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Abstract
The computation of the reliability of a thermal-hgdlic (T-H) passive system of a nuclear power
plant can be obtained by i) Monte Carlo (MC) samglithe uncertainties of the system model and
parameters, ii) computing, for each sample, théesggesponse by a mechanistic T-H code and iii)
comparing the system response with pre-establisaéety thresholds, which define the success or
failure of the safety functiol.he computational effort involved can be prohilgtivecause of the
large number of (typically long) T-H code simulasothat must be performed (one for each
sample) for the statistical estimation of the prioitity of success or failure.
The objective of this work is to provide operatiedelines to effectively handle the computation of
the reliability of a nuclear passive system. Twections of computation efficiency are considered:
from one side, efficient Monte Carlo Simulation $Qechniques are indicated as a means to
performing robust estimations with a limited numbefr samples: in particular, the Subset
Simulation (SS) and Line Sampling (LS) methodsigertified as most valuable; from the other
side, fast-running, surrogate regression modelsdqalalled response surfaces or meta-models) are
indicated as a valid replacement of the long-rugninH model codes: in particular, the use of
bootstrapped Artificial Neural Networks (ANNS) l®®w/n to have interesting potentials, including
for uncertainty propagation.
The recommendations drawn are supported by thdtseshtained in an illustrative application of

literature.

Keywords: Nuclear passive system, functional failure arialysomputational cost, efficient Monte

Carlo Simulation, fast-running regression model.



1 Introduction

Nuclear safety has expanded its considerationgwers accidents and increased its requirements
for guaranteeing effective safety functions. Thiplains the interest in passive systems [Ahn et al.
2010; Kim et al., 2010], which all innovative reactoncepts make use of, to a large extent in
combination with active systems [Mackay et al.,20@athews et al., 2008 and 2009].

According to the International Atomic Energy Agen@}EA) definitions, a passive component
does not need external input (especially energgptrate [IAEA, 1991]. Then, the term “passive”
identifies a system which is composed entirely aggive components and structures, or a system,
which uses active components in a very limited wajnitiate subsequent passive operation. The
currently accepted categorization of passive systataveloped by the IAEA, is summarized in
Table 1 [IAEA, 1991].

Passive systems are expected to contribute signtficto nuclear safety by combining peculiar
characteristics of simplicity, reduction of humareraction and reduction or avoidance of external
electrical power and signals input [Nayak et al0&a and b; Nayak et al., 2009]. On the other
hand, the assessment of the effectiveness of gasgstems must include considerations on their
reliability; these have to be drawn in the facéagck of data on some underlying phenomena, scarce
or null operating experience of these systems theswide range of conditions encountered during
operation and less guaranteed performance as cethparactive safety systems [Pagani et al.,
2005; Burgazzi, 2007a].

Indeed, although passive systems are credited lehigeliability with respect to active ones,
because of the reduced unavailability due to harevi@lure and human error, the uncertainties
involved in the actuabperationof passive systems in the field and theodelingare usually larger
than in active systems. Two different sources dfeutainties are usually considered in passive
system analysis: randomness due to intrinsic véitialin the behavior of the system (aleatory
uncertainty) and imprecision due to lack of datasmme underlying phenomena (e.g., natural
circulation) and to scarce or null operating exgrte over the wide range of conditions
encountered during operation [Apostolakis, 1990fdtheand Oberkampf, 2004].
As a consequence of these uncertainties, in peatiiere is a nonzero probability that the physical
phenomena involved in the passive system operd¢iath to failure of performing the intended
safety function even if i) safety margins are pnésend ii) no hardware failures occur. In fact,
deviations in the natural forces and in the coodgiof the underlying physical principles from the
expected ones can impair the function of the systself: this event is referred to in the literaur
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asfunctional failure[Burgazzi, 2003]. The quantification of the proligyp of this occurrence is an
issue of concern both for the “nominal” passivetays (e.g., the ESBWR operating in nominal
conditions) [Juhn et al., 2000; Rohde et al. 2088§l the “emergency” passive systems (e.g.,
accumulators, isolation condensers, etc.) [Churgy.e2008]. In the following, the discussion will

focus on the latter type of systems.

The occurrence of functional failures is especialfifical in type B passive systems, i.e., those
involving moving working fluids and referred to dhermal-Hydraulic (T-H) passive systems
(Table 1). The reason lies behind the small driviagzes engaging passive operation and the
complex and delicate T-H phenomena determiningsistem performance. For performing their
accident prevention and/or mitigation functiongsh passive systems rely exclusively on natural
forces, e.g. gravity or natural convection, noteyated by external power sources. Because the
magnitude of the natural forces which drive operatis relatively small, counter-forces (e.g.,
friction) cannot be ignored because of comparaldgmtude. This leads to uncertainty in the actual
T-H system performance which must be evaluated bgpeacific, systematic and rigorous

methodology.

In recent years, several methodologies have beepoped in the literature to quantify the
probability that nuclear passive systems fail tofgren their functions [Burgazzi, 2007b; Zio and
Pedroni, 2009a]. A number of methods adopt theegystliability analysis framework. In [Aybar
et al., 1999], a dynamic methodology based on #iie@-cell mapping technique has been used for
the reliability analysis of an inherently safe Bwgl Water Reactor (BWR). In [Burgazzi, 2007a],
the failure probability is evaluated as the probigbof occurrence of different independent failure
modes, a priori identified as leading to the vialatof the boundary conditions and/or physical
mechanisms needed for successful passive systeratiope In [Burgazzi, 2002], modeling of the
passive system is simplified in terms of the madglof the unreliabilities of the hardware
components of the system: this is done by idemifythe hardware components failures that
degrade the natural mechanisms which the passiseersyrelies upon and associating the
corresponding components unreliabilities. This emtds also at the basis of the Assessment of
Passive System ReliAbility (APSRA) approach whiels lheen applied to the reliability analysis of
the natural circulation-based Main Heat Transp®tH{) system of an Indian Heavy Water
Reactor (HWR) [Nayak et al., 2008a and b; Naya&.e2009].

! Notice that in the following, the discussion witicus on Type B passive systems, i.e., those ifmvglvnoving
working fluids and referred to as T-H passive systethus, the locution “passive system” will imjtlic mean “T-H
passive system” in the remainder of the paper.
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An alternative approach is founded on the introducbf the concept diunctional failures within

the reliability physics framework of load-capacéyceedance [Burgazzi, 2003, 2007a and c, 2008
and 2009]: a passive system fails to perform itscfion due to deviations from its expected
behavior which lead the load imposed on the systemvercome its capacity. In [Woo and Lee,
2009a, b and 2010; Han and Yang, 2010], this cdnisept the basis of the estimation of the
functional failure probability of passive decay heamoval systems of Very High Temperature
Reactors (VHTRS). It also provides the basis ferritethodologies known as Reliability Evaluation
of PAssive Safety (REPAS) systems [D’ Auria et 2002; Jafari et al., 2003; Zio et al., 2003] and
Reliability Methods for Passive Safety (RMPS) fuoes [Marqués et al.,, 2005], developed and
employed for the analysis of passive Residual Heamoval Systems (RHRSs) of Light Water
Reactors (LWRS). It has also been used to evathatéailure probabilities of decay heat removal
systems in Gas-cooled Fast Reactors (GFRs) [Pagaal., 2005; Bassi and Marquées, 2008;
Mackay et al., 2008; Patalano et al., 2008; Zio Radroni, 2009b, ¢ and 2010; Pedroni et al., 2010;
Zio et al., 2010], sodium-cooled Fast Breeder Reac{FBRs) [Mathews et al., 2008 and 2009;
Arul et al., 2009 and 2010] and the lead-cooledt{ fpectrum Flexible Conversion Ratio Reactor
(FCRR) [Fong et al., 2009]. In all these analydbs, passive system is modeled by a detailed,
mechanistic T-H system code and the probabilitynof performing the required function is
estimated based on a Monte Carlo (MC) sample oé cads which propagate tlepistemic(state-
of-knowledge) uncertainties in the model describihg system and the numerical values of its
parameters. Because of the existence of thesetaimtess, it is possible that even if no hardware

failure occurs, the system may not be able to aptismits missiof

The functional failure-based approach providesringple the most realistic assessment of the T-H
passive system, thanks to the flexibility of Mo&arlo simulation which does not suffer from any
T-H model complexity and, therefore, does not faweesort to simplifying approximations: for
this reason, the functional failure-based apprasitibe taken here as reference. On the other hand,
such approach requires considerable and often lptiolei computational efforts. The reason is
twofold. First, a large number of Monte Carlo-saetpllT-H model evaluations must generally be

carried out for an accurate uncertainty propaga#ind functional failure probability estimation.

21t is worth mentioning also the work performed lbge and co-workers who took up the problem of passystem
functional reliability assessment focusing on tteai ofidentifying the limit state function of the system (essentiall
referring to the generic structural reliability pdigm of load-capacity exceedance described alas/epreludeto the
guantification of the functional reliability itseJAumeier, 1994; Aumeier and Lee, 1993 and 1994nAier et al., 1995
and 2006; Lee et al., 1993-1995]. However, sineeftitus of the present paper is on ¢ficient computatiorf the
passive system functional reliabilitygigen the limit state function of the system and projmgput probability
distributions representing the uncertainties in shstem model and parameters), no further deteglggaen here for
brevity; the interested reader is thus referretthéocited references.
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Since the number of simulations required to obgagiven accuracy depends on the magnitude of
the failure probability to be estimated, with th@mputational burden increasing with decreasing
functional failure probability [Schueller, 2007 aB609], this poses a significant challenge for the
typically quite small (e.g., less than)0probabilities of functional failure of T-H passisafety
systems. Second, long calculations (several hoams)typically necessary for each run of the
detailed, mechanistic T-H code (one code run isired for each sample of values drawn from the
uncertainty distributions) [Fong et al., 2009; RmiMohamad et al., 2019]

Finally, notice that for the same reasons a higmmgdational burden is associated also to the
sensitivity analysis process, i.e., the identifmatof the model parameters that contribute thetmos
to the uncertainty in the performance of the passystem and consequently to its functional
failure [Saltelli et al., 2008; Marrel et al., 2009

Thus, efficient simulation techniques must be soutgh perform robust functional failure
probability estimation, uncertainty propagation aeahsitivity analysis while reducing as much as
possible the number of T-H code simulations andasaciated computational time.

The objective of the present paper is to show hbg ¢omputational issues associated to the
functional reliability assessment of nuclear passsystems can be effectively handled. Two
conceptual directions of computation efficiency aomsidered: efficient Monte Carlo Simulation
techniques for performing robust estimations based limited number of samples drawn (i.e., T-H
code simulations); fast-running, surrogate regogssiodels (also called response surfaces or meta-
models) in replacement of the long-running T-H madeles.

Within this conceptual frameworkdifferent computational methods are recommended for
efficiently tackling thedifferent phases of the functional reliability assessmentuwaflear passive
systems: in particular, an optimized Line Sampliths) method [Zio and Pedroni, 2010] is
recommended for functional failure probability esdtion, whereas the use of Subset Simulation
(SS) [Au and Beck, 2001; Au and Beck, 2003b] andt&toapped Artificial Neural Networks
(ANNSs) [Efron and Thibshirani, 1993; Zio, 2006] ssiggested for uncertainty propagation and
sensitivity analysis.

These recommendations are arrived at on the bagis aritical review of the methods available in
the literature on the subject and ii) the expemren the authors in nuclear passive systems
functional reliability assessments [Zio and Pedr@0i09a-c and 2010; Pedroni et al., 2010; Zio et
al., 2010].

% For example, the computer code RELAP5-3D, whichsed to describe the thermal-hydraulic behavionuaflear
systems, may take up to twenty hours per run inesapplications.
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The remainder of the paper is organized as folldwsSection 2, the main sources and types of
uncertainties involved in the operation and modglxi nuclear passive systems are recalled. In
Section 3, the reliability analysis of nuclear passystems is framed in terms of the concept of
functional failure. In Section 4, the two conceptulirections considered for reducing the
computational burden associated to the reliabdisgessment of nuclear passive systems (i.e.,
advanced MCS and empirical regression modeling)paesented and critically analyzed on the
basis of a literature review. In Section 5, teche® are recommended to effectively tackle the
computational burden associated to the differeasph of the reliability assessment; results of the
application of the proposed techniques to a casdysof literature are also shown. Finally,

guidelines and recommendations are summarizectindhcluding Section.

2 Sources and types of uncertainties in the operatioand modeling of
nuclear passive systems

Uncertainties in the operation and modelling ofleac passive systems must be accounted for in
their reliability evaluations within a ProbabilistRisk Assessment (PRA) framework [Burgazzi,
2004; Pagani et al., 2005; Burgazzi, 2007a-c].

To effectively represent and model these uncer&antit is useful to distinguish two kinds:
“aleatory” and “epistemic” [Apostolakis, 1990; Haft and Oberkampf, 2004; USNRC, 2009]. The
former refers to phenomena occurring in a randomy: weobabilistic modeling offers a sound and
efficient way to describe such occurrences. Theraaptures the analyst’'s confidence in the PRA
model by quantifying the degree of belief of thealgats on how well it represents the actual
system; it is also referred to smate-of-knowledger subjectiveuncertainty and can be reduced by
gathering information and data to improve the kremlgle on the system behavior.

As might be expected, the uncertainties affectivegdperation of nuclear passive systems (Table 2)
are both of aleatory kind, because of the randommethe occurrence of some phenomena, and of
epistemic nature, because of the limited knowledgesome phenomena and processes and the
paucity of the relative operational and experimetidda available [Burgazzi, 2007a].

Aleatory uncertainties concern, for instance, tikeuorence of an accident scenario, the time to
failure of a component or the variation of the attgeometrical dimensions (due to differences
between the as-built system and its design upochathie analysis is based) and material properties
(affecting the failure modes, e.g. concerning ueded leakages and heat losses) [NUREG-1150,
1990; Helton, 1998; USNRC, 2002; Burgazzi, 2007afeyo examples of classical probabilistic
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models used to describe this kind of uncertaintre$?RAs are the Poisson model for events
randomly occurring in time (e.g., random variatiasfsthe operating state of a valve) and the
binomial model for events occurring “as the imméslieonsequence of a challenge” (e.qg., failures
on demand) [NUREG-CR-6850, 2005]. The effects eséhuncertainties are then propagated onto
the risk measure, e.g. by Monte Carlo simulatiosebdaon Importance Sampling or Stratified
Sampling [Hofer et al., 2002; Cacuci and lonescipBW2004; Krzykacz-Hausmann, 2006]. The
contribution of aleatory uncertainty to nuclear gas systems failure is quite clear: for example,
natural circulation could be altered by a randostutbance in the system geometry or by a random
variation of the operating state of a componengfaet al., 2005].

In the present paper, the representation and patipagof aleatory uncertainties are not considered,
the focus being on epistemic uncertainty [Pagaii.e2005; Bassi and Marques, 2008; Mackay et
al., 2008; Mathews et al., 2008; Patalano et AD82Arul et al., 2009 and 2010].

Epistemic uncertainty is associated to the lackrmfwledge about the properties and conditions of
the phenomena (i.e., natural circulation) undegythe behavior of the passive systems. This
uncertainty manifests itself in the model repreagom of the system behavior, in terms of both
(mode) uncertainty in the hypotheses assumed gadafmete) uncertainty in the values of the
parameters of the model [Cacuci and lonescu-Bl064; Helton et al., 2006; Patalano et al.,
2003].

Model uncertainty arises because mathematical rmodet simplified representations of real
systems and, therefore, their results may be &ifietly error or bias. Model uncertainty also
includes the fact that the model could be too siinegdl and therefore would neglect some important
phenomena affecting the final result. This lattgpet of uncertainty is sometimes identified
independently from model uncertainty and is knownanpletenessncertainty [USNRC, 2009].
Model uncertainty may for example involve the clatiens adopted to describe the T-H
phenomena, which are subject to errors of apprakmaSuch uncertainties may for example be
captured by a multiplicative model [Zio and Apostas, 1996; Patalano et al., 2008]:

z=c(x)lé, (1)
wherez is the real value of the quantity to be predicted). heat transfer coefficients, friction
factors, Nusselt numbers or thermal conductivitgfioients),c(-) is the mathematical model of the
correlation (i.e., the result of the correlation @snputed by the T-H code), is the vector of
correlating variables angdis the associated multiplicative error factoraasult, the uncertainty in
the quantityz to be predicted is translated into an uncertaintthe multiplicative error factos.

This error is commonly classified as representimggleluncertainty.



Furthermore, uncertainty affects the values of gheametersused to describe the system (e.qg.,
power level, pressure, cooler wall temperature,enmedtconductivity, ...), €.g. owing to errors in
their measurement or insufficient data and inforamatFor example, according to industry practice
and experience, an error of 2% is usually consalérehe determination of the power level in a
reactor, due to uncertainties in the measuremé#sa consequence, the power level is usually
known only to a certain level of precision, i.gistemic uncertainty is associated with it.

Both model and parameter uncertainties associatéluetcurrent state of knowledge of the system
can be represented by subjective probability digtrons within a Bayesian approach to PRA
[Apostolakis, 1990, 1995 and 1999]. In current PRék& effect of these uncertainties is often
propagated on the risk measure by Latin Hypercameping (LHS) [Helton and Davis, 2003].

Epistemic uncertainties affect also the identifmatof thefailure criterion to be adopted for the
system under analysis: for instance, reactor paemsée.g., the maximal cladding temperature) as
well as passive system variables (e.g., the thepoaker exchanged in a cooler) could be equally
adopted as indicators of the safety performancéhefpassive system; furthermore, the failure
thresholds may be established as point-targets @ gpecific quantity of liquid must be delivered
within a fixed time) or time-varying targets or evategral targets over a defined mission time
(e.g., the system must reject at least a givenevaluthermal power during the entire system
intervention) [Jafari et al., 2003; Marques et 2005].

Finally, state-of-knowledge uncertainty affects ttientification of the possibl&ilure modesand
relatedcausesand consequencesuch as leaks (e.g., from pipes and pools), dieffoskness on
components surfaces (e.g., pipes or heat exchgngeesence of non-condensable gases, stresses,
blockages and material defects [Burgazzi, 2007dje Tidentification of all the relevant
modes/causes of failure in termsonitical parameterdor the passive system performance/stability
and the assessment of the relative uncertainty beyattempted by commonly used hazard
identification procedures, like HAZard and OPerigpi(HAZOP) analysis and Failure Mode and
Effect Analysis (FMEA) [Burgazzi, 2004 and 2006].

The contribution of epistemic uncertainties to tiedinition of the reliability/failure probability fo
nuclear passive systems can be qualitatively exgthias follows. If the analyst is not fully
confident on the validity of the correlations adapto estimate, e.g., the design value of the heat
transfer coefficient in the core during natural wection (e.g., due to the paucity of experimental
data available in support of the use of a particatarelation), he/she admits that imeal accident
scenario theactual value of the heat transfer coefficient in the congght deviate from the

nominal/design one (i.e., different from the vatwnmputed by a deterministic correlation). If this
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variation (accepted as plausible by the analystevie take place during an accident scenario, it
may cause the passive system to fail performingatety function; based on the current state of
knowledge of the heat transfer phenomenon in the emder the expected conditions, the
likelihood of the heat transfer coefficient varati is to be quantified forestimating the
reliability/failure probability. A future improvenmt in the state of knowledge, e.g. due to the
collection of data and information useful to impeothe characterization of the heat transfer
phenomenon, would lead to a change in the epistemaertainty distribution describing the
likelihood of the various values of heat transfeeficient and eventually to a more accurate
estimateof the system reliability/failure probability [Paigi et al., 2005; Bassi and Marques, 2008;
Mackay et al., 2008; Mathews et al., 2008 and 2@08alano et al., 2008; Arul et al., 2009 and
2010; Fong et al., 2009].

In the present papemnly epistemic uncertainties are considered in themesion of the
reliability/failure probability of nuclear passisystems [Pagani et al., 2005; Bassi and Marques,
2008; Mackay et al., 2008; Mathews et al., 2008al@ao et al., 2008; Arul et al., 2009 and 2010].

3 Functional failure analysis of nuclear passive sysins

The essential steps for the conceptual developroktiie functional failure analysis of nuclear
passive systems are briefly reported below [Mareued., 2005]:
1. Detailed modeling of the system response by medna deterministic, best-estimate
(typically long-running) T-H code.

2. Identification of the vectox = {x, X, ..., X, ..., X, } of parameters/variables, models and

correlations (i.e., the inputs to the T-H code) athcontribute to the uncertainty in the

vectory = {y1, ¥2, ..., ¥i, ..., ¥, } of the outputs of the best-estimate T-H calcuias

(Section 2).

3. Propagation of the uncertainties associated todivatified relevant parameters, models and
correlationsx (step 2. above) through the deterministic, longaing T-H code in order to
provide a complete representation (in terms of &pdiby Density Functions-PDFs,
Cumulative Distribution Functions-CDFs and so of)the uncertainty associated to the
vectory of the outputs (step 2. above) of the determinjisiest-estimate T-H code.

4. Estimation of thefunctional failure probabilityof the passive system conditional on the
current state of knowledge about the phenomenalado(step 2. above) [Pagani et al.,
2005; Bassi and Marques, 2008; Mackay et al., 200&8hews et al., 2008 and 2009;
Patalano et al., 2008; Arul et al., 2009 and 2Fig et al., 2009; Zio and Pedroni, 2009a-c

and 2010; Pedroni et al., 2010; Zio et al., 20E@ymally, letY( x) be a single-valued scalar
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variable indicator of the performance of the passystem (e.g., the fuel peak cladding
temperature) andy a threshold value defining the corresponding failariterion (e.g., a
limit value imposed by regulating authoritiésiFor illustrating purposes, let us assume that

the passive system operates as long(&9 < ay; equivalently, introducing a variable called

Performance Function (PF) ag,(x)=Y(x)-a,, failure occurs if g (x)> 0 The

probability P(F) of system functional failure can then be exprédsethe multidimensional

integral:
P(F)=”...j|F(x)q(x)dx 2)
where q([)] is the joint Probability Density Function (PDF)presenting the uncertainty in

the parameterx, F is the failure region (wherg(:) > 0) andg(") is an indicator function
such thatg(x) = 1, ifx O F andlg(x) = 0, otherwise. The MCS procedure for estimating
functional failure probability entails thatlarge numberN of samples of the values of the
system parametessbe drawn from the corresponding probability dmsitions and used to

evaluateY(x) by running the T-H code. An estimafAé(F)NT of the probability of failure
P(F) can then be computed by dividing the number mies thatY(x) > ay by the total

number of sampleN.

5. Perform a sensitivity study to determine the cdwiiion of the individual uncertain
parameters (i.e., the inputs to the T-H codg) [{= 1, 2, ...,n;} to the uncertainty in the
outputs of the T-H codeyf | = 1, 2, ...,ny} (and in the performance functior(x) of the
passive system) and consequently to the functitailire probability of the T-H passive
system. As is true for uncertainty propagationgsteabove), sensitivity analysis relies on
multiple (e.g., many thousands) evaluations of the coddiftarent combinations of system

inputs.

In this work, we propose to tackle the computatidnaden posed by the uncertainty propagation,
failure probability estimation and sensitivity aygb of steps 3. — 5. above in two effective ways
(Section 4): from one side, efficient Monte Carlon8lation techniques can be employed to
perform robust estimations with a limited numberirgdut samples (Section 4.1); from the other
side, fast-running, surrogate regression mode#®o (edlled response surfaces or meta-models) can

be used to replace the long-running T-H model d&aetion 4.2).

* Note that the choice ofsingle-valuedberformance function does not reduce the gengraiithe approach, because
any multidimensional vector of physical quantit{es., the vectoy of the outputs of the T-H code in this case) can b
conveniently re-expressed as a scalar parametegdoyting to suitable min-max transformations: gae and Beck,
2001 and 2003b; Zio and Pedroni, 2009b, ¢ and 2fat@letails.
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4 Handling the computational issues associated to thé&unctional
reliability assessment of nuclear passive systems

In this Section, the two approaches consideredléating with the computational issue associated
to the functional reliability assessment of nuclpassive systems are summarized: in Section 4.1,
various Monte Carlo Simulation techniques are sstithlly described; in Section 4.2, empirical
regression modeling is presented as a means td tast-running, surrogate models for replacing
the long-running T-H model codes. Both approaclrescaitically reviewed on the basis of the

available literature.

4.1 Advanced Monte Carlo Simulation methods

As previously stated, the computational issuesrde=st in the previous Section 3 can be tackled
from one side by resorting to efficient simulati@echniques that perform robust estimations with a
limited number of input samples, thus with an agged low computational time.

One such technique is the Importance Sampling rii&hod [Kalos and Whitlock, 1986; Au and
Beck, 2003a; Au, 2004; Schueller et al., 2004].sTieichnique amounts to replacing the original
Probability Density Function (PDF) of the uncertaiariables with an Importance Sampling
Distribution (ISD) chosen so as to generate samjblaslead to failure more frequently [Au and
Beck, 2003a]. IS has the capability of considerabbucing the variance of the estimates compared
with standard Monte Carlo Simulation (MCS), proddthat the ISD is chosen similar to the
theoretical optimal one. In practice, substantredights on the system behaviour and extensive
modelling work may be required to identify a “god&D, e.g. by setting up complex kernel density
estimators [Au and Beck, 2003a], by identifying thesign point of the problem [Au, 2004] or
simply by tuning the parameters of the ISD baseéxpert judgment and trial-and-error [Pagani et
al., 2005]. Overall, this increases the effort asged to the simulation; furthermore, there is
always the risk that an inappropriate choice of IBi® may lead to worse estimates compared to
Standard MCS [Schueller et al., 2004].

Another technique is Stratified Sampling. This t@gune requires dividing the sample space into
several non-overlapping subregions (referred tts@ata”) and calculating the probability of each
subregion; the (stratified) sample is then obtaihgdandomly sampling a predefined number of
outcomes fromeach stratum [Helton and Davis, 2003; Cacuci and lond&gjor, 2004]. By so
doing, the full coverage of the sample space ism@aswhile maintaining the probabilistic character
of random sampling. A major issue related to thel@amentation of Stratified Sampling lies in
defining the strata and calculating the associaredabilities, which may require considerable a

priori knowledge. As a remark, notice that the Wwydesed event tree techniques in nuclear reactor
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Probabilistic Risk Assessment (PRA) can be sealefising and implementing Stratified Sampling
of accident events and scenarios [Cacuci and lonBsfor, 2004].

A popular compromise between plain random samplifige., standard MCS) and
Importance/Stratified Sampling is offered by Latihypercube Sampling (LHS), which is
commonly used in PRA [Morris, 2000] for efficientfyenerating random samples [MacKay et al.,
1979; Helton and Davis, 2003; Helton et al., 2088llaberry et al., 2008]. The effectiveness of
LHS, and hence its popularity, derives from the faat it provides a densgratification over the
range of each uncertain variable, with a relatiwhall sample size, while preserving the desirable
probabilistic features of simple random samplingyreover, there is no necessity to determine
strata and strata probabilities like in StratifiSdmpling [Helton and Davis, 2003]. For these
reasons LHS is frequently adopted for efficientippmagatingepistemicuncertainties in PRA
problems [NUREG-1150, 1990; Helton, 1998; Hoferaét 2002; Krzykacz-Hausmann, 2006;
Helton and Sallaberry, 2009].

On the other hand, LHS is very efficient for estiilmg mean values and standard deviations in
complex reliability problems [Olsson et al., 200Bjjt only slightly more efficient than standard
MCS for estimating small failure probabilities [sima and Heuvelink, 1999], like those expected

for passive safety systems.

Recently, Subset Simulation (SS) [Au and Beck, 2001 and Beck, 2003b] and Line Sampling
(LS) [Koutsourelakis et al., 2004; Pradlwarter let 2005] have been proposed as advanced Monte
Carlo Simulation methods for efficiently tacklinget multidimensional problems of structural
reliability. These methods have proved efficierdoaln the estimation of the functional failure
probability of T-H passive systems [Zio and Pedrd®09b, ¢ and 2010]. Indeed, structural
reliability problems are also formulated withinun€tional failure framework of analysis, in which
the systems fail whenever the load applied (i.be s$tress) exceeds their capacity (i.e., the
resistance) [Schueller and Pradlwarter, 2007]. Tinkes the two methods suitable for application
to the functional reliability analysis of nucleaagsive systems, where the failure is specified in
terms of one or more safety variables (e.g., teatpegs, pressures, flow rates, ...) crossing the
safety thresholds specified by the regulating autibe [Bassi and Marques, 2008; Mackay et al.,
2008; Mathews et al., 2008; Patalano et al., 2008].

More specifically, in the SS approach, the funatidailure probability is expressed as a product of
conditional probabilities of some chosen intermedend thus more frequent events. The problem

of evaluating the small probabilities of functiorailures is thus tackled by performing a sequence
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of simulations of more frequent events in their dibonal probability spaces; the necessary
conditional samples are generated through suceeddiarkov Chain Monte Carlo (MCMC)
simulations [Metropolis et al., 1953], in a waydradually populate the intermediate conditional
regions until the final functional failure regiosrieached.

In the LS methodjnes instead of randorpoints are used to probe the failure domain of the high-
dimensional problem under analysis [Pradlwarterakt 2005]. An “important direction” is
optimally determined to point towards the failur@nthin of interest and a number of conditional,
one-dimensional problems are solved along suchctibre in place of the high-dimensional
problem [Pradlwarter et al., 2005]. The approach Ibeen shown to perform better than standard
MCS in a wide range of reliability applications [#isourelakis et al., 2004; Schueller et al., 2004,
Pradlwarter et al., 2005 and 2007; Schueller ardil®arter, 2007; Lu et al., 2008; Valdebenito et
al., 2010; Zio and Pedroni, 2009c and 2010]. Funtioee, if the boundaries of the failure domain of
interest are not too rough (i.e., almost linead #re “important direction” is almost perpendicular
to them, the variance of the failure probabilitytireator could be ideally reduced to zero
[Koutsourelakis et al., 2002]

In the present paper, particular focus is devate8S3 and LS: for this reason, synthetic descrigtion
of these techniques and an illustrative applicatothe functional failure analysis of a T-H passiv
system are reported in Section 5.

4.2 Empirical regression modeling

Another way to tackle the computational issues @ased to the reliability analysis of nuclear
passive systems is that of resorting to fast-rumnisurrogate regression models, also called
response surfaces or meta-models, to approximatenffut/output function implemented in the
long-running system model code, and then substituie the passive system reliability analysis
[Storlie et al., 2008].

The construction of such regression models entailaing the system model code a predetermined,
reducednumber of times (e.g., 50-100) for specified valoéshe uncertain input variables and
collecting the corresponding values of the outptitimderest; then, statistical techniques are
employed for calibrating/adapting the interpafameters/coefficientsf the response surface of the

regression model in order to fit the input/outpatadgenerated in the previous step.

® Apart from efficient MC techniques, there existthmls based on nonparametric order statistics RVill942] that
propagate uncertainties through mechanistic T-Hesaslith reduced computational burden, especialbnlf/ one- or
two-sided confidence intervals are needed for @alet statistics (e.g., the 9%Percentile) of the outputs of the code.
For example, the so-callamverage/Guba et al., 2003; Makai and Pal, 2006] &mdcketing[Nutt and Wallis, 2004]
approaches can be used to identify the numberropleacode runs required to obtain a givemfidencdevel on the
estimates of prescribed statistics of the codeuisitp
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Putting it in a formal framework, let us consideggemeric meta-model to be built for performing the
task of nonlinear regression, i.e., estimating ibalinear relationship between a vector of input

variablesx = {xi, X, ..., %, ..., xq} and a vector of output targeys= {y1, Y2, .. ¥, ..., Ya, }, on the

basis of afinite (and possiblysmall) set of input/output data examples (i.e., patderns

Duain =1(Xp, ¥, ) P= 12...., Ny} [Zi0, 2008]. It can be assumed that the targetorgcis related to
the input vectorx by an unknown nonlinear deterministic functim(x) corrupted by a noise

vector&(x), i.e.,

y(x) =y (x)+ &(x). 3)

As introduced in Section 3, in the present casé-bif passive system functional failure probability
assessment the vectorcontains the relevant uncertain system parametgrables, the nonlinear

deterministic functionyy(x) represents the complex, long-running T-H mechanisbdel code

(e.g., RELAP5-3D), the vectg(x) contains the output variables of interest fordhalysis and the

noise ¢(x) represents the errors introduced by the numemeghods employed to calculage, (x)

[Storlie et al., 2009]; for simplicity, in the falWing we assume(x) = 0 [Secchi et al., 2008].
Thus, the objective of the regression task is tomede yy(x) in (3) by means of a regression

functionf(x, w) depending on a set of parametersto be properly determined on the basis of the
available data seDyan. The algorithm used to calibrate the set of patarsav is obviously
dependent on the nature of the regression modgitadiobut in general it aims at minimizing the

mean (absolute or quadratic) error between theubwapgets of the original T-H codg, = 4, (x, ),
p=1, 2, ...Nurain, and the output vectors of the regression moﬂpl; f (xp,w*), p=1, 2, ...Ntain;

for example, the Root Mean Squared Error (RMSE}asimonly adopted to this purpose [Zio,
2006].

Several examples can be found in the open litexatancerning the application of surrogate meta-
models in reliability problems. In [Bucher and Mo2008; Gavin and Yau, 2008; Liel et al., 2009],
polynomial Response Surfaces (RSs) are employeddate the failure probability of structural
systems; in [Arul et al., 2009 and 2010; Fong et 2009; Mathews et al., 2009jnear and
guadratic polynomial RSs are employed for performing theatslity analysis of T-H passive
systems in advanced nuclear reactors; in [Dengg;280rtado, 2007; Cardoso et al., 2008; Cheng
et al., 2008], learning statistical models suctAegicial Neural Networks (ANNs), Radial Basis
Functions (RBFs) and Support Vector Machines (SVMsg trained to providelocal
approximations of the failure domain in structuraliability problems; in [Volkova et al., 2008;
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Marrel et al., 2009], Gaussian meta-models aret boilkcalculate global sensitivity indices for a

complex hydrogeological model simulating radiondeltransport in groundwater.

However, when using the approximation of the systertput provided by an empirical regression
model, an additional source ofhodel uncertainty is introduced which needs to be etallja
particularly in safety critical applications likadse related to nuclear power plant technology. In
this paper we propose to resorthiootstrappedegression models [Efron and Thibshirani, 1993],
i.e., ensembles of regression models, constructedlitberent data sets bootstrapped from the
original one [Zio, 2006; Storlie et al., 2009]. fact, the ensemble framework of regression
modeling allows quantifying the model uncertaings@ciated to the estimates provided by the
regression models in termsadnfidence intervals

The bootstrap method is a distribution-free infeeemethod which requires no prior knowledge
about the distribution function of the underlyingpplation [Efron and Thibshirani, 1993]. The
basic idea is to generate samples from the obseatatdby sampling with replacement from the
original data set [Efron and Thibshirani, 1993|cleaf these bootstrapped data sets is used to build
a bootstrapped regression model which is usedltulaete the reliability quantity of interest (e.g.,
the passive system failure probability in this ¢as@om the theory and practice of ensembles of
empirical models, it can be shown that the estimgteen by bootstrapped regression models is in
general more accurate than the estimate of therbgsgssion model in the bootstrap ensemble of
regression models [Zio, 2006; Cadini et al., 2008].

Some examples of the application of the bootstraghod for the evaluation of the uncertainties
associated to the output of regression models fatyseelated problems can be found in the
literature: in [Zio, 2006], bootstrapped ANNs araiied to predict nuclear transients processes; in
[Cadini et al., 2008; Secchi et al., 2008], the elaghcertainty, quantified in terms ofséandard
deviation is used to “correct” the ANN output in order toopide conservative estimates for
important safety parameters in nuclear reactoes, fpercentiles of the pellet cladding temperature)
finally, in [Storlie et al., 2009], the bootstrapopedure is combined with different regression
techniques, e.g. Multivariate Adaptive Regressigiin® (MARS), Random Forest (RF) and
Gradient Boosting Regression (GBR), to calculat&#idence intervals for global sensitivity indices
of the computationally demanding model of a nucleaste repository.

In the present paper, particular emphasis is giodmootstrapped ANN regression models: for this
reason, a synthetic description of this techniqué an illustrative application to the functional

failure analysis of a T-H passive system is rembieSection 5.
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5 Recommendations for reducing the computational burdn
associated to the functional reliability analysis bnuclear passive
systems

In this Section i) the different phases of the fior@al reliability analysis of nuclear passive gyss

are considered: in particular, the estimation @f filnctional failure probability (Section 5.1), the
uncertainty propagation (Section 5.2) and sengjtianalysis (Section 5.3) phases; ii) on the basis
of the literature review and the considerations enad the previous Section 4, techniques are
recommended to efficiently tackle the computatidnalden associated gachof these analyses;
iii) guidelines on the recommended techniques aowiged, with illustrative applications to the

functional reliability analysis of a nuclear pagssystem of literature [Pagani et al., 2005].

5.1 Functional failure probability estimation

If the analyst is only interested in an accuratd arecise estimation of the (typically small)
functional failure probability of the T-H passivgstem (modelled by EBbng-running nonlinearand
non-monotonous-H code), then the use of the Line Sampling tepinis strongly suggested.

In extreme synthesis, the computational steps efalgorithm are [Pradlwarter et al., 2005 and
2007]:

1. From the original multidimensional joint probabjlidensity functiong((:0" — [0,),

sampleNr vectors{x* :k = 1,2,...,N; }, with x* ={xk, x4 e X X<

2. Transform theNr sample vector;{x" k= lZ,...,NT} defined in the original (i.e., physical)
space intd\r samples{e" k= lZ,...,NT} defined in the so-called “standard normal space”,
where each random variable is represented by ampémtient central unit Gaussian
distribution; also the PFgX(E)] defined in the physical space have to be transdrinto
g,(0)in the standard normal space [Huang and Du, 2006].

3. In the standard normal space, determineni vector a ={a,,@, ..., .., (hereafter

also called “important unit vector” or “importantrekction”) pointing towards the failure
domainF of interest.

4. Reduce the problem of computing the high-dimengitailure probability integral (2) to a
number of conditional one-dimensional problemsyetlalong the “important directiont

in the standard normal space: in particular, eséniNy conditional “one-dimensional”

failure probabilities{P(FJ°* :k = 1.2...,N, |, corresponding to each one of the standard
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normal samples{e" k= lZ,...,NT} obtained in step 2. Notice thatNg-or 3Nt system

performance analyses (i.e., runs of the T-H moddk} have to be carried out to calculate

each of the N; conditional one-dimensional failure probability tiestes

{FA’(F)lD'k k= lZ,...,NT} (see Pradlwarter et al., 2005 and 2007 for dgtails
5. Compute the unbiased estimate(F )" for the failure probabilityP(F) and its variance

azllf’(F)NT] as:

B(F) =N: O B(F) @
o[BE)"| = yn. (N, -2): (B(F)°* - B(F) ] ©)

k=1
The LS method here outlined can significantly redtlee variance (5) of the estimator (4) of the
failure probability integral (2) [Koutsourelakis &t, 2004]; however, its efficiency depends on the

determination of the important directian(step 3. above).

With respect to this issue, four methods have lmeposed in the open literature to estimate the
important directiona for LS. In [Koutsourelakis et al., 2004], the inmfamt unit vectorae is
computed as the normalized “center of mass” of@liare domainF of interest; in [Koutsourelakis
et al., 2004; Valdebenito et al., 2010], the imaottunit vectora is taken as pointing in the
direction of the “design point” in the standard mai space; in [Pradlwarter et al. 2005], the
direction ofa is identified as the normalized gradient of thefqenance functionge([)] in the
standard normal space; finally, in a previous pdapetthe authors [Zio and Pedroni, 2010], the
important directiona is taken as the one minimizing the variance (5)hef failure probability
estimator (4). This latter method produces moreuate and precise failure probability estimates
than those provided by the other three techniqi¢isecature and, for this reason, its adoption is

recommended for the estimation of the small failin@babilities of T-H passive systems.

In more details, in [Zio and Pedroni, 2010] thatimal important directiona® for Line Sampling

is defined as the one minimizing the variamfe{ls(F)NTJ (5) of the LS failure probability estimator
|5(F)NT (4). Notice thata® can be expressed as the normalized version ab@eprectord® in

the standard normal space, i.ez?ptzb?"pt/ 0™

- Thus, in order to search for a physically

meaningful important unit vectoa®™ (i.e., a vector that optimally points towards ttaéure

17



domainF of interest), #°® should belong to the failure domaih of interest, i.e.0°™ OF or,
equivalently, gg(a"'“) >0.

In mathematical terms, the optimal LS importanediion «® is obtained by solving the following

nonlinear constrained minimization problem:

Finda®™ =0°/|0°" - o[F(F)" |= aﬁn,,/ig‘z{gzlls(F)NTl} (6)

00pt

subjecto ¢ OF (i.e., g, (@) > 0).
The conceptual steps of the procedure for solvi)@e [Zio and Pedroni, 2010]:

1. An optimization algorithm proposes a candidate timtua =6/[6], to (6): for example,

probabilistic search algorithms like Genetic Algoms (GAs) [Konak et al.,, 2006;
Marseguerra et al., 2006] are particularly suitdblemultivariate nonlinear problems like

those involving nuclear passive safety systems & Pedroni, 2010].

2. The LS failure probability estimatd?(F )" (4) and the associated variaruzé[ls(F)NTJ (5)

are calculated using the unit vectar=6/|6|, proposed as important direction in step 1.
above.

3. The varianceazllf’(F)NT] obtained in step 2. above is the objective fumctio be
minimized

4. The feasibility of the proposed solutian=6/6], is checked by evaluating the system PF
go(*) (i.e., by running the system model code) in cspamdence of: if the proposed
solution a =6/|6], is not feasible (i.e., iV OF or, equivalently,g,(0)<0), it is penalized
by increasingthe value of the corresponding objective funcm’!)?rlls(F)NT J

5. Steps 1. — 4. are repeated until a predefined stgppriterion is met and the optimization

0Opt

algorithm identifies theptimal unit vectora®" = 0°p‘/

Notice that i) the optimization search requires iteeative evaluation of hundreds or thousands of
possible solutions: =6/||, to (6) and ii) 2Nr or 3Ny system performance analyses (i.e., runs of
the system model code) have to be carried out [tulede the objective functiowzlﬁ(F)NTJ for

eachproposed solution (step 2. and 3. above); as setuence, the computational effort associated
to this technique would be absolutely prohibitivithva system model code requiring hours or even

minutes to run a single simulation. Hence, for pcat applicability, one has to resort to a
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regression model as a fast-running approximatdheforiginal system model code for performing
the calculations in steps 2. and 4. above, to ntakeomputational cost acceptable.

The regression model suggested is the classiedayered feed-forward ANN [Bishop, 1995]. In
order to improve thaccuracyin the approximation of the system Bf-) (needed for an accurate
estimation of the LS important directiag), the employed ANN models can be trained by a gngp
devisedsequentigl two-stepalgorithm based on error back-propagation, asqseg in [Zio and
Pedroni, 2010]. In extreme synthesisfirat-step ANN regression model is built using a set of
input/output data examples. The resulting ANN masleised (instead of the original, long-running
system model code) to provide approximationto thedesign poinbf the problem: this is meant to
provide an approximate, rough indication of thel teaation of the failure domaif of interest.
Subsequently, a new data set is randomly geneiaatted on the approximate design point
previously identified: aecond-ste®ANN model is then constructed on these newly gaedrdata
set. This should result in an ANN regression maoaleich is more accurate in proximity of the
failure domainF of interest, thus providing reliable estimatestioé system PRy, (-) for the

identification of the LS important directian[Zio and Pedroni, 2010].

For completeness, we report some of the resultsradat in a previous work by the authors [Zio and
Pedroni, 2010], in which the optimized LS methodalded above is applied for the estimation of
the small functional failure probability?(F) of the passive decay heat removal system of a Gas
cooled Fast Reactor (GFR) of literature [Pagaralgt2005] (notice that in this examdR{F) =
3.541-10). A detailed description of the system is not régw here for brevity: the interested
reader is referred to [Pagani et al., 2005] foaiiet

Further, the benefits coming from the use of theppsed method is shown by means of a
comparison between the estimatarcuraciesandprecisionsof the following simulation methods:

i) standard Monte Carlo Simulation (MCS); ii) Latiypercube Sampling (LHS) [Helton and
Davis, 2003]; iii) standard Importance Sampling)([Bu and Beck, 2003a; Au, 2004]; iv) a
combination of standard Importance Sampling (1) laatin Hypercube Sampling (LHS) (hereafter
referred to as IS + LHS) [Olsson et al., 2003]Supset Simulation (SS) [Au and Beck, 2001 and
2003Db]; vi) optimized Line Sampling (LS) [Zio an@dRoni, 2010]; vii) a combination of optimized
Line Sampling (LS) and Latin Hypercube Sampling 8)Hhereafter referred to as LS + LHS) [Zio
and Pedroni, 2010]. Part of the results used irctdmparison are derived from the manipulation of
results previously obtained by the authors [Zio Bedroni, 2009b, ¢ and 2010].

In order to properly represent the randomness ef ghobabilistic simulation methods i)-vii)

adopted and provide a statistically meaningful cangon between their performances in the
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estimation of the system failure probabilR{f), S = 2000 independent runs of each method have
been carried out. In each simulat®nr 1, 2, ...,S the percentage relative absolute esgdyetween

the true (reference) value of the system failurgbpbility P(F) and the corresponding estimate
I5(F)2‘T obtained withiNt samples is computed as follows:

_|P(F)-P(F)"
TG

M100,s=1,2,...S )

The accuracies of the simulation methods of intareite estimation oP(F) are then compared in

terms of the mean percentage relative absolute erraverS= 2000 runs:

1 S
E==D & 8)
S &

The quantity (8) provides a measure of the pergentalative absolute error in the estimation of the
failure probabilityP(F) madeon average in a single ruoy the simulation method witky samples;

obviously, the lowelg , the higher th@ccuracyof the method.

The failure probability estimatelé(F)ET ,$=1, 2, ...,§ are then used to buildomotstrappe®5%

Confidence Interval (CI) for the failure probatyl'rbstimatorls(F)NT , e,

|.LC|,F3(F)NT U cl,p(F)" ] ©)

whereU and L are the 2.8 and 97.8 percentiles, respectively, of theotstrapped

Cl,P(F)M Cl,P(F)M
empirical distributionof the failure probability estimatola(F)NT. The percentage relatiweidth

W, of the bootstrapped 95% Confidence Interval (Ql)tree LS failure probability estimator

P(F)" is then computed as

U o w-L -
V_Vc| - cl,P(F) cl,P(F)NT 100 (10)
P(F)

Obviously, the lowew,, , the higher th@recisionof the method.

Finally, in addition to the accuracy and precisiminthe failure probability estimator, also the
computational time associated to the simulationheethas to be taken into account. To this aim,
the FOM can be used:

1 _ 1

FOM:J%WFWﬁm " 5P )m

(11)

‘comp ‘comp
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wheret_, is the computational time required by the simolatnethod andleFA’(F)NT] is defined

comp

in (5). Since UZ(IS(F)NT)D N, and approximatelyt. O N,, the FOM is independent dtr.

comp

Obviously, the higher the FOM, the higher the cotapanal efficiency of the method.

Table 3 reports the values of the performance atdis £ (8), W, (10) and FOM (11) obtained

with Ny = 1850 samples by the simulation methods i)-vigtice that sincér is the same for all

the simulation methods, performance indicaterg8) andw,, (10) can be compared fairly). The

number of T-H code runs required by each methalss reported: actually, when a single run of
the system model code lasts several hours (whidftes the case for passive safety systems) the
total number of simulations is theitical parameter which determines the overall computation
cost (i.e. tcomp associated to the method. In particuNyp) is the number of code runs used by the
algorithmonly to estimatethe failure probabilityP(F); instead,N¢ aqq IS the number o&dditional
code runs required ®et upthe method: for example, for IS and IS + LH\g 4qq COde runs are used
to build the Importance Sampling Density (ISD) entification of the “design point” of the
problem [Au, 2004]; instead, for LS and LS + LHS,aqq cOde runs are used to identify the
important directiore by minimization of the variance of the LS failypeobability estimator [Zio
and Pedroni, 2010].

It can be seen that the optimized Line Samplinghoag (i.e., both LS and LS + LHS) provide
more accurate and precise failure probability este® than the other methods: actually, the mean
percentage errors are about 13 to 380 times lower than those ofother methods, whereas the

percentage 95% CI width@,, are about 16 to 278 times lower than those ofother methods.

Finally, although the computational cost associatedhe optimized Line Sampling methods is
higher than that of the other methods (becausethenumber of T-H code runs is more than three
times larger), the overall computational efficieraythe method is significantly higher: actually,

the FOM is about 2 to drders of magnitud&rger than that of the other methods.

The previous example has served to demonstratetitbapptimized LS methods indeed provide
more accurate and precise failure probability esta®m than the other simulation methods
considered. However, this must be achieved wigmall number of samples (and, thus, of T-H
model evaluations: say, few tens or hundreds depgrah the application), because in practice the
T-H computer codes require several hours to rumglessimulation [Fong et al., 2009]. Thus, we

consider here a practical situation where the nurNbgr of T-H code runs allowed for estimating
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the small failure probabilityP(F) = 3.54110* is set to few tens (e.g., 30 in this case). Tisalte

are summarized in Table 4.

It can be seen that even in this case the optiniiaeel Sampling methods (i.e., both LS and LS +
LHS) provide more accurate and precise failure gbdlty estimates than the other methods:
actually, the mean percentage err@rsare about 6 to 44 times lower than those of theerot

methods, whereas the percentage 95% CI witithsare about 6 to 163 times lower than those of

the other methods. Finally, the global efficiendytitee method is significantly higher: actually, the
FOM is about 1 to 8rders of magnitud&rger than that of the other methods.

These results confirm the recommendation of adgytirs method.

5.2 Uncertainty analysis

The objective of the uncertainty analysis is topagate the uncertainty associated to the input
parametersx = {x4, X, ..., X, ..., %ni} through the deterministic, long-running T-H coitleorder to
guantify the uncertainty associated to the outputablesy = {yi, V2, ..., yi, ..., Xno} Of interest and

to the performance functioN(x) of the passive system (e.g., computing Probgbensity
Functions-PDFs, Cumulative Distribution FunctionSKs and percentiles).

In all fairness, notice that the strongly recommezhd.S technique allowsnly the (efficient)
calculation of the failure probability of the passisystem, but it does not allow c@mplete
uncertainty propagation: actually, no Probabilityer3ity Functions (PDFs), Cumulative
Distribution Functions (CDFs) or percentiles of &l code outputs of interest can be identified in
a single simulation run. Thus, if the analyst iterasted in propagating the uncertainty onto the
output, two options are recommended:

1. in the (unlikely) case that the T-H model is suéfidly simple and requireseconds or
minutesto run, the use of the Subset Simulation (SS)rdlgn may represent the optimal
choice (Section 5.2.1);

2. in those (more realistic) cases where the T-H madgluires many hours, or days, to
perform a single evaluation, the use of fast-rugnsurrogate regression models (e.g.,
bootstrapped Artificial Neural Networks-ANNs, inighwork) instead of the long-running
original T-H code seems mandatory (Section 5.2.2).

These recommendations are further explained anovated below.

5.2.1 Uncertainty propagation using Subset Simulation
The idea underlying the Subset Simulation (SS) owtls to convert the simulation of an event

(e.g., the rare failure event) into a sequenceimilations of intermediate conditional events
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corresponding to subsets (or subregions) of themma input parameter space (for example, if a
passive decay heat removal system in a nucleatoreac assumed to fail when the fuel peak
cladding temperature exceeds 725 °C, then plausitegmediate conditional events could be
represented by the peak cladding temperature exge880, 500 and 650 °C, respectively). During
simulation, the conditional samples (lying in tikermediate subsets or subregions) are generated
by means of properly designed Markov chains; bydemg, the conditional samples gradually
populate the successive intermediate subsets fegons) up to the target (failure) region [Au
and Beck, 2001; Au and Beck, 2003b].

In synthesis, the SS algorithm proceeds as folldvitst, N vectors & k = 1, 2, ...,N} are
sampled by standard MCS, i.e., from the originabbability density functionq(:). The
corresponding values of the response variab{@d): k = 1, 2, ...,N} are then computed and the
first threshold valuegy; (identifying the first intermediate conditionaleat) is chosen as the (1 —
po)N™ value in the increasing list of value¥(fo"): k = 1, 2, ...,N}. With this choice ofy,, there are
now poN samples amongx§ k = 1, 2, ...,N} whose respons&/(x) lies in the intermediate
subregionF; = {x: Y(x) >y,}. Starting from each one of these samples, Ma®bain Monte Carlo
(MCMC) simulation is used to generate (poyN additional conditional samples in the intermediate
subregiorf; = {x: Y(X) >y}, so that there are a total bfconditional samples§* k=1, 2, ...,N}

L F1. Then, the intermediate threshold vajuds chosen as the (1ps)N" value in the ascending
list of {Y(x1"): k=1, 2, ... N} to defineF, = {x: Y(x) > ys}. The poN samples lying ifF, function as
‘seeds’ for sampling (1 go)N additional conditional samples lying F», making up a total o
conditional samplesxg® k = 1, 2, ...,N} LI F,. This procedure is repeated until the sampleglyin
in the intermediate subregidin. = {X: Y(X) > ym1} are generated to vyielg, >y as the (1 po)N"
value in the ascending list of{xm1): k = 1, 2, ...,N} [Au and Beck, 2001; Au and Beck 2003b;
Au, 2005; Au et al., 2007].

The superior efficiency of SS with respect to seaaddVICS in the uncertainty propagation task has
been widely demonstrated in the open literature:ititerested reader may refer to [Au and Beck,
2001; Au and Beck, 2003b] for mathematical detaibs[Ching et al., 2005; Katafygiotis and
Cheung, 2005 and 2007; Au, 2007; Au et al., 200/&d®varter et al., 2007] for illustrative
applications to high-dimensional (i.en,> 100) structural reliability problems and to [Zioda

Pedroni, 2009b] for an application to the functidiadure analysis of a T-H passive system.

For completeness, we report some of the resultsiquely obtained by the authors [Zio and
Pedroni, 2009b] in the use of the SS method toggafe the uncertainties through the T-H model
of the passive decay heat removal system of a Galeda Fast Reactor (GFR) analyzed in the
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previous Section 5.1 [Pagani et al., 2005]. Nineeutain input parametersi{j = 1, 2, ..., 9} are
taken into account and two safety variablgs { = 1, 2} (i.e., the hot- and average-channel
temperatures of the naturally circulating coolagdving the core) are considered as outputs of
interest of the T-H system model code. The outpuibles {i: | = 1, 2} are then used to generate a
single-valued system performance indicator (oicaitresponse variabl&)x) for the evaluation of
passive system failure; further details can be donr{Pagani et al., 2005; Zio and Pedroni, 2009b].
The performance of SS is compared to that of LHflica that LHS has been chosen as benchmark
method due to its popularity and wide use in Praistic Risk Assessment (PRA) [Helton and
Davis, 2003; Sallaberry et al., 2008; Helton andlaBarry, 2009]. Following the approach
presented in [Au et al., 2007] and subsequentlyl usgZio and Pedroni, 2009b], Figure 1, left
shows the empirical Cumulative Distribution Funoti®DF) of the performance functiof{x) of

the passive decay heat removal system considenedddlition, Figure 1, right focuses on the
portion of CDF where the cumulative probability gas between 0.999 and 1. The results produced
by SS with a total oNy = 1850 samples (i.e., T-H code runs) are showsoiid lines, whereas
those produced by LHS with the same number of se®iplH code runs (i.eNr = 1850) are
shown in dashed lines. The dot-dashed lines carrespo the results obtained by LHS whkk =
500000 samples/T-H code runs: this number of sanpelargely sufficient for efficiently
estimating the CDF even where the cumulative pritibalbanges between 0.999 and 1: thus, the

corresponding results are taken as benchmarks.

Notice that the results from SS are satisfactaiibge to the reference solution in all the probgbil
ranges considered. On the contrary, LHS with 1&0pdes is not able to produce accurate results
for values of the cumulative probability very cldsel (Figure 1, right). This is due to the factth
with 1850 samples there are on average only 18500(999) = 185®.001 ~ 2 samples in Figure
1, right. In contrast, SS (due to successive cmgit MCMC simulations) generates 1850 and 500
conditional samples in Figure 1, left and rightspectively, giving enough information for an
efficient estimation of the CDF.

Then, the 999 percentile of the performance functi¥(x) of the passive system is estimated by
SS with 1850 samples (obtaining 1120.1 °C) and Wkt8 1850 (obtaining 1095.3 °C) and 500000
samples (obtaining 1118.9 °C). It can be seenttwaestimate of the 99"Percentile produced by
SS with 1850 samples is veagcurateand close to the reference one, i.e., the one ctedpby
LHS with 500000 samples: however, this result isamed with a computational effort which is
500000/1850= 270 times lower; on the contrary, the percentileniified by LHS with 1850

samples is much lower than the reference one.
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Finally, to assess quantitatively the statisticalperties and therecisionof the 99.8' percentile
estimates produced by SS with 1850 samples and wit§1850 samples$ = 100 independent
runs have been carried out for each simulation otettnd the empirical 95% Confidence Intervals
(Cls) of the 99.9 percentile estimates thereby obtained have beemputed: the obtained Cls are
[1068.9, 1183.0] and [1012.4, 1242.1] for SS andlKespectively. It can be seen that the width of
the 95% CI produced by SS is about 2 times lowan that of LHS: thus, conversely, the precision

of the estimate is 2 times higher.

As a final remark, it is worth noting that for S@fferently from LS) there does not seem to exist
any indication that it is possible to reduce thenbar of samples (i.e., the number of T-H model
code evaluations) to below a few hundreds. Actuakyerring to the computational flow of SS
described above, at leddt= 100 samples have to be generatedaichsubsef;, i =1, 2, ....m, to
produce reliable estimates in the uncertainty pgapan phase: thus, if high quantiles (e.g., the
99.9" or 99.99" percentiles) have to be estimated (which is oftem case for passive safety
systems), then an amount of abdlin = 1003 = 300 orN'-m = 1004 = 400 samples have to be
generated, respectively. As a consequence, if Hie model requires many hours, or days, to

perform a single evaluation, SS is not suitable.

5.2.2 Uncertainty propagation using bootstrapped Artificial Neural Networks
In those cases where the T-H model requires manyshor days, to perform a single evaluation,
the use of fast-running surrogate regression madstead of the long-running original T-H code
becomes somewhat mandatory: because calculatidhstiwa surrogate model can be performed
quickly, the problem of long simulation times isatimvented.
Here, the use of Artificial Neural Networks (ANN®& recommended for this task. In extreme
synthesis, ANNs are computing devices inspired Hey function of the nerve cells in the brain
[Bishop, 1995]. They are composed of many paraédrhputing units (callecheuronsor node3
arranged in differentayersand interconnected by weighed connections (caljedpses Each of
these computing units performs a few simple opematiand communicates the results to its
neighbouring units. From a mathematical viewpo&lNs consist of a set of nonlinear (e.qg.,
sigmoidal) basis functions with adaptable paranseterthat are adjusted by a processrafning
(on many different input/output data examples),, i@ iterative process of regression error
minimization [Rumelhart et al., 1986]. ANNs haveshelemonstrated to be universal approximants
of continuousnonlinear functions (under mild mathematical ctinds) [Cybenko, 1989], i.e., in
principle, an ANN model with a properly selectedharecture can be a consistent estimator of any
continuous nonlinear function, e.g. any nonlineaH Ttode simulating the system of interest.
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Further details about ANN regression models araemtrted here for brevity; the interested reader
may refer to the cited references and the copitersiure in the field. The particular type of ANN
considered in this paper is the classical threerky feed-forward ANN trained by the error back-
propagation algorithm.

Notice that the recommendation of using ANN regmssodels is mainly based on i) theoretical
considerations about the (mathematically) demotestraapability of ANN regression models of
being universal approximants of continuous nonlinear functiongy.(eany nonlinear T-H code
simulating the system of interest) [Cybenko, 19884 ii) the experience of the authors’ in the use
of ANN regression models for propagating the uraieties through T-H model codes simulating
passive safety systems [Pedroni et al., 2010; Zab. £2010]: for example, in [Pedroni et al., 2D10
both the accuracy and precision of ANN regressiadels in estimating the percentiles of the
temperature of the naturally circulating coolantaipassive decay heat removal system have been
compared and shown to be superior to those of simphdratic Response Surface (RS) regression
models. Since no further comparisons with otheesypf regression models have been performed
by the authors yet, no additional proofs of theesiguity of ANNs with respect to other regression

models can be provided at present, in general terms

To evaluate the additional sourcensbdeluncertainty introduced by the ANN empirical regies
model the use of an ensemble of ANN regression mpad®nstructed on different data sets
bootstrapped from the original one is recommendaa, 2006; Storlie et al., 2009]. The bootstrap
method is a distribution-free inference method Whrequires no prior knowledge about the
distribution function of the underlying populatiifron and Thibshirani, 1993]. The basic idea is
to generate a sample from the observed data bylisanvaith replacement from the original data
set [Efron and Thibshirani, 1993]: each of theset&twapped data sets is used to build a
bootstrapped regression model which is used talzdcthe quantity of interest (e.g., in this cake
uncertainty propagation, the quantity of interestyrhe represented by the vecimf the outputs of
the T-H model code, by the performance functiontled passive systeny(x) and by their
percentiles). In this context, the bootstrap akpomi is used to quantify, in terms obnfidence
intervals the model uncertainty associated to the estimptesided by the ANN regression
models. Recall also that from the theory and prcaadf ensemble empirical models, it can be shown
that the estimates given by bootstrapped ANN regpasnodels are in general more accurate than
the estimate of the best ANN regression model m lbotstrap ensemble of ANN regression
models [Zio, 2006; Cadini et al., 2008].
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In synthesis, the following steps must be undertakeperform uncertainty propagation by means
of bootstrapped ANNSs [Zio, 2006; Storlie et al.02D

1.

Generate a data sB.,, Of training input/output data examples by samplangpossibly
reduced numberNy.in Of independent input parameters valugsp = 1, 2, ...,Nyain, and
calculating the corresponding setMf.in output vectory, = uy(X,) through the mechanistic
T-H system code.

Generate a sebDyy of validation input/output data examples (diffeardrom Dyain) by
sampling a (possiblgeduced numberN,, of independent input parameters valygdp = 1,
2, ...,Nva, and calculating the corresponding seNgf output vectors, = uy(X,) through the
mechanistic T-H system code.

Build an ANN regression modé(x, w') using the training and validation data sBts,, and

D, ; in particular, the training data st is used to calibrate the internal parameters

val ;
of the regression model, whereas the validation datD,,, is used to monitor the accuracy

of the ANN model during the training procedure nder to avoidoverfitting of the training
data according to the so-calledrly stoppingmethod. In practice, the RMSE is computed
on Dy, at different iterative stages of the training @dare: at the beginning of training,
this value decreases as does the RMSE computetieotrdining seDy4in; later in the
training, if the ANN regression model starts ouw#irfg the data, the RMSE calculated on the
validation seD,4 starts increasing and training must be stoppeshid, 1995].

Measure the accuracy of the constructed regressiodel constructed in step 3. by

computing proper numerical figures (e.g., the comiypoadopted coefficient of

determination R> and RMSE) for each outpwyi, | = 1, 2, ...,n,, on anew data set

Diest =X ¥, ) P= 12,...,N,of OF sizeNees; purposely generated feestingthe regression

test —
model built [Marrel et al., 2009], and thus diffetefrom those used for training and
validation.

Use the regression modik, w), in place of the original T-H model code, to pides a
point estimate(':) of the quantityQ of interest (e.g., in this case of uncertaintypgagation,

the quantityQ may be represented by the vegtaf the outputs of the T-H model code, by
the performance function of the passive syswx) and by their percentiles).

Build an ensemble d (e.g.,B = 500-1000) regression mode{lfsn(x,w;),b: lZ,...,B} on

the basis of bootstrap data SeB,., ={(Xps: Yoo ) P= 12 Nyanfs b = 1, 2, ..., B,
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generated by performing random samphmith replacemenfrom the original training data
set D, :{(xp, yp), p= lZ,...,Ntram}.

7. Use each of the bootstrapped regression mdgeisws, ), b = 1, 2, ...,B, to calculate an
estimate@b, b=1, 2, ..B, for the quantityQ of interest: by so doing, a bootstrap-based

empirical probability distribution for the quantit® is produced which is the basis for the

construction of the corresponding confidence irdtyv
8. Calculate the so-called Bootstrap Bias CorrecteBQB point estimate@BBC for Q (see

[Baxt and White, 1995] for details) and the cormgting two-sided Bootstrap Bias
Corrected (BBC)-100:-(1 )% Confidence Interval (Cl) (using the bootstragdzh
empirical probability distribution for the quantit® obtained in step 7. above).
The complete and detailed bootstrap algorithm isreported here for brevity; some technical
details can be found in [Efron and Thibshirani, 3;98io, 2006; Cadini et al., 2008; Secchi et al.,
2008; Storlie et al., 2009; Pedroni et al., 201i0; &t al., 2010].

For completeness, we report some of the resultsradd in a previous work by the authors [Pedroni
et al., 2010], in which bootstrapped ANNs are uegdropagate the uncertainties through the T-H
model of Section 5.1 [Pagani et al., 2005]; agaire performance of bootstrapped ANNSs is
compared to that of LHS.

Figure 2, left shows the empirical Cumulative Dimition Function (CDF) of the performance
function Y(x) of the passive decay heat removal system coregiden addition, Figure 2, right
focuses on the portion of CDF where the cumulagk@bability ranges between 0.95 and 1. The
results obtained withiy = 500000 estimations froB = 1000 by bootstrapped ANNSs (built d3oge

= Nirain + Nvar + Niest= 80 + 20 + 10 = 110 input/output examples, iTeH code runs) are shown in
solid lines, whereas those produced by LHS withstmaenumber of T-H code runs (i.&\; = Ncoge

= 110) are shown in dashed lines. Notice that treparison between these two approaches is fair
because the numbeék,.qe Of runs of the original T-H system model code (#mas the associated
overall computational effoitis the same (i.eNcoge = 110); however, for LHS thiew system model
code runs ardirectly used to produce the CDF of interest, whereasdotdtrapped ANNSs they are
used to build the regression models, which ar@in émployed to produce the CDF estimate. The
dot-dashed lines correspond to the results obtdigddHS with Nt = Ncoge = 500000 samples (i.e.,
T-H code runs): this number of samples is largeRicent for efficiently estimating the CDF even
where the cumulative probability ranges betweerb @Ad 1: thus, the corresponding results are

taken avenchmarks
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The bootstrapped ANNs are shown to be quéeable and accurate,as the CDF produced is
satisfactorily close to the reference one (i.ee, ¢dhe produced by LHS withy = N¢oge = 500000
samples) in all the probability ranges considefddo, the bootstrapped ANN results are obtained
at a much lower computational effort: actually, thhemberNcyge Of T-H code runs (i.e., 110) is
about 4500 times lower than that of the referemmse ¢i.e., 500000). The overall CPU time required
by the use of bootstrapped ANNs (i.e., on averag@@ 8) is about 180 times lower than that
required by the use of the original T-H model c@de, on average 409 h).

Further, it can be seen that the bootstrapped ABINIS 0N Ncoge = Nirain + Nvar + Niest = 80 + 20 +

10 = 110 input/output examples (i.e., T-H code yungperform LHS with the same numbégge=
110 of T-H code simulations: actually, LHS is nbteato produce accurate results, in particular for
values of the cumulative probability very closelt{Figure 2, right).

The two approaches are further compared in thmagtin of the 98 percentile of the performance
function Y(x) of the passive decay heat removal system. The BBi@it estimate of the 85
percentile of the performance functi®¥(x) obtained withNy = 500000 estimations frol = 1000
bootstrapped ANNs and witky = 110 and 500000 estimations from LHS are 802.5824.1 °C
and 794.2 °C, respectively. It can be seen thatstienate produced by the bootstrapped ANNSs is
quite close to thereferenceone, i.e., the one obtained by LHS with 500000 Hem the
corresponding percentage Relative Absolute ErréfHRis 1.04%; on the contrary, the percentile
identified by LHS withNt = 110 samples is considerably larger: the cormediog percentage RAE

is 3.74%. It can be seen that the percentage RA8uped by the bootstrapped ANNSs is 3.6 times
lower than that of LHS witiNy = 110 samples: thus, conversely, #teuracyof the estimate is 3.6
times higher.

Finally, to assess quantitatively the statisticalperties and th@recision of the 98" percentile
estimates produced by the methods considered,5¥e®@onfidence Interval (Cl) associated to the
estimates are evaluated. In particulars: 1000 independent runs of LHS wily = Ngoge = 110
samples are carried out and témpirical 95% Confidence Interval (Cl) of the ®%ercentile
estimate thereby obtained has been computed:n$ tout to be [785.6, 868.2]; on the contrary, the
BBC 95% Cl is produced bg = 1000 bootstrapped ANN regression models consuanNcoge =
110 data examples according to steps 1. — 8. albtians out to be [777.06, 818.92]. It can be
seen that the width of the Cl produced by bootgedpANNS is about 2 times lower than that of

LHS: thus, conversely, the precision of the estama®2 times higher.
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5.3 Sensitivity analysis

For safety-critical systems, like nuclear passiystems, the task of sensitivity analysis is
fundamental for reliability/failure probability asssment and safety decision-making and assurance
[Helton and Sallaberry, 2009]. In particular, iretfunctional failure analysis of a T-H passive
system, sensitivity analysis can be a useful toolidentifying the uncertain parameters (i.e., the
uncertain inputs to the T-H code) that contributestrto the variability of the model outputs (i.e.,
the coolant outlet temperatures): this informatisnimportant for the identification of those
parameter and hypothesis uncertainties that ar¢ mlevant in determining system failure [Saltelli
et al., 2008; Volkova et al., 2008; Marrel et 2D09].

In general, the sensitivity analysis outcomes mlewiwo important insights. On the one side, the
analyst is able to identify those parameters/véggtvhose epistemic uncertainty plays a major role
in determining the functional failure of the T-Hgsa&ve system: consequently, his/her efforts can be
focused on increasing the state-of-knowledge omsethenportant parameters/variables and the
related physical phenomena (for example, by theectbn of experimental data one may achieve
an improvement in the state-of-knowledge on theetations used to model the heat transfer
process in natural convection and a correspondidgation in the uncertainty); on the opposite
side, the analyst can identify those parameterisivias that are not important and may be excluded
from the modeling and analysis.

The options recommended for performing sensitiaalysis are the same as those proposed for

uncertainty analysis (Section 5.2), as explaindadvibe

5.3.1 Sensitivity analysis using Subset Simulation
The Markov chain samples generated by SS can ki nteonly for estimating the conditional
probabilities but also to infer the probable scesathat will occur in the case of failure [Au, Z)O

Intuitively, from the comparison of the probabililensity functionq(x; |F) of the uncertain

parameterx;, j = 1, 2, ...,m;, conditional to the occurrence of failuFe with the unconditional
probability density functiom(x;), an indication can be obtained on how importarthe parameter

X; in affecting the system failure. Formally, for agiyen value ok the Bayes’ theorem reads,

p(F |x,) = 251
a(x;)

so thatP(F | x; )is insensitive tog when q(x; |F ) ~ q(X;), i.e. when the conditional probability

P(F),j=1,2,...n (12)

density functionq(x; | F )is similar in shape to the PI¥ftx) [Au and Beck, 2003; Au, 2005; Au et

al., 2007]. The effectiveness of this approach tarsgivity analysis has been demonstrated by a
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number of studies conducted in the field of streadtweliability: for example, in [Au and Beck,
2003] and [Au, 2005], the approach has been effelgtiused to address a 1500-dimensional
problem concerning a steel frame subject to stachgsound motion; in [Au et al., 2007] the
method has been applied to perform a compartmeatrisk analysis where seven uncertain
parameters were considered, whereas in [Zio antbRie@009b] it has been applied to perform the
sensitivity analysis of the model of Section 5.1.

In this latter work, the sensitivity of the passsystem performance to tilme= 9 uncertain input
parameters has been studied by examining the chafrnihe sample distributiong(x|Fi), ] = 1, 2,

.., i, 1 =12 ...,m at different conditional levelg;, i = 1, 2, ...,m. The histograms of the
conditional samples of two of the nine uncertainapeeters (i.e.x;, the pressure level established
in the guard containment after the LOCA, axgl the friction factor in mixed convection) at
different conditional levels for a single SS rue ahown in Figure 3, left. It can be seen that the
performance of the passive system is strongly 8eedo the pressure level established in the guard
containment after the LOCA, as indicated by thenifigant leftward shift of its empirical
conditional distribution (histograms) from the unddional one (solid lines). A slight sensitivity o
the passive system performance is also observédragpect to the correlation errors in the friction
factor (rightward shift) in mixed convection.

The information contained in the empirical condiabdistributionsy(x|Fi),j = 1, 2, ....n;, i =1, 2,

..., m, can then be used tefine the sensitivity information by obtaining the distrtion of the
system failure probability conditional on the vau# the individual uncertain input parameters, i.e
P(FIx), according to (12) (Figure 3, right): this infaation is relevant because it quantifies how the
failure probabilityP(F) of the passive system would change if the valub@ uncertain parameter

X; were set to a given value (e.qg., if its episteamicertainty were reduced).

Note that SS presents the advantage over othedasthtechniques of sensitivity analysis, of being
directly “embedded” in the computation of the fadyprobability: the SS algorithm produces the
empirical conditional distributions of Figuredairing the simulatiorthat is performed to compute
the functional failure probability of the passivgsem. In other wordswhile estimating the
functional failure probability of the system, sdivily analysis results are produced that can be
readily visualized for identification and rankinfjtbe most important variables.

5.3.2 Sensitivity analysis using bootstrapped ArtificialNeural Networks

Bootstrapped ANNs are used to replace the oridifdlcode in theanultiple (e.g., many thousands)

system performance evaluations (for different corations of system inputs) required by
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sensitivity analysis; thus, in principle, bootspad ANNs could be used in the development of any
of the sensitivity analysis methods available i dpen literature.

Here we recommend the use of bootstrapped ANNsdomputing first- and total-order Sobol
sensitivity indices [Sobol, 1993] for the vectoof the outputs of the T-H code and for the passive
system performance functioffx): see [Zio et al., 2010] for a preliminary ana$ysf this kind.

By definition, the first-order Sobol sensitivitydexS',j =1,2,..n,1 =1, 2, ...ny, quantifies the
proportion of the variance of the outputl = 1, 2, ...,n,, that can be attributed to the variance of
the uncertain input variabbe along i.e., withouttaking into accouninteractionswith other input
variables; on the contrary, the total-order Soleoisgivity indexSr,-',j =12,..n,1=1,2,...n,
guantifies the proportion of the variance of thépotiy;, | = 1, 2, ...,n,, that can be attributed to the
variance of the uncertain input variabletaking into account thateractions(of all the orderg
with all the other input variables. A thorough dgstion of these sensitivity measures goes beyond
the scope of this work: mathematical details cafobad in [Saltelli, 2002a, b; Saltelli et al., Z)O

As pointed out in [Saltelli, 2002a], the sensitjvindicesS' andS;; have the advantage of being
global because the effect of tleatire distribution of the parameter whose uncertaintgontance is
evaluated, is considered; moreover, this sengitiuitdex is also “model free” because its
computation is independent from assumptions aldmitmodel form, such as linearity, additivity
and so on. The drawback of this approach relieth& computational burden associated to its
calculation: actually, thousands or millions ofteys model evaluations are frequently required for
the evaluation of Sobol indices through Monte Gédsed techniques [Saltelli, 2002a; Saltelli et
al., 2008].

For completeness, we complete the results obtamedprevious work by the authors [Zio et al.,
2010] (in which bootstrapped ANNs were applieddomputing first-order Sobol indices for one of
the outputs of the model of Section 5.1) by comqmufirst- and total-order Sobol indic§§ and
SU-Y for the performance functio(x) of the model of the T-H passive system of Secldn The
algorithm proposed by [Saltelli, 2002a] has beepl@mented to obtain the “true” (i.e., reference)
values of the first- and total-order Sobol seniitindicesS* andSy," for the input variables;, j =
1, 2, ..., 9: these values obtained with = 110000 runs of the original T-H model code are

reported for reference in Table 5 (in parentheses).
Table 5 reports also the BBC point estima@lg,. and S/ gz for S' and S, j =1, 2, ..., 9,
obtained withNt = 110000 estimations frof® = 1000 bootstrapped ANN models built Ngyge =

Nirain + Nval + Niest = 80 + 20 + 10 = 110 input/output examples, ifel} code runs; the Table also

shows the corresponding Bootstrap Bias Correctd8iC{B25% Confidence Intervals (Cls): the
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information conveyed by these intervals is impadrtarhen few data are used to train the

bootstrapped ANNs and the consequent confidencéhefanalyst on the Sobol index point

estimatesSY .. and S 55 is poor, like in the present case.

It can be seen that bootstrapped ANNs are gadeurate because the BBC point estimates
produced are satisfactorily close to the refereralaes; moreover, ANNs are sufficientbyecise
since the BBC 95% Cls are quitarrow around the reference values.

Finally, notice that the computational cost asdedido the use of bootstrapped ANNs is much
lower than that required by the use of the origifhdH code: actually, the computational times
associated to both analyses have been of 2.12 W92, respectively, on a Pentium 4 CPU
3.00GHz.

6 Conclusions

The assessment of the reliability of T-H passiveteays is a crucial issue to be resolved for their
extensive use in future nuclear power plants. Télmnce of T-H passive systems on inherent
physical principles makes their reliability evaioat quite difficult to accomplish, if compared to
classical system reliability analysis, due to thekl of data which makes current knowledge of
passive system operation somewhat poor, thus uting largeuncertaintiesn the analysis. These
uncertainties are both of aleatory and epistemtaraaand are mainly due to poor understanding
and imprecise modelling of the phenomena affedivegT-H performance of the system and of the
relative physical correlations, environmental andrxary conditions used.

These issues may in principle be detrimental fer phblic acceptance of future reactor designs,
which conversely are expected to offer an ovegalgranteed level of safety higher than the one of
the currently operating nuclear fleet, especidipniks to the adoption of passive systems.

Thus, there is a strong need for the developmeahtdamonstration of consistent methodologies and

approaches for T-H passive systems reliability sssent.

As a further step forward in this direction, ingtpaper the computational issues associated with
assessing the reliability of T-H passive systemgehaeen considered. The copious use of expert
judgement and subjective assumptions during thesasgent process leads to the need of
propagating the associated uncertainties by simglageveral times the system response under
different working conditions: this can be done bprite Carlo sampling the uncertainties in the

system model and parameters, and simulating thesmonding passive system response with a

mechanistic T-H computer code. However, this apgroeequires considerable computational
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efforts. The reason is twofold. First, a large nemlmf Monte Carlo-sampled T-H model
evaluations must generally be carried out for aoueste estimation of the functional failure
probability. Since the number of simulations regdito obtain a given accuracy depends on the
magnitude of the failure probability to be estinthteith the computational burden increasing with
decreasing functional failure probability, this pssa significant challenge for the typically quite
small (e.g., less than TPprobabilities of functional failure of T-H passisafety systems. Second,
long calculations (several hours) are typicallyessary for each run of the detailed, mechanistic T-
H code (one code run is required for each samplevadfies drawn from the uncertainty
distributions).

These computational issues can be tackled in tffereint ways. From one side, efficient Monte
Carlo Simulation techniques can be employed tooperfrobust estimations with a limited number
of input samples; from the other side, fast-runnisgrrogate regression models (also called

response surfaces or meta-models) can be usepléceehe long-running T-H model code.

Different approaches have been considered and cechpaith reference to a case study of
literature involving the natural convection coolimga Gas-cooled Fast Reactor (GFR) after a Loss
of Coolant Accident (LOCA) [Pagani et al., 2005].

On the basis of the results obtained in the preaadtprevious works by the authors [Zio and
Pedroni, 2009a-c and 2010; Pedroni et al., 2010;€efial., 2010], the following guidelines and
recommendations can be drawn:

» If the interest is only in an accurate and prees@nation of the (typically small) functional
failure probability of the T-H passive system (mibetk by along-running nonlinear and
non-monotonous-H code), then the following approach is recomdszh(Section 5.1):

a. build an Artificial Neural Network (ANN) regressianodel using &equentigltwo-
steptraining algorithm on aeducednumber of examples (e.g., around one hundred)
of the input/output nonlinear relationships undedythe original system model
code;

b. use the ANN model as a fast-running surrogate @fotliginal system model code in
the determination of the LS important directiore technique recommended for this
is that based on thminimization of the variance of the LS failure probability
estimator by means of Genetic Algorithms: the nadton is that since it relies
directly on the definition of theptimal LS important direction, it produces more
accurate and precise failure probability estimales those provided by the other

techniques proposed in the literature;
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c. estimate the functional failure probability of theH passive system by means of

Line Sampling with asmall number of samples (e.g., few tens); the accuracy a
precision of the estimates can be enhanced by congbLine Sampling with Latin

Hypercube Sampling.

It is worth remarking once more that the LS techei@llowsonly the calculation of the

failure probability of the passive system, whergaoes not allow aompleteuncertainty

propagation.

If the analyst is interested also in the uncerjapropagation (i.e., determination of the

PDFs, CDFs, percentiles of the T-H code outputsntdrest and so on) and sensitivity

analysis, two options are recommended:

1.

the SS method offers a feasible means becausendrajes alarge amount of
conditional (failure) samples bgequentialMarkov Chain Monte Carlo (MCMC)
simulations developed in differestibsetsof the uncertain input space. This allows
producing the PDFs and CDFs all the T-H code outputs of interest (e.g., peak
cladding temperatures, pressures, mass flow raigssa on) in aingle simulation
run. Moreover, the conditional samples distribusiom different subsetsof the
uncertain input space can be used to study thetiségsof the passive system
performance to the uncertain system input paramsetiee informative measure of the
importance of a given parameter in determining fliture of the system is the
deviation of its conditional distribution from tluaconditional one.

On the other hand, differently from the LS meththetre does not seem to exist any
indication that it is possible to reduce the nunidfesamples (i.e., the number of T-H
model code evaluations) to below a few hundredgu#ly, at least one hundred
samples have to be generatedeacth subset to produce reliable failure probability
estimates: thus, if the failure probabilities to émimated are IDor 10° (which is
often the case for passive safety systems), themerunt of 400 or 500 samples have
to be generated, respectively. As a consequendégiflT-H model requires many
hours, or days, to perform a single evaluation|jsS#t suitable; on the other hand, if
the T-H model is sufficiently simple and requisesonds or minute® run, SS may
represent the optimal choice.

in those (realistic) cases where the T-H model irequmany hours, or days, to
perform a single evaluation, the use of fast-rugrsarrogate regression models (e.qg.,
ANNs, quadratic RSs, ...) instead of the long-runnoriginal T-H code seems

mandatory. The following procedure is recommended:
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a. run the T-H system model code a predetermimeducednumber of times
(e.g., 50-100) for specified values of the uncartaput variables;

b. collect the corresponding values of the outpuhtdriest;

c. employ statistical techniques for calibrating/adapt the internal
parameters/coefficientsf the response surface of the regression model in
order to fit the input/output data generated inghevious steps;

d. use the empirical regression model built at stefp estimate the quantities of
interest: in this paper, the estimation of i) thBFCof the passive system
performance function, ii) its §5and 99.8 percentiles and iii) first- and total-
order Sobol sensitivity indices has been illusttate

e. use the bootstrap procedure to quantify, in terinsoofidence intervals, the
uncertainties associated to the estimates provigeitie empirical regression
models.

It is worth pointing out that the selection of aregate regression model suitable to
replace the complex, nonlinear T-H code in the tag®y propagation process is
quite a difficult task: actually, such selectionhisavily dependent on the particular
application at hand, so that generalrules are available to this aim.

In the present paper, ANN regression models haea becommended on the basis
of i) theoretical considerations about the (mathi&rally) demonstrated capability of
ANN regression models of beingniversal approximants of continuous nonlinear
functions (e.g., any nonlinear T-H code simulating system of interest) [Cybenko,
1989] and ii) the experience of the authors inuke of ANN regression models for
propagating the uncertainties through T-H modelesodimulating passive safety
systems [Pedroni et al., 2010; Zio et al., 2010dwidver, since no detailed and
systematic comparisons with other types of regoessiodels (except for quadratic
Response Surfaces [Pedroni et al., 2010]) have pbedormed by the authors yet, no
additional proofs of the superiority of ANNs witbgpect to other regression models
can be provided at present. Future research wildldoted to address this issue,
although it is arguably optimistic to think thaiganeral statement in this direction

can be reached.

Finally, a general remark is in order to drive tieader towards a correct interpretation of the
numerical results obtained and of the recommenasitdyawn in the present paper. Actually, one

may interpret that the failure probabilities anchsevity indices computed by means of the
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methodologies described and recommended througheupaper ar¢he failure probabilities and
sensitivity indices associated to thedl” T-H passive system under analysis (i.e., thosantjties
that would characterize the behavior of the T-Hspas system in its operation duringreal
accidental transient). However, in order for tluse true, the T-H code employed in the analyses
would need to be flawless and comprehensivalbthe relevant failure modes of the real T-H
passive systensll aleatory uncertainties would need to be modelategity, andall epistemic
uncertainties would need to be well characteriZéus is obviously not so and it seems in order to
acknowledge that the computational methods destabe recommended throughout the paper can
“only” do as much, driving the T-H code with itgniitations (even if very detailed and extremely
demanding to run). In other words, the paper hakesded the quantification of passive system
functional reliability “only” from the computatiohaiewpoint, i.e., to the extent that the relevant
failure modes are captured in the T-H model codagodriven, and to the extent that the input
uncertainty distributions are appropriate. Evereraftonsistency checks are run and statistical
confidence bounds are established on the ressfisges may remain concerning the possibility of
“extending” the results obtained in the analyseth&actual’ behavior of the feal’ T-H passive

system during an accidental transient, becaudeeaibdel incomplete representation of reality.
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FIGURE CAPTION PAGE

Figure 1. Empirical CDF of the performance functig) of the passive system in [Pagani et al.,
2005]. Solid lines: SS with{N= 1850 samples; dashed lines: LHS with-N1850 samples; dot-
dashed lines: reference LHS with 81500000 samples

Figure 2. Empirical CDF of the performance functig) of the passive system in [Pagani et al.,
2005]. Solid lines: N= 500000 estimations from B= 1000 bootstrapped ANbiilt on Noge =
Nirain + Nvai + Ntest= 80 + 20 + 10 = 110 input/output examples (i.€-H code runs); dashed lines:
LHS with N = N¢oge= 110 samples (i.e., T-H code runs); dot-dasheddi reference LHS with{N
= Ncode= 500000 samples (i.e., T-H code runs)

Figure 3. Sensitivity analysis by SS. Left: empir@monditional distributions of uncertain input
parameters xand % at different conditional levels (histograms) comgzhto their unconditional
distributions (solid lines); right: distribution dhe system failure probability conditional on the
values of the individual uncertain input parameterand %, i.e., P(F|x) and P(F|%)
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TABLES

Category Description
A Physical barriers and static structures (e.qg., maduildings)
B Moving working fluid (e.g., cooling by free convemt)
C Moving mechanical parts (e.g., check valves)
D External signals and stored energy (e.g., scratersgs

Table 1. Categorization of passive systems [IARR1]1
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Categories of uncertainties
Occurrence of accident scenarios
Failure time of mechanical components

ALEATORY — . . :
Variation of geometrical dimensions
Variation of material properties
T-H analysis MOdEL(rZ?;ZErtéonS)
EPISTEMIC

Failure criteria
Failure modes (critical parameters)

System failure analysis

Table 2. Categories of uncertainties associateducear passive systems reliability assessment
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Functional failure probability (“True” value, P(F) = 3.541107)
Performance indicators Ny = 1850;S = 2000)

Method Ne,pr) Ne¢ add & [%] We, [%] FOM
Standard MCS (i) Ny = 1850 0 101.681 305.874 1.080°
LHS (i) Ny = 1850 0 96.652 305.870 1.220°
IS (iii) N = 1850 110 3.803 18.601 6.159°
IS + LHS (iv) Ny = 1850 110 3.564 17.970 7.1200°
SS (v) N = 1850 0 35.760 183.180 6.4140°
LS (vi) 3N; = 5550 110 0.517 2.322 1.320
LS + LHS (vii) 3N; = 5550 110 0.268 1.102 8.296’

Table 3. Values of the performance indicaterg8), w,, (10) and FOM (11) obtained withr¥

1850 samples by methods i)-vii) in the estimatiiothe functional failure probability P(F) of the

passive system in [Pagani et al., 2005]
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Functional failure probability (“True” value, P(F) = 3.541107)
Performance indicators N¢pr) = 30; S = 2000)

Method Nt N¢ add & [%] WCI [%0] FOM
Standard MCS (i)  Npe = 30 0 206.150 3.9480° 911.541
LHS (ii) Nepe = 30 0 183.080 3.4900° 1.16210°
IS (iii) Nepe = 30 110 29.049 139.280 1.41@
IS + LHS (iv) Nepe = 30 110 27.182 134.170 1.619°

SS (v) / 0 / / /

LS (vi) Nepe/3 = 10 110 7.016 36.278 2.336°
LS + LHS (vii) Nepe/3 = 10 110 4.684 24.154 5.026°

Table 4. Values of the performance indicaterg8), w,, (10) and FOM (11) obtained with: Mg

= 30 T-H code runs by methods i)-vii) in the estioraof the functional failure probability P(F) of

the passive system in [Pagani et al., 2005]
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Sensitivity analysis using bootstrapped ANNSs

S’ S
Parameters  Sfg.. (“reference”) BBC-95% ClI Sl gec (‘reference”) BBC-95% ClI
X1 7.6774-10 (8.6372:10)  [4.751-1C, 8.971-10] 0.0113 (0.0121) [9.001-100.0195]
X 0.7879 (0.7928) [0.7792, 0.8158] 0.8259 (0.8391) 0.8188, 0.8553]
X 0.0496 (0.0516) [0.0331, 0.0510] 0.0546 (0.0434) 0.0391, 0.0570]
X4 3.3248-10 (8.4218-10) [0, 8.317-10] 2.226-10 (3.0575-10)  [3.231-1C, 4.385-10]
Xs 0.0651 (0.0522) [0.0583, 0.0767] 0.0711 (0.0833) 0.0655, 0.0809]
X 1.2317-10 (6.5814-10) [0, 3.718-10] 2.2169-10 (3.1948-106)  [3.179-10', 4.862-10]
X7 2.4542-10 (6.0669-10) [0, 4.239-10] 2.2013-10 (3.0618-10)  [3.447-10', 4.621-10]
Xg 0.0527 (0.0522) [0.0500, 0.0677] 0.0827 (0.0832) 0.0718, 0.0955]
Xq 1.5848-10 (5.9493-10) [0, 8.168-10] 2.1968-10 (3.0531-10)  [3.455-1(', 4.333-10]

Table 5. Bootstrap Bias Corrected (BBC) point eat#s S 5. and S, goc, j = 1, 2, ..., 9, and
BBC-95% Confidence Intervals (ClIs) of the firsteddatal-order Sobol sensitivity indic@Y and

S}(j ,j=1,2,...,9, calculated he performance funttitk) of the model of the T-H passive system

in [Pagani et al., 2005]
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FIGURES

Empirical Cumulative Distribution Function (CDF) of Y(x )

Empirical Cumulative Distribution Function (CDF) of Y (x)
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Empirical Cumulative Distribution Function (CDF) of Y(x )
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