

The ensemble approach has been applied to a real case study concerning the validation and reconstruction of 215 signals 

measured at a nuclear Pressurized Water Reactor (PWR) located in Loviisa, Finland. A total number N =12713 of 

215-dimensional patterns is available, 1 2 215( ), ( ),..., ( ),..., ( )if t f t f t f t , Nt ,...,2,1 . Data signals have been sampled every 

hour from February 28, 2006 to November 1, 2007 from a corresponding number of sensors and include the measurements 

related to two plant outages occurred in the periods from June 26 to October 1, 2006 and from September 8 to September 

23, 2007, respectively. A set mX  constituted by 6000mN  patterns is used for the wrapper determination of the groups’ 

optimal size optm ; a set RBX  constituted by the remaining 6713RBN  patterns is used for the wrapper determination of 

the ensemble size optK  and the BAGGING fraction B . Notice that the patterns of the transient related to the first outage 

are included in mX , while those of the transient of the second outage are in RBX . The PCA models (see Appendix) have 

been constructed with the code http://lib.stat.cmu.edu/multi/pca, adapted to perform the signal reconstruction task of 

interest here. 

4.1 Determination of optm  

The optimal size optm  of the ensemble’s groups is sought in the range of values  40,20m . The group dimensions in this 

range are expected to lead to accurate and robust regression models, while being at the same time easy to handle from a 

computational viewpoint. For verification purposes, the search has been further stretched up to group sizes max 70m  . 

Operatively, for each candidate group size 20,21,...m  , an ensemble constituted by 150K  groups is generated by 

randomly sampling m  signals in each group. The ensemble performance is then computed following the scheme illustrated 

in Figure 5 and the ensemble error 
E  is computed as Eq. (13). 

A robust ensemble of models is expected to be able to reconstruct the signals from faulty sensors, e.g. due to random 

noises, offsets or drifts. In other words, when a faulty signal is sent in input to the PCA models which include that signal, 

their ensemble should still provide in output a good estimate of the true value of the signal, by exploiting the information 

coming from the non-faulty signals in the groups of the ensemble.  

For verification purposes, a partially faulty test set has been generated by introducing anomalies in a fraction of the 

patterns. More precisely, the signal values of a generic test pattern are altered by a random noise (with probability 

02.0RNp ) or by setting them equal to the offset value of the corresponding sensor (with probability 01.0OFp ); with 

probability 0.97 they are not affected at all. The ensemble of groups is then tested on this test set of disturbed signals and 

the corresponding performance 
*E  is computed as Eq. (13). 

Actually, to account for the variability of the training and test sets, five ensembles (each constituted by 150K  groups 

with randomly sampled signals) have been generated for each group size m  and for each of the five ensembles the 

computation of the accuracy and robustness indicators has been 5 times cross-validated. The overall ensemble performance 

associated to the generic group size m  is finally computed as the average over all cross-validations of all different 

ensembles. 

Figure 6 shows the results of the analysis. In general, ensembles built on large groups are more accurate on undisturbed 

signals (smaller 
E  values, Figure 6 left), whereas those built using both small  30m  and large  60m  groups have 

slightly worse performances on disturbed signals (larger 
*E  values, Figure 6 right), i.e. they are less robust. Notice that, 

http://lib.stat.cmu.edu/multi/pca


despite the performance differences are very small, at least for the case of undisturbed signals, there is a trend revealing a 

tentative optimal group size.  

Small values of optm  have not been considered since in general reconstruction models built with few signals are not robust, 

i.e. if one or more signals are disturbed or missing the reconstruction of all the others is negatively affected. For this 

reason, within the range [20-40], 38optm  shows the best compromise between accuracy and robustness and is chosen as 

the ensemble groups’ optimal size.  

 

Figure 6. Performances of the ensemble for different group sizes ( m ) on undisturbed signals (
E , left) and disturbed 

signals (
*E , right). Cross-validation statistical errors (one standard deviation above and below the average) are also 

reported in the Figure. 

4.2 Determination of optK  and B  

Once the optimal group size optm  has been fixed, it is possible to proceed to determine the optimal ensemble size optK  and 

BAGGING fraction B . As explained in Section 3.4, the ensemble size is obtained by the empirical relation of Eq. (9), for 

a given desired signal redundancy optR . Eight candidate values for optR  have been chosen, based on an expert engineering 

evaluation; correspondingly, eight candidate ensemble sizes optK  have been identified. These values are reported in Table 

1, together with the actual mean signal redundancy (computed as Eq. 7) and standard deviation obtained after the groups 

have been created with the RFSE procedure. For the BAGGING fractions, seven values have been chosen, namely 1, 0.8, 

0.6, 0.4, 0.1, 0.02 and 0.005; the case of no BAGGING procedure (in which all the optK  models are trained using the same 

data set) has also been considered. 

 

Required 

redundancy, 

optR  

Ensemble 

size, 

optK  

Actual 

redundancy,  

R  

10 57 10.07 ± 3.12 

15 85 15.02 ± 3.91 

20 114 20.14 ± 4.67 

25 142 25.09 ± 5.30 

30 170 30.04 ± 6.05 

40 227 40.12 ± 6.98 

50 283 50.01 ± 7.54 

60 340 60.09 ± 8.99 



Table 1. Pre-defined, desired values for optR , corresponding ensemble sizes optK  and actual redundancies R . 

The results of the joint optimization of optK  and B  are reported in Figure 7 in terms of ensemble accuracy, i.e. 

reconstruction errors on undisturbed signals (top graph), and robustness, i.e. reconstruction errors on disturbed signals 

(bottom graph). 

 

Figure 7. Results of the joint optimization for determining the optimal ensemble size optK  and bagging fraction B  in case 

of undisturbed (top graph) and disturbed (bottom graph) signals. 

Concerning the ensemble size, in general, high signal redundancy and, correspondingly, large numbers of groups guarantee 

better accuracy and robustness. Nevertheless, using a large number of groups in the ensemble leads to a considerable 

increase in the computational cost of training and testing the models, with only a slight improvement of the ensemble 

performances.  

Indeed, the error scales are small (especially for the undisturbed signals,) and the error bars (which have not been inserted 

for visual clarity) are superposed. Nevertheless, from an operative point of view, a decision on how many groups to use 

and which bagging fraction to adopt must be made. For this reason, 25optR  is the value chosen for the desired signal 

redundancy and, correspondingly, 142optK  is the fixed ensemble size. This choice allows having good ensemble 

performances with a low computational cost and furthermore it allows having an honest comparison with the genetic 

algorithm-based optimized grouping [18] which is presented in Section 4.4. 

Concerning the BAGGING procedure, in general the results show that injecting diversity by training the models on 

different data sets improves the ensemble performances. Furthermore, the reconstruction errors decrease (especially for 

disturbed signals) if the fraction of sampled training patterns 
B
trnN  in the bagging training sets becomes smaller. In fact, by 

so doing, many BAGGING training sets are completely disjoint and therefore highly diverse.  

The minimum reconstruction error is obtained for 1.0B  in the case of undisturbed signals and 02.0B  in the case of 

disturbed data. The remarkable decrease of the ensemble error on the disturbed signals when choosing 02.0B  instead 

of 1.0B  leads us to retain 02.0B  as the optimal fraction, despite a slight worsening of the ensemble performances 



on the undisturbed set. Such a low value can be explained by the fact that excluding many training patterns from the signal 

data set allows removing with high probability those spurious signal measurements (e.g. spikes) that usually compromise 

the reconstruction of all the signals in the single groups. 

Finally, if the fraction becomes too small (e.g., 005.0B ), the ensemble performances considerably worsen due to the 

lack of data representation in the BAGGING training sets. 

4.3 BAGGING 

This Section intends to illustrate specific situations in which Bagging is and is not effective in terms of the output diversity. 

Indeed, the BAGGING procedure is intended to enhance the output diversity of the ensemble. According to the adopted 

output diversity measure for the generic signal i , the models built using the signals of its iK  groups are diverse if they 

make different errors in reconstructing the signal. More precisely, it is conjectured that the most beneficial diversity is 

achieved if the reconstruction errors for each signal’s test point are distributed as a quasi-normal Gaussian function 

(Section 3.3).  

In order to show the effects of BAGGING, two test patterns of signal 19 included in 2519 K groups are here analyzed in 

details: the first (#196) is a signal measurement taken during normal plant operation, whereas the other (#731) corresponds 

to a measurement during plant shut-down. In Figure 8, the effects of BAGGING on the errors distribution of the 25 groups 

including signal 19 on the two test patterns are reported in both cases of undisturbed (top graphs of Figure 8) and disturbed 

(bottom graphs of Figure 8) patterns. When the pattern is disturbed, performing BAGGING allows obtaining more diverse 

groups predictions (i.e. the groups’ errors distribution is more similar to that of a quasi-normal Gaussian) and thus a more 

accurate and robust reconstruction of the pattern’s correct value. On the other hand, if the pattern is undisturbed, 

performing BAGGING can degrade the ensemble performance by reducing the groups diversity in the reconstruction of 

that pattern, i.e. by negatively affecting the distribution of the groups’ errors and rendering it quite dissimilar to the 

Gaussian cumulative distribution, as for pattern 196 (top-left graph).  

Furthermore, looking at the results for pattern 731 (corresponding to the shut-down transient) one sees that the ensemble 

trained without BAGGING does not become aware of the disturbance affecting it (bottom-right graph) and the errors 

distribution remains almost unaltered, as evident from the comparison between the top-right and bottom-right graphs; 

instead, BAGGING allows recognizing the occurrence of the disturbance and the distribution of the models’ errors is 

adjusted to become more similar to a quasi-Gaussian distribution. In this view, the superior performance in the 

reconstruction of pattern 731 without disturbance obtained with BAGGING (top-right) can be explained by considering the 

transient part of the signal as disturbances, on whose reconstruction BAGGING has certainly positive effects. 

In this sense, bagging has proved effective in improving the performances on disturbed data more than on the undisturbed 

ones. 

 



 

Figure 8. Effects of BAGGING on the distribution of groups errors in reconstructing test pattern number 196 (left graphs) 

and 731 (right graphs), when undisturbed (top graphs) and disturbed (bottom graphs). 

4.4 Comparison with the MOGA approach to signal grouping 

In order to evaluate the advantages and limitations of the proposed ensemble approach, a comparison to the signal grouping 

based on Multi-Objective Genetic Algorithm (MOGA) optimization investigated in [18] is proposed in this Section. The 

comparison is made on an ensemble of 150 groups. 

In the MOGA approach, the search for the set of 150MOGAK   optimal groups of signals has been iteratively carried on by 

optimizing (i.e. maximizing) the correlation between the groups’ signals and the input diversity between the groups (the 

interested reader may refer to [18] for a fully detailed explanation). The comparable ensembles size allows for an honest 

comparison of the two techniques.  

Concerning the input diversity in  (Eq. 3), i.e. the average degree of group overlapping in terms of signals, the RFSE 

shows a considerable improvement with respect to the MOGA approach ( 8884.0RFSE
in , whereas 6750.0MOGA

in ). 

This proves that, according to the adopted measure, randomly selecting the signals in the groups corresponds to a high 

injected diversity. As illustrated in Figure 2, the RFSE groups (all with 38optm  signals) have on average 31% of signals 

in common, whereas the MOGA groups (ranging from 8 to 147 signals), show on average 43% of signals in common due 

to the presence of small groups which tend to be more easily included in large groups. 

Figures 9 and 10 report the ensemble reconstruction errors (Eq. 13) and output diversities (Eq. 6), respectively, computed 

for undisturbed (
E , out ) and disturbed (

*E ,
*
out ) signals, using the PCA models based on the 142optK  and the

150MOGAK   groups obtained from the wrapper randomized (by RFSE) and MOGA techniques, respectively. The two 

ensembles are compared with and without performing BAGGING. 



Enhancing input diversity with the RFSE approach improves the robustness of the ensemble on disturbed signals ( *E , 

Figure 9) and corresponds to an increase of the output diversity on disturbed signals ( *
out , Figure 10). Nevertheless, the 

output diversity on undisturbed signals ( out , Figure 10) of the RFSE groups without BAGGING is lower and 

correspondingly the performance is worse ( E , Figure 9). This performance degradation can be explained by the fact that, 

while in the MOGA the signals in the groups are selected based on their mutual correlation (a characteristic conjectured to 

be related to their capability of regressing one another [11, 12, 16-18]), the signals in the RFSE groups are randomly 

selected regardless of their mutual correlation or any other criterion for optimizing their reconstruction capabilities. 

The robustness of both RFSE and MOGA ensembles ( *E , Figure 9) is considerably improved when BAGGING is 

applied as indicated by the increase of the corresponding ensemble output diversities on disturbed signals ( *
out , Figure 

10).  Nevertheless, when performing BAGGING on the RFSE ensemble, the increase of the output diversity on undisturbed 

signals ( out , Figure 10) is not followed by an increase on the reconstruction performances on undisturbed data (
E , 

Figure 9). In general, performing BAGGING degrades the model accuracy in reconstructing undisturbed signals.  

Finally, notice that BAGGING slightly contributes to RFSE at increasing the undisturbed error E , whereas the effect on 

E  due to RFSE is more evident when comparing RFSE with MOGA. This means that too much diversity randomly 

introduced in the groups does not improve the capability of reconstructing undisturbed signals, which instead comes from 

having highly correlated signals (as in the MOGA groups); on the other hand, a robust signal reconstruction in case of 

disturbances is due to high models diversity (as in the RFSE and MOGA approaches with BAGGING). 

The robustness of the RFSE and MOGA ensembles has been then specifically tested for comparison on the reconstruction 

of faulty signals in case of multiple sensor failures. Ten signals have been chosen as objects of the analysis. 

Approximately, the first half of the signals has been left undisturbed as in the normal operation, while, in order to simulate 

a sensor failure, a linear drift decreasing the values of the signals up to 25% of their real values has been introduced in the 

remaining test values. The validation set has been linearly divided into training and test only once, i.e. without cross-

validation. 

Figure 11 shows the results of the reconstruction of signal 214 (electrical power) obtained by the RFSE and the MOGA 

approaches both trained with BAGGING procedure ( 0.02B  ). When the signal is undisturbed the highly correlated 

signals of the (less diverse) MOGA groups allow for a more accurate reconstruction, whereas as soon as the drift begins the 

more diverse RFSE groups are capable of providing a more robust signal reconstruction. 

Finally, in order to give an overview of the advantages and limitations of the two approaches, Table 2 summarizes the 

characteristics of the signal grouping structure and the ensemble reconstruction performances obtained by the RFSE and 

MOGA approaches, respectively.  



 

Figure 9. Comparison of the MOGA and RFSE approaches to signal grouping in terms of the ensemble reconstruction 

errors on undisturbed (
E ) and disturbed (

*E ) signals, with and without performing BAGGING 

 

Figure 10. Comparison of the MOGA and RFSE approaches to signal grouping in terms of the ensemble output diversity 

measured when regressing undisturbed ( out ) and disturbed (
*
out ) signals, with and without performing BAGGING 



 

Figure 11. RFSE (dots) and MOGA (stars) ensemble reconstruction of signal 214 (light line) when partly affected by a 

linear drift (dark line) 

 



 

 RFSE MOGA[11] 

Signal 

grouping 

Optimized 

parameters 

Group size, signal redundancy and number 

of groups (wrapper approach). 

Intra-group signals correlation and inter-

group signals diversity (filter approach). 

Group size, m  

Controlled by wrapper optimization 

accounting for accuracy and robustness. 

The same (38) for all groups. 

Neither controlled, nor optimized. Groups 

of different sizes ranging from 8 to 147 

signals. 

Signal 

redundancy, 

R  

Controlled a priori and optimized based 

on accuracy and robustness. Maintained 

on average after selecting randomly the 

groups’ signals and evenly distributed 

among the signals. 

Not imposed a priori, but indirectly 

optimized by maximizing signals diversity 

in the groups. Unevenly distributed among 

the signals. 

Number of 

groups 

(ensemble 

size), K  

Set as a function of the optimized group 

size and signal redundancy.  

Set a priori according to the dimensions of 

the solution search space. Strongly 

influencing the computational cost of the 

optimization.  

Computational 

cost 

Medium-low; dependent on the type of 

regression model adopted to run the 

wrapper optimization of the ensemble 

dimension parameters, optm  and optK . 

High; strongly related to the ensemble 

dimension parameters, i.e. the number of 

signals and groups involved in the search. 

Ensemble 

signal 

validation 

Ensemble input 

diversity 

Very high; due to signals random 

selection. 

Medium-high; optimized by enhancing 

diversity between the groups, but 

indirectly reduced by maximizing signals 

correlation. 

Accuracy 

(reconstruction 

of undisturbed 

signals) 

Low; due to lack of optimization of 

groups individual properties (e.g. mutual 

correlation). 

High; due to high signals correlation in the 

groups achieved during the optimization. 

Ensemble 

output diversity 

High; mostly due to model diversity 

injected with the bagging technique, but 

also increased by the combined injection 

of signals diversity (with random 

selection). 

Medium; due only to the BAGGING 

procedure.  

Robustness 

(reconstruction 

of disturbed 

signals) 

High; due to the presence of diverse 

information both in the groups’ signals 

(RFSE) and in the training data sets 

(BAGGING). 

Medium; due only to the BAGGING 

procedure. 

Table 2. Summary of the characteristics and performances of the RFSE and MOGA approaches 

4.5 Validation of the approach on two additional  case studies 

The overall RFSE approach has been verified on two different case studies for validation. The first concerns 84 signals 

measured at a Swedish nuclear Boiling Water Reactor (BWR) situated in Oskarshamn, the other the reconstruction of 920 

simulated signals of the Swedish Forsmark-3 Boiling Water Reactor (BWR). The data available for the measured 84 

signals have been sampled every 10 minutes from May 31, 2005 to January 5, 2006 from a corresponding number of 

sensors, providing a total amount of 30080N   time samplings. Regarding the 920 signals, the sensors measurements 



have been simulated with a sampling rate of one hour, under conditions of reactor start up, normal operation and shut 

down. 

Table 3 briefly reports the characteristics of the data sets and the grouping parameters set with the same wrapper 

optimization hereby proposed. Notice that in order to limit the number of groups in the ensemble which greatly affects the 

computational cost optR  for the Forsmark-3 case study has been set very low. Notice also that the value of the optimal B  

is higher for these case studies. This is due to the fact that data contain a smaller number of spurious measurements 

(especially the simulated data). The results of the ensemble signal reconstruction in terms of disturbed and undisturbed 

errors with and without BAGGING are also reported in Table 3; the performances resemble those achieved in the previous 

case study. 

 Oskarshamn case study Forsmark-3 case study 

Number and type of signals 84 measure signals 920 simulated signals 

Number of available measurements, N  30080 5463 

Number of signals per group, optm  25 70 

Required redundancy, optR  15 7 

Number of groups in the ensemble, optK  51 92 

Optimal bagging fraction, B  0.25 0.4 

Undisturbed 

reconstruction error, 
E  

No BAGGING 8.23 × 10
-4 

5.53 × 10
-4

 

BAGGING 9.44 × 10
-4

 7.71 × 10
-4

 

Disturbed 

reconstruction error, 
*E  

No BAGGING 7.11 × 10
-3

 3.39 × 10
-3

 

BAGGING 3.34 × 10
-3

 1.28 × 10
-3

 

Table 3. Characteristics, parameters and ensemble performances of the Oskarshamn and Forsmark-3 case studies. 

Finally, the results of the Oskarshamn case study without Bagging can be compared with those achieved by using the 

Multi-Objective Genetic Algorithm approach to signal grouping presented in [17]. The MOGA has been aimed at 

searching for 100 optimal groups of signals by maximizing the correlation between the groups’ signals and the input 

diversity between the groups. The reconstruction errors on undisturbed (
E ) and disturbed (

*E ) signals obtained by the 

MOGA approach are 9.39 × 10
-4

 and 16.7 × 10
-3

, respectively. Even though the comparison has been carried on a non-

comparable ensemble size (51 and 100 groups for the RFSE and MOGA, respectively), still the results confirm the higher 

robustness of the RFSE approach in reconstructing disturbed signals. 

In general, even though the methodology proposed in this work is obviously problem-dependent with respect to the optimal 

grouping parameters which must be discerned for the specific data set, these results show that it is applicable to any 

problem involving a large number of signals to be validated and reconstructed for which training a single model entails 

convergence problems (such as for the iterative training of Auto-Associative Neural Networks) and shows significantly 

less robustness.  

5. Conclusions 

In this work, a novel approach to the reconstruction of the signal values from faulty sensors has been proposed, based on an 

ensemble of PCA models. The set of sensor signals, too large to be handled effectively with one single reconstruction 



model, is subdivided into small, overlapping groups and a PCA-based reconstruction model is developed for each group. 

The outcomes of the models are then combined by simple averaging to obtain the ensemble signal reconstruction. 

The fundamental characteristic of diversity in the ensemble models has been generated by randomly sampling the signal 

features in the groups (by the RFSE procedure) and a fraction of the patterns for training the corresponding reconstruction 

models (by the BAGGING technique). The dimension parameters of the ensemble (i.e., the size of the groups and the 

number of groups in the ensemble) have been optimized by a direct wrapper approach. 

The overall modelling scheme has been applied to the reconstruction of signals collected at a Finnish nuclear pressurized 

water reactor. Two additional case studies have been analyzed for validation purposes. The performances of the proposed 

approach have been compared with those of an equivalent ensemble obtained by means of a multi-objective genetic 

algorithm aimed at maximizing the intra-group signal correlation and the inter-group signal diversity. Considering the 

difficulties of calibrating the ensemble dimension parameters and of maintaining the group signals diversity in the MOGA 

optimization, and its not negligible computational cost, the RFSE approach has proved more efficient for large-scale 

applications involving hundreds of signals. 

The approach proposed has shown considerable robustness in reconstructing signals when in presence of disturbances and 

drifts. At the same time, it allows to control and optimize the ensemble dimension (number of groups and of signals in the 

groups), which is fundamental for practical applications. On the other hand, not considering in any way the optimization of 

the models reconstruction capability is paid by a (small) loss of accuracy in reconstructing undisturbed signals. Finally, the 

performances of the overall RFSE approach have been verified on two different case studies providing similar satisfactory 

results and, in general, the methodology here presented has proved to be fast and robust and is currently object of further 

improvements. 

The significance of the findings is to be framed within the practical problem tackled and goes beyond the numerical values 

of the results obtained. The ensemble approach proposed provides a feasible way for handling the validation and 

reconstruction of a set of a large number of signals,which cannot be handled by a single model. The method has proved its 

effectiveness, its low computational cost (an essential aspect for the application of any on-line sensor monitoring system) 

and its applicability to different signal sets. Finally, even though the numerical values show sometimes little improvements 

with respect to the reconstruction error, these must be seen in terms of enhanced robustness and plant production and safety  

when the validated and reconstructed signals are effectively used during operation. In this respect, notice the criticality to 

have a robust and accurate reconstruction of those signals that are used by the plant control systems, for which a small error 

in the reconstruction can lead to wrong control actions, possibly with significant production losses and safety threats: this 

last aspect is part of currently ongoing research. 
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Appendix. Principal Component Analysis (PCA) for signal validation and reconstruction 

In this Appendix, we briefly sketch the procedural steps of Principal Component Analysis (PCA) as presented in [39]. 

The central idea of PCA is to reduce the dimensionality of a data set consisting of a large number of interrelated variables, 

while retaining as much as possible of the variation present in the data set. This is achieved by transforming to a new set of 

variables, the principal components (PCs), which are uncorrelated and ordered so that the first few retain the most of the 

variation present in all of the original variables [28]. 

In this view, let  miNttf i ,...,2,1 ,,...,2,1 ),(   be a set of N  observations in an m -dimensional space m . The purpose 

of the PCA is to identify a  -dimensional ( m ) subspace m  in which the most of the data set variation is 

retained and the least information is lost. 

From a mathematical point of view, let  mN,X  be the data set matrix whose rows   Ntmt ,...,2,1 ,,1 f , are the 

patterns of the m  observations, i.e. the m  signal values at the time instant t , viz.: 
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so that titi fX  , miNt ,...,2,1 ,,...,2,1  , is the i -th component of tf  in the original basis. 

Let mmm    ),(P  be a matrix constituted by m  orthonormal column vectors mimi ,...,2,1 ),1,( p  built from the 

data set X  according to an optimality criterion to be defined later and representing an orthonormal basis for the data set: 
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so that mjmipP ijij ,...,2,1 ,,...,2,1 ,   is the j -th component of ip  in the original basis and, for the orthonormality of 

the basis vectors, ijj
T
i pp  or m

T
IPP  , where mI  is the unit matrix of order m . 

In the orthonormal basis, let tiu  be the component of tf  along 
T
ip , so that 
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where Ntmt ,...,2,1 ),,1( u , is the t -th m -dimensional pattern constituted by the m  signal values at time t  in the 

orthonormal basis. 

Right multiplying Eq. (A4) by P  yields,  

Pfu  tt            (A5) 

and in matrix form 

 PXU             (A6) 

where ),( mNU  is the matrix whose N  rows ),1( mt u  are the coordinates of tf , Nt ,...,2,1 , in the orthonormal 

basis. 

The data set has now two representations: when intended in the original basis, the t -th pattern is the vector tf  with 

components tif ; when intended in the orthonormal P  basis, the same t -th pattern is a vector tu  with component tiu  

along ip . In this view, once the orthonormal P  basis has been fixed, Eq. (A5) provides tu  as a function of tf . To get the 

inverse relation, we right multiply by T
P  and we obtain the data set X  in the original basis, viz.: 
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In this view, Eqs. (A6) and (A7) represent the transformation laws of the observation patterns X  between the original 

reference system and the orthonormal basis. Notice that up to this point the equations are exact and the data values are 

transformed in both senses without any loss of information. 



The PCA approximation consists in mapping the observation vectors tf  in a subspace m  identified by m  

vectors chosen according to a criterion explained later among the mii ,...,2,1 , p .  

Without loss of generality, assume that the basis vectors are ordered in such a way that the selected   vectors are the first 

ones in P , i.e.  ppp  ...  21 . Correspondingly, the matrices P  and U  are partitioned as follows: 

    mPPP   and    mUUU   

where   ,mP  and   ,NU  are the submatrices constituted by the first   columns of P  and U , respectively, 

and    mmm ,P  and    mNm ,U  are the submatrices constituted by the last m  columns of P  and U , 

respectively. The column vectors in P  and mP  constitute the bases of the two mutually orthogonal subspaces   and 

m  in which m  has been divided. In terms of the above submatrices, Eq. (A7) can be rewritten as: 
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where we define X  as: 
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The t -th row of X , namely tf
~

, is the orthonormal projection of tf  onto   and then it may be expressed by as a linear 

combination of the vectors of the P  basis, viz.: 
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and 
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is the j -th component, mj ,...,2,1 , of tf
~

 in the original basis in m  expressed through the components tiu  and ijp , 

,...,2,1i  of  tu  and jp  in  . 

If all the information about the data set X  essentially lies in a  -dimensional space   (apart from small components in 
m  given by 

T
mm   PU  as stated in Eq. A8), then the data analysis can be performed in   reducing the dimension 

of the data set to handle by a factor m/ . To this aim, each observation vector 
m

t f  is approximated by its 

orthonormal projection 
tf

~
 plus a residual vector in m  which is postulated to be independent of t , viz., 
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The best residual vector is that one which, on the average, minimizes the absolute value of the square error between the 

real  tf  and approximated  appx
tf

~
 data patterns, i.e.: 
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By combining Eqs. (A4), (A10) and (A12), the error between the two vectors can be written as: 

  




m

i

T
iiti

appx
tt bu

1

~



pff     (A14) 

and 
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The expression for the error becomes then, 
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The best constants are those that minimize the error and are determined by the conditions 
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Since the constants ib , mi ,...,1 , do not depend on t , using Eq. (A4) we can write, 
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where the vector f  is the arithmetic average of the observation vectors, i.e. the average value of the signals. In particular, 

the i -th component of f  is the arithmetic average of the i -th column of X . 

Then, from Eq. (A12), the expression for the PCA approximation of the data pattern tf  is given by: 
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or in matrix form, 
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Coming to the problem of model learning, the Principal Components Analysis exploits the information in the m -

dimensional data set to generate an orthonormal basis P  in m  constituted by m  eigenvectors. These represent the result 

of the learning phase of the PCA model.  

In this respect, let V  be the covariance matrix of the data set. The problem to tackle at this point is how to choose an 

orthonormal basis P  in m  and how to select among the m  columns ip  of P  the   vectors which constitute the basis of 
 . As demonstrated and explained in details in [28, 29, 39], by substituting Eqs. (A4) and (A18) into Eq. (A16), we can 

write the minimum error corresponding to the coefficients ib , mi ,...,1 , as: 
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where V  represents the covariance matrix of X  eventually positive definite (so that its eigenvalues are real and positive) 

[28] and can be written as, 
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In order to find the   vectors which will constitute P , let us minimize minE  with respect to mP  by resorting to the 

Lagrange multiplier approach [28]. The purpose is to find those m  vectors which minimize minE  subject to the 

constraint of being orthonormal. The Lagrange function in terms of the submatrix mP  can be written as: 
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where     mmmΛ  is the matrix of the Lagrange coefficients, namely ij , and mI  is the unit matrix of order 

m . 

Differentiating L  with respect to mP  and setting to zero the result we obtain [28]: 

    mmm ΛPPV     (A24) 

One solution to this equation is to choose mΛ  to be diagonal, i.e.   ijiijm   ΛΛ , so that the columns of mP  are 

the eigenvectors of V  corresponding to the eigenvalues mii ,...,1 ,   . Notice that since the eigenvalues have been 

supposed simple, the eigenvectors are orthogonal and may be normalized.   

By substituting (A24) into (A23) we obtain that the required minimum of the Lagrangian is 
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In principle, any set of m  eigenvectors can constitute the orthonormal basis in m , but from Eq. (A25) it appears 

that the best choice is to select the smallest m  eigenvalues among the m  possible eigenvalues in V . To this aim, we 

rank the m  eigenvalues in decreasing order so that 

 m ...21  

The eigenvectors are correspondingly ranked and we choose for the basis P  of   the first   eigenvectors and for the 

basis mP  of m  the remaining m  ones. The amount of information lost by considering appx
X
~

 instead of X  may 

be quantified for the individual observations by the differences 
appx

tt ff
~

  or globally by the fraction of neglected 

eigenvalues, namely 
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Finally, coming to the problem of signal validation and reconstruction by means of a PCA-based model, in order to 

simplify the calculations, the time trends of the signals have been previously normalized so that their mean is zero and their 

standard deviation equals 1. This allows to skip the computation of the residuals, since 0f   and, according to Eq. (A19), 

t
appx

t ff
~~

 .  

Furthermore, coming to the problem of using the PCA as a signal reconstruction model, for each group k  constituted by 

km  signals, the eigenvectors constituting the orthonormal basis P , have been obtained by Eq. (A24) from the covariance 

matrix V  of the pairwise signal correlations between the km  signals in the group. 

 


