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ABSTRACT

This paper addresses the issue of the classificatfaccident scenarios generated in a
dynamic safety and reliability analyses of a Nucleawer Plant (NPP) equipped with
a Digital Instrumentation and Control system (I1&C).

More specifically, the classification of the firshte reached by the system at the end of
an accident scenario is performed by Fuzzy C-Meelnstering the Functional
Principal Components (FPCs) of selected relevaricpss variables. The approach
allows capturing the characteristics of the procemgolution determined by the
occurrence, timing, and magnitudes of the faulhexe

An illustrative case study is considered, regardimng fault scenarios of the digital 1&C
system of the Lead Bismuth Eutectic eXperimentaeléator Driven System (LBE-
XADS). The results obtained are compared with thafsthe Kth Nearest Neighbor
(KNN) and Classification and Regression Tree (CAgtagsifiers.

Keywords. dynamic reliability, fault scenarios classificatjofunctional principal
components analysis, fuzzy clustering, Fuzzy C-Meatgital instrumentation and
control faults, nuclear power plants.



1. Introduction

Nuclear Power Plants (NPPs) are replacing and dpyggaheir aging and obsolete Instrumentation
and Control (I&C) components, with a transitionnfr@nalog to digital technology. Furthermore,
new NPP designs involve an increased use of compated systems, expected to improve the
plant’'s safety, reliability and failure detecticapability.

To assess the impact of digital I&C on NPPs safgiyntifiable reliable models are needed, along
with data for digital systems that are compatibléhwthe Probabilistic Risk Assessment
Methodology (PRA). Due to the many unique attrisutd these systems (e.g., software, fault
tolerant features, different human-system integadgnamic interaction between the plant system
and processes), several challenges exist in mgdahid data collection.

The feature addressed in this paper is limitechéornhodeling of the dynamic interactions between
the plant systems and processes, which in mangnoss regards both analog and digital 1&C
systems. Indeed, it has been shown that the orgktiming of the fault events occurring along an
accident sequence and the magnitude of the proeeisdbles at the time of event occurrence can be
critical in determining the evolution of the acaileand thus the risk associated with the system
operation [Siu, 1994; Aldemir et al., 2008]. In tbase of digital I&C systems the modeling is
rendered more difficult by the complex interactiaighe software with the hardware and human
components that are not easily captured by theiegi®RA modeling tools, e.g., the Event-Tree
(ET)/Fault-Tree (FT) approach which do not take liexfy into account the sequencing of the
events nor their timing in the system stochastmuion [Rutt et al., 2006, Zio et al., 2009].
Methodological approaches have been studied aradigabtools are being developed, in an effort
to complement the current static PRA methods amdstorhese so-called dynamic reliability
[Devooght, 1997; Labeau et al., 2000; Dufour e2@02] or probabilistic dynamics [Devooght et
al., 1992a; Devooght et al., 1992b] methods aigiahg explicit account to the interactions among
the physical parameters of the process (temperauessure, speed, etc.), the human operators
actions and the failures of the hardware and soéwamponents.

Some extensions of classical methods have beerogedpbut in most instances these remain
unable to take into account the system state dymaianges and reconfigurations along the
accident scenarios and their application is limitecproblems with a small number of scenarios
[Medjoudj et al., 2004]. Some methods allow a vispeesentation of the sequence of events
ordered in time, e.g. the Events Sequence Diag(&8b) [Swaminathan et al., 1999], Petri Nets
[Peterson, 1977] and Dynamic Flowgraph Methodol{@lyM) [Guarro et al., 1996; Garret et al.,
2002]. Most of these methods can be regarded asdsgramic, because they represent system
dynamics qualitatively (e.g., Petri Nets) or inaarse partitioning of the system state space fine.,
terms of large, small, medium changes in the ciatt@rocess variables such as in DFM).

Discrete methods have also been developed to gerdymamic failure scenarios, e.g. the Discrete
Dynamic Event Trees (DDET) [Marchand et al.,, 1998j¢ DYnamic Logical Analytical
Methodology (DYLAM) [Amendola et al., 1984; CojazZ1996] and the Dynamic Event Tree
Analysis Method (DETAM) [Acosta et al., 1993]. Travantage of the dynamic event-tree
generation techniques (such as DDET, DYLAM and DEI)As that they are compatible with the
existing PRA structure and are able to generatesilples scenarios of the system evolution
exhaustively.

A major challenge of the dynamic reliability tectnés is their computational complexity, both in
model construction and implementation. Indeed, thenber of dynamic scenario branches
increases according to the power law with the nunolb@ccurring events and thus is much larger
than in the classical FT/ET approach; the a pasiemformation retrieval then becomes quite
burdensome and difficult [Labeau et al., 2000].



The work in this paper reconsiders the problem micgssing dynamic reliability scenarios as
formulated in [Zio et al., 2009], i.e., in termstbe classification of dynamic patterns on the dasi
of the similarity of both their stochastic featur@s., times and magnitudes of failure event
occurrences) and deterministic features (i.e., gg®cvariable values, such as temperatures and
pressures). In general terms, the nature and cauhplef the scenarios prevent the possibility of
identifying crisp clusters of similarity in the femes space (Figure 1); uncertainties and overlaps
exist in the association of the accident sequettct®e three end state classes. Such situatiobean
effectively tackled within a fuzzy clustering paigm for classification [Klir et al., 1995].
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Figure 1 Schematics of the clustering of the accident sequencesfor classification of their end states, based on the
combination of process and stochastic variablesinfor mation

In Figures 2 and 3, the logic framework and opeeasiteps for the classification of the scenarios
are sketched. Figure 2 (left) shows that the lather number of failure modes, the larger the
number of branches in a traditional ET, which caedme infinite if considering the continuous
stochastic times and magnitudes of the failure modéthin a continuous ET framework
[Amendola et al., 1984; Smidts, 1994]; the dynamienario post-processing here proposed is
aimed at classifying these branches into a smatiban of representative clusters of scenarios with
common evolution features and leading to one of pme-defined end states (right). The
classification algorithm is built on a limited nuerbof accident scenarios and can then be used to
evaluate new accident scenarios for identifyingirtiend states; this leads to savings in the
computational time which makes feasible the dynaamalysis, irrespective of the number of
system configurations to be considered.

In more details, the first step of the approadésselection of the features of the scenariovaale

for the classification; the second step is the @wahary training of the clustering algorithm on
patterns of known classes. The latter one essnti@blves the search for geometric clusters im th
feature space based on a metric iteratively op&thso that the clusters finally obtained are ctose
the actual classes of scenarios of same end Jtatedt al., 1988].
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common stochastic and deter ministic evolution featureswhich lead to one of the pre-defined end states



As in [Zio et al., 2009], the supervised Fuzzy Cevie (FCM) clustering algorithm developed in
[Bezdek, 1981; Zio et al., 2005; Mercurio et al00g] is utilized as classifier of the accident
scenarios. The original objective of the presentkwis the investigation of the feasibility of
applying Functional Principal Component analysis representing in a finite dimensional space
with uncorrelated components, the characteristidh® accident scenarios that are typically non-
finite nor immediately describable by means of urelated components [Ramsay et al., 2005].

As additional original contribution with respect tioe previous work in [Zio et al., 2009], the
present study offers a comparison with a Kth Neaxesghbor (KNN) [Hastie et al., 2001] and a
Classification and Regression Tree (CART) [Breinearal., 1984] algorithms for classification of
the end state classes of the dynamic accident sosrsmulated.

The case study considered for illustration is dle same as in the previous cited work, i.e., the
dynamic scenarios are taken from the analysis ef ltkad Bismuth Eutectic eXperimental
Accelerator Driven System (LBE-XADS) equipped watigital I&C [Cammi et al., 2006].

This work focuses on scenario classification. g teason, the analysis does not cover the study
of the software and its possible failure modes, ther benefit of fault tolerant features, nor the
interactions of the software with the hardware &ndhan components. The simplified dynamic
scenario modeling is then intended to serve th@gqa& of showing the feasibility of effectively
post-processing accident scenarios resorting toCM Fclustering algorithm based on the
information provided by the FPCs. The classifioaticesults could then be used for the
identification of the system prime implicants, e dynamic equivalent of the minimal cut sets of
the system under analysis [Aldemir et al., 2008prébver, it is worth pointing out that the actual
implementation of the approach as a qualified toadupport of a complete quantitative dynamic
reliability analysis and its inclusion in PRA woubged to be supported by full dynamic accident
calculations, inclusive of comprehensive model$afdware, software and human failure modes
and their interactions.

The paper is organized as follows. In Section 2, ghesentation made in [Zio et al., 2009] of the
mechanistic model used to generate the scenandatdodynamic reliability analysis of the LBE-
XADS is repeated, for completeness of the papegection 3, some limitations of traditional static
PRA modeling tools (ET/FT) are shown; these lincii® be overcome by means of a classification
method of dynamic scenarios based on FCM clustasfngPCs. In Section 4, the results of the
application of the approach to the scenarios ofLfBE-XADS are presented and supported with a
comparison to the KNN and CART classifiers. Conidas and remarks are given in Section 5.

2. Analysisof the LBE-XADS
2.1 The model

The Lead-Bismuth Eutectic eXperimental Accelerabiven System (LBE-XADS) is a sub-
critical, fast reactor in which the fission procéss providing thermal poweP(t) is sustained by

an external neutron source through spallation i@adty a proton bean@(t) accelerated by a

synchrotron on a lead-bismuth eutectic target [Bewnet al., 1992; Van Tuyle et al., 1993;
Venneri et al., 1993; Carminati et al., 1993; Rabéi al., 1995]. In the current design [Ansaldo,
2001], the core contains Uranium and Plutonium idiexuel rods; future developments are aimed
at housing also long-lived transuranic elements.

A simplified scheme of the plant is sketched inufgg4. The primary cooling system is of pool-
type with Lead-Bismuth Eutectic (LBE) liquid metebolant leaving the top of the core, at full
power nominal conditions, at temperaturf” equal to 400 °C pushed by natural circulation

enhanced by argon gas injection into the heat exgdra of the secondary cooling circuit and then



re-entering the core from the bottom through therdeomer at temperaturg;,© equal to 300 °C.

The average in-core temperature of the LBE® is taken as the mean of;,” andr]".
The secondary cooling system is a flow of an orgaathermic oil at 290-320 °C, at full power
conditions. Cooling of the diathermic oil is obtaghthrough an air roW‘a(t) provided by three

air coolers connected in series.
A

Figure 4 LBE-XADS simplified schematics. A = Accelerator; C = core; P = primary heat exchanger; S=
secondary heat exchanger

A dedicated, dynamic simulation model has been emginted in SIMULINK for providing a
simplified, lumped and zero-dimensional descriptobthe coupled neutronic and thermo-hydraulic
evolution of the system [Cammi et al., 2006]. Thedel allows the simulation of the system
controlled dynamics as well as of the free dynamilken the control module is deactivated and the
air cooler flow is kept constant. Both feedforwamt feedback digital control schemes have been
adopted for the operation of the system. The fegdbantroller is a PID (Proportional, Integral and
Derivative)-based configuration with low valueshafth the proportional and the integral gains: it
contributes for 70% of the load to fulfill the cooltstrategy. On the other hand, the remaining 30%
of the load is provided by the feedforward actiohicki consists of a monotonically increasing
function relating the required air mass flow raielie reactor power. The logic of operation of the
discrete-state control block can be representéd Rgure 5.

PID 70%
controller

Air coolers ——

A 4

Feedforward | 30%
controller

Figure5 Block diagram representing the logic structur e of the LBE-XADS control

The control is set to keep a steady state valappfoximately 300 °C of the average temperature
of the diathermic oilT.**®: this value represents the optimal working poiinthe diathermic oil at
the steady state, full nominal power of 80 MWON the contrary, an oil temperature beyond the
upper thresholdl™“=340 °C would lead to degradation of its physi@ati chemical properties,
whereas a temperature below the lower thresfglti=280 °C could result in thermal shocks for
the primary fluid and, eventually, for the struelucomponents [Cammi et al., 2006].



The block diagram representing the SIMULINK modethe LBE-XADS is shown in Figure 6: the
controlled variable is the average temperaturaéathdrmic oil (T*°), whereas the control variable

[o]

is the mass flow rate of aif"() in the air coolers battery. In Figure 7, the peodbf the average

temperature of diathermic oilf{"®) at full power nominal conditions is shown: evéthe system

is stable at nominal conditions (303.85 °C), thecdite-state regulation of the air coolers causes
visible ripples of the diathermic oil temperature.
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Figure 6 Block diagram representing the SIMULINK model of the LBE-XADS[Cammi €t al., 2006]

| I I I
I I I I
I I I I
I I I I
I I I I
,,,,, L A ——
I o al T
I I I I
I I I I
I I I I
,,,,, I ) A B
5y | | | |
S I I I I
o | | | |
=] I I | |
B I I I I
o 2F-F-—"T1T-"—~~ B S [ [ |y
=3 | | | |
g I I I I
= I I | |
= I I I I
O gyl __ [ [ [ Lo
I I | I
I I I I
I I I I
I I I I
I I I I
***** B e Bttt ol
I I I I
I I I I
I I I I
I I I I
1 1 1 1
1000 1500 2000 2500 3000

Figure 7 Diathermic oil temperature profilefor the LBE-XADS in the stable, nominal conditions
2.2 The Monte Carlo-driven fault injection engine

Multiple component failures can occur during theteyn life. To simulate this, the model has been
embedded within a Monte Carlo (MC) sampling procedor injecting faults at random times and
of random magnitudes. This allows generating tearisi representative of the system dynamic
accident scenarios.
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The set of faults considered are (Figure 8):

» The PID controller fails stuck at timein [0,3000] [s], with a flow rate output of magrule
my in [0,797] [ka/s].

» The air coolers fail stuck at timg in [0,3000] [s] in a random position that providas
corresponding air flow mass; in [0,1000] [kg/s].

» The feedforward controller fails stuck at tirian [0,3000] [s] with a corresponding flow
rate valuamg in [0,797] [kg/s].

* The communication between air coolers actuators R controller fails at timey in
[0,3000] [s] so that the PID is provided with tlarse input value of the previous time step.

The combination of the selected faults gives rs64 possible system configurations depending on
the number of failed components and the order @uwence of the failures (Table 1). It is
important to underline that the procedure impleraénn this work for sampling the fault events is
not intended to reproduce the actual stochastiaréabehavior of the system components; rather,
the choices and hypotheses for modeling the féudts the mission time, the number and typology
of faults, the distributions of failure times anégnitudes) have been arbitrarily made with the aim
of favoring multiple failures in the sequences @ag@turing the dynamic influence of their order,
timing, and magnitude.

In particular, times and magnitudes of faults ddamed by a stratified sampling with respect ® th
64 possible ordered accident sequences of Taldesiimed equally probable. Within each stratum
(i.e., given one of the 64 possible ordered seqe®nthe corresponding failure times are generated
by means of a “stick-breaking” strategy [Halmos44P the first failure time is sampled from the
uniform distribution [0,3000] [s] and the successfailure times from the conditional distributions,
uniform from the last sampled time to 3000 [s].lk& magnitudes are instead independently
sampled from uniform distributions in [0,797], [0@0] and [0,797] [kg/s] fomy, mp, and mg,
respectively. This sampling strategy models a wgagystem, since the average failure rate is
increasing along time. Moreover, even rare multfpldt events are included in the set of accident
scenarios. Thus, it can be easily stated that dmeremental set-up is a very conservative
assumption and in this sense it further tests ¢theigtness of the classification procedure. On one
hand, in real applications these hypotheses camelaeced, due to the high reliability of the
equipment usually adopted in real NPPs; on therdthed, the complete analysis of a realistic
system may involve dozens of components and faitoeles, whose permutation of occurrence
may lead to a combinatorial explosion of the systailure sequences; this, linked with the need of
simulating a representative number of scenarios elach sequence, can make the analysis
impracticable. To overcome this problem in pragtigethe system failure sequences to be
considered will need to be identified by experiehdeveloped ETs which eliminate some
permutations, but in a wise and controlled mannariding to ignore some relevant dynamic
behaviors or collapsing together accident scenaviosh are actually different and lead to different
end states [Aldemir et al., 2008]; ii) the simubatiof the required number of dynamic accident
scenarios for the considered system failure se@semight need to be performed by fast-running
empirical models providing sufficiently accuratspense surfaces of the system dynamic behavior.
The evolution of the accident scenarios may leathtee different end states, within the mission
time of 3000 [s]:

1. Low-temperature failure modd“S<T,™")
2. Safe mode ™' <T*“S<T"")

3. High-temperature failure mod&{“°>T."")



Figure 8 Sketch of the faultsthat can beinjected into the system: the PID controller fails stuck at arandom
output value, the air coolersfails stuck at arandom position, the feedforward control fails stuck at arandom
output value, the communication between air coolersactuatorsand the PID controller isinterrupted

Failure Random PID Random Air Random Feedforward Actuators-PID
sequence | controller output | coolersfailure controller output communication interruption
1 1" - - -
2 - 1" - -
3 - - 15 -
4 - _ s
5 151 2nd _ _
6 2!10 15! - .
7 1sl _ 21d _
8 2!10 - 1S| -
9 1sl _ _ 21d
10 2n0 _ _ 1S|
11 - 18 2° -
12 - 2 1 -
13 - 1 - 2
14 - 2 - I
15 - - IS 2
16 - - 2° 18
17 19 2 3¢ -
18 1° 39 2 -
19 2n0 lsl 3rd _
20 2r|u 3rd 1s| _
21 3rd znd 1s| _
22 3rd lsl 2nu _
23 1° - 2° 39
24 19 - 3¢ 2
25 2r|u _ 1s| 3rd
26 2n0 _ gd lsl
27 3rd _ 20 lsl
28 3rd _ 1s| znd
29 - 1" 2" 3¢
30 - 18 39 2
31 - 2 1 3¢
32 - 2 39 18
33 - 3¢ 2° 18
34 _ 3rd 151 2nd
35 1° 2 - 3¢
36 1 3¢ - 2
37 2r|u 15! _ 3’d
38 2n0 3rd _ 1S|
39 3rd 2nd _ 1S|
20 3rd 15! _ 21d
41 151 2nd 3rd 4th
42 1s| 3rd 4th znd
43 151 4th 2nu 3rd
A4 1s| znd 4th 3rd




45 1sl 3rd 2r| d 4th
46 1sl 4th 3rd 2n d
A7 no 15! 3rd 4th
48 3rd lsl 4th 2n d
49 4th 15! one 3rd
50 2n d lsl 4th 3rd
51 3rd 15! one 4th
52 4th 15! 3rd on d
53 2n d 3rd 1sl 4th
54 3rd 4th 1s| on d
55 4 2 17 3°
56 no 4th 1s| 3rd
57 3rd 2n d 1sl 4th
58 4th 3rd 1sl 2n d
50 ond 3rd 4th 15!
60 3rd 4th 2r| d lsl
61 4th on d 3rd 15!
62 2n d 4th 3rd lsl
63 3rd 2n d 4th lsl
64 4th 3rd one 15!

Table 1 Failure sequences:. - = safe component, 1% = first event of the sequence,
2" = second event of the sequence, 3% = third event of the sequence, 4™ = fourth event of the sequence

2.3 Limitation of traditional approaches

In order to show) the limitation of traditional PRA tools in analgg dynamic accident scenarios
andii) the feasibility of the approach here proposedcfassifying dynamic accident scenarios, the
system has been classically analyzed to identsfyninimal cut sets with respect to the low- and
high-temperature failure modes (the interestedeeaty refer to [Zio et al., 2009]). To investigate
this, the MC-driven fault injection engine introducin Section 2.2 is used to sample for the 64
system configurations of Table 1, the time and nitage of the components failures from their
probability distributions. With the aim of generagia sufficiently wide variety of system dynamic
behaviors, to guarantee the necessary coveragestehs failure variability coverage, the number of
simulated accident scenarios has been taken emua0t for each one of the 64 failure sequences;
for each sequence, the random times and magnitfdbée components faults have been sampled
from the respective assumed distributions and tMUSINK model of the LBE-XADS in the
sampled system configuration has been run.

Figure 9, reports the frequency of the three systard states (high-temperature, safe, low-
temperature) for the 64 system configurations dbl@al. It is clear that the order, timing and
magnitude of the events occurring along an accideehario determine the evolution of the
accident towards safe or fault end states [Aldemtimal., 2008; Zio et al., 2009]. All but one
configurations lead unequivocally to one and omlg @nd state: on one side, this means that none
of those system configurations is a minimal cutafethe system; on the other side, it also means
that even when the order of the events in the sesue accounted for this is not sufficient to
unequivocally determine the consequent system tatd, svhich depends also on the timing and
magnitude of the occurring failures. The diffica#ti of the traditional approach to safety and
reliability analysis appear clearly.

10
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Figure 9 Stacked bar chart of the frequency of end statesfor each of the 64 accident scenarioslisted in Table 1

3. Processing dynamic scenariosfor classification

The processing of the dynamic scenarios here peédraims at identifying classes of behavioural
similarity in the scenario evolutions in terms lbé tcharacteristic features of the accident seqsence
and at relating them with the three possible eatkstof the system, which define the classes. The
characteristics of these classes constitute infoomathat could allow identifying the prime
implicants of the system.

The classification approach adopted is founded GCE clustering algorithm fed by FPCs of a
selected safety variable (Appendix A at the enthefpaper) [Ramsay et al., 2005] and optimized
by mean of a supervised evolutionary search sci{émaendix B at the end of the paper) [Bezdek,
1981; Zio et al., 2005; Mercurio et al., 2008].

3.1 The supervised evolutionary clustering classifier based on functional principal
components
In mathematical terms, the target of the superviggiimization is to find optimal Mahalanobis
metrics which definee geometric clusters of the available data set winichimize the distance

D(I’t,l') between the a priori known physical class partitio E(F‘l,l'tz,...,r‘c) and the obtained

geometric cluster partitioh = (Fl,l'z,...,l'c) (in this case& corresponds to the possible end states):

D(T'.T )= iD(r" = ii"‘t(*)N;‘:(Xk)' (1)

where 0< i/ ()”(k ) <1 is the a priori known membership of tlketh pattern X, to thei-th physical

class (possibly not known with absolute precisianyhich case it has a membership less than one)
and0< y (Xk)s 1 is the membership to the corresponding geomelinstar in the feature space.

11



The overall iterative training scheme for the sued optimization leading to the identification of
the optimal Mahalanobis metrics and the correspandlusters is given in Appendix B at the end
of the paper.

Note that the use of individual specific Mahalarsobetrics for defining the different clusters
allows obtaining different ellipsoidal shapes andemtations of the clusters that can more
adequately fit the actual data partition than taeitional Euclidean metric which leads to sphérica
clusters [Yuan et al., 1997].

When fed with a new pattern of feature valugsof a given dynamic scenario, the trained

classification algorithm provides the values of thembership functiong:; (i) i=1,2,...c, to the

different clusters which represent the scenariesga in the stochastic and process variable feature
space.

Within the analysis presented in this wow, consists of the FPCs of the selected safety paesime
(i.e., the average temperature of the LBE coolg}it’) in the time interval [0,3000] [s] (for more
details on FPCs, see Appendix A at the end of dpep.

4. LBE-XADS fault scenario classification by FCM

The three classex%3) which supervise the construction of the clsster the feature space
correspond to the three system end states whichamse in the dynamic scenarios generated by
the accident sequences:

class1: low-temperature failure mode, with the safety gpaeter (i.e., the diathermic oll
temperatur€r.®®) falling below the lower threshol@™

class2: safe transients, with the safety paramefgt® remaining within the allowed range
[Tth,l -I-th,u:l

class 3: high-temperature failure mode, with the safetyapzeter T**® rising beyond the upper
thresholdT ™"

From the training sample, the main uncorrelated esaaf variability in time (i.e., the FPCs) of the
average temperature of the LBE coolaht' (the safety parameter) are identified (see the

Appendix B) [Ramsay et al., 2005]. In Figure 1G& W' patterns are shown together with their
representation by means of the firffBV(,fq), first and second'l'(aBV"gCl ,TLg’SQ), first, second and third

v,C
,PG?

capture the characteristics of the origingl“ patterns and thus of the underlying stochastic
sequence of failures; on the other hand, they mely & complete interpretation in reliability terms.
In this case, the first principal compone‘l’rjgfq (explaining by itself 93.5% of the total variabjl

functional principal componentsT TL%Y’ECZ and Tgfc\@). The FPCs are able to efficiently

is clearly identifiable as a factor indicating that extenfT, ' is increasing in time (Figure 11); on
the contrary, the interpretation of the secondtaird principal components are less clear.
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Figure 10 A sub-sampleof sixty-four T3¢ patternsascumulatively described by means of thefirst, first and
second, first, second and third functional principal componentstogether with theoriginal T2 patterns
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Awerage LBE conlart temperature [C]
Fraction of Expalined Total Variance
08
1

T T T T T T T T T T T T T T T T T T T T T L
o 500 1000 1500 2000 2500 3000 o 500 1000 1500 2000 2500 3000 o €00 1000 1S00 2000 2500 3000 2 5 10

Time ] Time [5] Time [5] #olPCs

Figure 11 First, second, and third functional principal components. On the far right, cumulative fraction of the
explained total variance

The training of the FCM classifier (and of the KNMINd CART classifiers used for comparison) has
been performed on the basis of a seNe6400 class-labeled patterns (generated by 100ledmp
realizations for each of the 64 accident sequeot&sble 1) each one represented by means of one
input vector and one output (the system end stass ¢abel 1, 2 or 3); the sampled training pagtern
turn out to be distributed as follows among ¢k& classes of system end stafés:1527 belong to
class 1N,=2399 to class 2 anfd=2474 to class 3.

Three possible input vectors have been considersegbt the classifier performances:

(TLan:gq): first principal component 6f3¢
(-|-Lan;F<>:Cl .TLZV,'SCJ first and second principal componentsTgdf©
(Toee Tiee, T, ): first, second, and third principal componentS@f©

Once constructed, the classifier can be used ssifjaany pattern of dynamic scenarios. In the
present work, a total d¥1=1280 newly simulated accident scenarios of theetlulasses have been
fed for classification by the fuzzy clustering ddi®r. These new scenarios are generated from the
64 possible accident sequences of Table 1 by sagpéw realizations of the times of occurrence
and magnitudes of the failure events (20 for eadered sequence).

The error rate of classification of the test paseprovided by the FCM classifier is summarized in
Table 2: patterns are assigned to the class fochwthie membership value of the pattern is the

. . —av,C . .
highest. For comparison, the error rate whan (the mean value over the transient duration of
3000 [s] of the average temperature of the LBE amiol, ") is considered as the most important
feature for the post-processing clustering analgsadso reported as in [Zio et al., 2009].
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Misclassification error rate | FCM

(The)) 16.65%
(Toee) 11.64%
(Tere, +Tisre,) 9.06%
(Tee » Tiare, s Tieeg, ) 5.25%

Table 2 Results of the classifier for different sets of FCP of the processvariable T%:° and its mean value T

The analysis of the misclassification performanighlights the improved performance of the FCM
based on FPC with respect to the methodology @ilyirdeveloped and presented in [Zio et al.,
2009]. The reason stands in the capability of FPGsapturing relevant features of the stochastic
sequences of failures, which are otherwise paytiaitlden when considering the safety relevant

parameterT.s. and almost completely missing when analyzing itrésorting to static approaches
(Figure 6).

5. Comparisonswith KNN and CART classifiers

In this Section, the misclassification error rabéshe test patterns associated to the FCM classifi
are compared with those of the KNN and CART clemsif[Hastie et al., 2001; Breiman et al.,
1984]. The KNN classifier is a non-parametric disgtion method; the central idea of this method
is to determine the unknown class of a new patit@sking at the known classes of its neighbors.
More specifically, the classification of a new patt is done by assignment to the class whose
frequency is the highest among tik nearest neighbors of the new pattern, wherédtth@earest
neighbors are thk patterns of the training sample that are closeshé new pattern according to
the Euclidean distance [Hastie et al., 2001]. A JAdRassifier is essentially a recursive dicotomic
partition of the input space in which each elendrthe partition (namely, the leaves of the tree) i
associated to a class; classification of a newepatts done by assignment to the class whose
frequency is the highest among the patterns ofrtiring sample within the leaf of the tree which
the new pattern belongs to; maximization of therel@ent of the Gini index is used as growing
criterion [Breiman et al., 1984], and minimizatioh the 10-fold crossvalidation misclassification
error is used as pruning criterium [Breiman et H84]. In Table 3, the misclassification erroterat
on M=1280 newly simulated patterns are reportedli(oos refer to the different classifiers, rows
refer to the different input vectors).

Misclassification error rate | FCM KNN CART

(T ) 16.65%| 13.59%| 13.75%
(Teee) 11.64%| 11.25%| 11.48%
(TErg TiEre, ) 9.06% | 5.86% | 8.98%
(Tore » Tiare, s Tieeg, ) 5.25% | 4.45% | 8.67%

Table 3 Results of the classifiersfor different setsof FCP of the processvariable T3 and its mean value T
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As expected, because of the massive size of thengasample, the KNN classifier (that is fully
non-parametric) performs similarly or better thathoFCM and CART classifiers for all possible
input vectors; this might not be confirmed for slaatraining samples.

Functional principal components appear to be affeatot only in terms of descriptiveness (more
of the 99% of the total variability is explained the first three principal components, as shown in
Figure 11), as expected, but also in terms of misnating power. For instance, focusing on the
FCM classifier, using the first three principal qoonents of the average temperature of the LBE

coolant (T35 . Tiare, @nd T35 ) the classifier is able to correctly classify fgdr9 patterns out

of 20 (94.75%), while using the mean value of therage temperature of the LBE coolant it
is able to correctly classify nearly 17 patternsal0 (83.35%).

6. Conclusions

Dynamic approaches to system safety and relialalhiglysis embed the physical models of process
dynamics into the stochastic models governing telare, software, human components failure
behavior. To capture the different system behawdrkh arise, a large number of time-dependent
scenarios of possible system evolutions are simdilahd then interpreted for drawing conclusions
on the system safety and reliability characteisstic
This paper has addressed the problem of procegsngumerous scenarios arising from a dynamic
system safety and reliability analysis. With refere to a literature case study regarding the LBE-
XADS system, a Fuzzy C-Means clustering approachhbe®n presented for classifying scenarios
with similar characteristics described by the Fiomal Principal Components (FPCs) of a selected
safety parameter whose behavior is affected bytoerred events. The classification approach is
based on the use of FPCs within an optimized fudtagtering scheme. The system end states of
interest and the relative safety parameter aretifcezha priori by expert judgment on the basis of
the analysis of the system design, logic and dyosioi the LBE-XADS system. In the case study
presented, the safety parameter is the diatherihgeocondary coolant temperature which cannot
exceed lower and upper thresholds otherwise thiersyenters low- and high-temperature failure
modes, respectively.
The application of the approach to the case stodgidered has demonstrated:

» the feasibility of the proposed approach of dynaaticident scenarios post-processing for

retrieving safety-relevant information, and
» the increased classification performance when mglyopn FPCs of the selected safety
relevant parameters, with respect to other chanatitefeatures.

A comparison with the KNN and CART classificatigppaoaches has confirmed these findings.
Future research could investigate to what extemntélults are robust to changes in the Monte Carlo
(MC) sampling procedure, and further develop théhadology aiming at the identification of the
prime implicants of the system under analysis (dyicaanalogue of minimal cut sets) to be
included into PRA.
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APPENDIX A

The basic concepts pertaining to Functional Praic{pomponent Analysis (FPCA) as a tool for
dimensional reduction are here presented.
Let F be a random function such that

E[ [ Fz(t)dt} <+ 2)

with p(t) = E[F(t)] being its mean function and(t,s) = E[F(t)F(s)] its covariance function, and
thus the kernel of its covariance operator. Oftéhando(t,s)are not known and thus need to be
estimated. Sample mean and sample covariance dangtovide consistent estimates pft and
o(t,s); thus, if the sample size is sufficiently largbey can be used to estimate functional
principal components.

It can be proven that under assumption (2), the{thdDz,..} of the eigenfunctions of the
covariance operator forms an orthonormal basisLﬁ([a, b]) I.e. the space which the realizations

of the random functiof belong to.
Thus,F can be decomposed as follows:

F(t) = 4() + Y Fe®, (0) withF, = ["(F() - 4)o, ()l 3)

The functiord, is known as théth functional principal component arf§, as the score relative to
thekth functional principal component.

Moreover, it can be proven tha/tal{Fk]:/lk with A, being the eigenvalue associated to the
eigenvector @, (i.e.)lkdbk(s):J':a(t,s)qbk(t)dt) and cor[Fk,Fk.]=5kk. (i.e. scores related to

different functional principal components are umetated scalar random variable). Note
that®,,®,, P, ,...are ordered such th@t=> A, >...20.

Let F(t) = u(t) +ZL F.®, (t) be the projection of on theg-dimensional affine space centered

on the mean function generated by the firptincipal components.
It can be proven that the approximation obtainednisans of this projection is “statistically

optimal”. Indeed, identifying withS, [ LZ([a, b]) a generig-dimensional affine space centered on
the mean function and WitIE'Sq the orthogonal projector on this space, it captogen that:

E[J_: (F 0 ~F (t))z dt} =argmin,,_ E[ '[:(F (t)-Ps F (t))2 dt} (4)

Hence, the approximation obtained by represenknthrough its firstq principal components
minimizes the expected quadratic error over angrajfdimensional representation.

The effectiveness of this approximation can belggsiantified by means of the so called “fraction
of explained total variance”, i.e.:
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E[ [(F@®-uof dt} . EUb Fo-F©f dt} _ 2 (5)

e [[Fo-uofe]  E[FO-mra) XA

In the end, FPCA provides a useful tool to intetrjared represent in a finite dimensional space with
uncorrelated components, phenomena that are il non-finite and not immediately
describable by means of uncorrelated components.

APPENDIX B

The iterative training scheme for the supervisetindpation leading to the identification of the
optimal Mahalanobis metrics and the correspondiagter can be summarized as follows:

1. At the first iteration ¢ =1), initialize the metrics of all the clusters to the Euclidean
metrics, i.e.M (1)=l, i =1,2,...c, wherel is the identity matrix.

2. At the generic iteration step, run the FCM clustering algorithm [Bezdek, 198a] t
partition the N training data intoc clusters of memberships(7) :{Fl(r),...,rc(r)},
based on the current metrid}éi+ (r) and on the “supervising” initial partitiof® which

sets the initial memberships of tiN patterns toc clusters equal to the true memberships
to the a priori known classes.

3. Compute the distanc@(l’t,r(r)) between the a priori known physical classes aed th

geometric possibilistic clusters. At the first @gon (7 =1) initialize the best distancB”*
to D(rt,r(r)), D" to D(r},ri (1)) and the best metrigdl * to M (7) and go to step 5.
4. If I'(r) is close tol', i.e. D(Ft,l'(r)) is smaller than a predefined threshalar if the
number of iterationsr is greater than the predefined maximum allowed emof
iterationsr__ , stop: I'(r) is the optimal cluster partitiofi” ; otherwise, ifD(I’t,F(r)) is

max?

less thanD" upgradeD* to D(r",I' (7)), M" to M _(r) and D/ =D(r},r, (1)).

5. Incrementr by 1. Update each matri&i+ by exploiting its unique decomposition into

Cholesky factors [Labeau, 1996} :{g}T G', whereG/ is a lower triangular matrix

with positive entries on the main diagonal. Moreqisely, at iterationr, the entries
g,,, (7) of the Cholesky facto" (r) are updated as follows:

o, (r)=d;,+ N, (007) if I, <, (6)
g, (7) :max( 10° g5 + N, ( ocf*)) if 1=, @)

where 0" =aD’, a is a parameter that controls the size of the mandaep of
modification of the Cholesky factor entrigg, , N, denotes a Gaussian noise with mean

0 and standard deviatiofd, and Eq. (7) ensures that all entries in the rd&gonal of the
matrices G (r) are positive numbers and sbl (7) are definite positive distance
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matrices. Notice that the elements of theth Mahalanobis matrix are updated
proportionally to the distanc®,” between thei-th a priori known class and thieth

cluster found. In this way, only the matrices adgh clusters which are not satisfactory for
the classification purpose are modified.
6. Return to step 2.



