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ABSTRACT 

Two applications of multi-objective genetic algorithms to the analysis and optimization of electrical 

transmission networks are reported to show the potential of these combinatorial optimization 

schemes in the treatment of highly interconnected, complex systems. In a first case study, an 

analysis of the topological structure of an electrical power transmission system of literature is 

carried out to identify the most important groups of elements of different sizes in the network. The 

importance is quantified in terms of group closeness centrality. In the second case study, an 

optimization method is developed for identifying strategies of expansion of an electrical 

transmission network by addition of new lines of connection which are optimally identified with 

respect to the objectives of improving the transmission reliability, while maintaining the investment 

cost limited. 

 

Keywords: critical infrastructures, reliability efficiency, group closeness centrality measure, 

multi-objective genetic algorithms. 
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1  INTRODUCTION  

 

Society is heavily dependent on many technological, natural and even social complex systems 

which are hierarchies of networks of components (also called nodes, vertices or elements) 

interacting through links (also called edges, arcs or connections). The apparent ubiquity of networks 

leads to a fascinating set of problems common to biological, ecological, technological and social 

complex systems, regarding how the underlying network topology influences the system behavior 

and its robustness to faults and attacks. In this regard, the identification and quantification of their 

vulnerabilities, i.e. the set of flaws and weaknesses in the design, implementation, operation, and/or 

management of an infrastructure system or its elements that renders them susceptible to destruction 

or incapacitation when exposed to a hazard or threat, becomes crucial for designing the adequate 

protections, mitigation and emergency actions against their failures [1-3]. 

Given the complexity of these highly distributed and interconnected infrastructures, performing a 

systematic analysis of their vulnerability and robustness to failure becomes difficult if one resorts 

only to traditional probabilistic safety assessment (PSA) methods, so that new complementary 

approaches of network analysis are emerging for characterizing the network resistance to failure 

and identifying its most vulnerable elements [4-10]. To this aim, indicators of both the global 

reliability of the network and of the centrality of its elements have been introduced [11]. In 

particular, the global reliability efficiency indicators measure how well connected are the nodes of 

the network accounting not only for the topology of the network, but also for the failure 

probabilities of all the connections; this indicator differs from the classical reliability definition in 

that it represents general properties of the system and it is not defined with respect to a specific 

system task. 

On the other hand, various measures of importance of the network elements can be defined, which 

capture different structural aspects of the interconnection paths among network nodes. Recently, 

these measures have been extended to rank the importance of groups of elements for taking into 
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account the potential synergies between elements whose individual centrality may not be so 

relevant and dealing with the risk associated to changes in network technical specifications which 

typically impact groups of components [11]. 

Another direction of improvement in the definition of network importance measures regards the 

representation of the actual physical behavior of the system, e.g. in terms of the electric power or 

hydraulic flow in the network, etc [12]. 

In this paper, two applications of multi-objective genetic algorithms (MOGAs) are reported with 

regards to the analysis and optimization of electrical transmission networks. In the first case study,  

the electrical transmission network system of the IEEE (Institute of Electrical and Electronic 

Engineers) 14 BUS (a portion of the American Electric Power System) is considered [13] and a 

MOGA is used to solve an optimization problem in which the decision variables identify groups of 

components and the objectives are to maximize the importance of the groups while minimizing their 

dimension. This formulation guides the MOGA search towards the identification of the most 

important single components, couples of components, triplets, and so forth in the topological 

structure of the network. 

In the second case study, a MOGA is developed for identifying strategies of expansion of an 

electrical network in terms of new lines of connection to add for improving the reliability of its 

transmission service, while maintaining limited the investment cost. The typical large size of 

electrical networks offers a combinatorial number of potential solutions of new connections, so that 

classical optimization techniques become inapplicable. For this reason, we resorted to a MOGA 

driven by the objectives of maximizing the network global reliability efficiency [14] and 

minimizing the cost of the added connections. To realistically restrict the search space to small 

numbers of new connections the so-called guided multi-objective genetic algorithm (G-MOGA) has 

been applied. In this approach, the search is based on the guided domination principle which allows 

to change the shape of the dominance region specifying maximal and minimal trade-offs between 

the different objectives so as to efficiently guide the MOGA towards Pareto-optimal solutions 
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within these boundaries [15]. The performance of this search approach is tested on a case study 

based on the IEEE (Institute of Electrical and Electronic Engineers) RTS (Reliability Test System) 

96 [16]. 

The paper is organized as follows. Section 2 presents the group closeness centrality measure which 

can be used to quantify the importance of groups of nodes. The concept of network global reliability 

efficiency is also presented. A short introduction to the basic concepts behind the optimization 

procedure by Multi-Objective Genetic Algorithms is given in Section 3. In Section 4 and Section 5, 

the case studies regarding the IEEE 14 BUS network system and IEEE RTS 96 are presented and 

solved by MOGA. Conclusions on the outcomes of the analysis are eventually drawn in Section 6. 

 

2 TOPOLOGICAL GROUP CLOSENESS CENTRALITY AND GLOBAL 

RELIABILITY EFFICIENCY 

 

Mathematically, the topological structure of a network can be represented as a graph ),G( KN  with 

N nodes connected by K edges. The connections are defined in an N N  adjacency matrix  ija  

whose entries are 1 if there is an edge joining node i  to node j  and 0 otherwise. 

Depending on the specific definition, a centrality measure describes the way in which a node 

interacts/communicates with the rest of the network, thus providing a way of prioritization of the 

importance of the nodes for network communication. To evaluate the role played by a group of 

nodes with respect to its connectivity, the group closeness centrality [17], CC (g),  is considered; this 

measure is based on the idea that a node can quickly interact with all other nodes if it is easily 

accessible by (close to) all others. If ijd  is the topological shortest path length between nodes i  and 

j  (i.e., the minimum number of arcs on a path connecting them), the closeness of a group g  of gN  

nodes is the inverse of the node's mean distance from the members of the group to all vertices 

outside the group: 
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This measure is normalized by dividing the distance score into the number of non-group members, 

with the result that larger numbers indicate greater centrality. 

When the group consists of a single node, the group closeness centrality is the same as the 

individual node closeness centrality [6], [18-19]. 

To capture the failure behavior of the network, the reliability of its connecting edges is included in 

the framework of analysis by means of the formalism of weighted networks, the weight 
ijw

 

associated to the edge between the pair of nodes i  and j  being its reliability: 
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where
ij  is the failure rate of edge ij  linking nodes i  and j  and T  is a reference time ( 1T   year, 

in this work).  

On the basis of the adjacency and reliability matrices  ija  and  ijp  (or the complementary failure 

probability matrix  ijq ), the matrix of the most reliable path lengths  ijrd  can be computed [14]: 
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where the minimization is done with respect to all paths ij  linking nodes i and j and the product 

extends to all the edges of each of these paths. Note that 1 ijrd  , the lower value corresponding 
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to the existence of a perfectly reliable path connecting i and j (i.e. 1, 0 mn mnp q mn ij    ) and the 

upper value corresponding to the situation of no paths connecting i and j (i.e. 0, 1mn mnp q  ). 

The group reliability closeness centrality can then be computed as in equation 1, with 
ijrd  replacing 

.ijd  

The global reliability efficiency RE[G]  of the graph G  can also be defined as [14]: 
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In practical terms, the global reliability efficiency indicates how well connected are the nodes of the 

network taking into account their connection failure probability. For example, the design of a 

network with very few but highly reliable connections between the nodes is preferable with respect 

to a densely connected design with connections characterized by large failure rates. 

3 MULTI-OBJECTIVE GENETIC ALGORITHMS 

 

Genetic Algorithms (GAs) are optimization methods aiming at finding the global optimum of a set 

of real objective functions,  F f( ) ,   of one or more decision variables,  U u , possibly subject to 

various linear or non linear constraints. The terminology adopted in GAs contains many terms 

borrowed from biology, suitably redefined to fit the algorithmic context. Thus, GAs operate on a set 

of (artificial) chromosomes, which are strings of numbers, generally sequences of binary digits 

(bits) 0 and 1, coding the values of the decision variables. The values of the objective functions in 

correspondence of the values of the decision variables of a chromosome, give the fitness of that 

chromosome. The GA search is performed by constructing a sequence of populations of 

chromosomes, the individuals of each population being the children of those of the previous 

population and the parents of those of the successive population. The initial population is generated 
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by randomly sampling the bits of all the strings; at each step in the search sequence, the new 

population is obtained by probabilistically manipulating the strings of the old population with 

fitness-improving rules which mimic genetic evolution. The search sequence continues until a pre-

established optimality termination criterion is reached.  

Typically, several possibly conflicting objective functions f ( ),i   i = 1, 2,…, nf , must be evaluated in 

correspondence of each decision variable vector U  in the search space. In this case, the GA search 

proceeds by comparing the solutions in terms of the concepts of Pareto optimality and dominance 

[20]: with reference to a maximization problem proposed, a solution 
aU  is said to dominate 

bU  if  

 

 1,2,..., , f ( ) f ( )f i a i bi n U U    

 and (5) 

 1,2,..., , f ( ) f ( ).f j a j bj n U U    

 

In all other cases of decision variable vectors which are not dominated by any other of a given set, 

including when  1,2,..., , f ( ) f ( )f l a l bl n U U   , aU  and bU  are nondominated with respect to 

this set within the entire search space, are said to be Pareto efficient and constitute the so called 

Pareto optimal front or Pareto set, which is the object of the optimization. From an engineering 

point of view, restricting the attention to the set of choices that are Pareto efficient allows a designer 

to make tradeoffs within this set, rather than taking into account the full range of every decision 

variable. 
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4 CASE STUDY 1 

4.1 IEEE 14 BUS electrical transmission network  

The topological structure of the electrical transmission network system of the IEEE 14 BUS is 

considered for the analysis of the importance of groups of components, measured in terms of 

reliability closeness centrality. The system considered represents a portion of the American Electric 

Power System and consists of 14  bus locations connected by 20  lines and transformers. The 

topology of the system can be represented by the graph G(14,20) of Figure 1. 

 

Figure 1. Graph representation of the IEEE 14 BUS transmission network 

 

4.2 Identification of most central groups of nodes by MOGA 

Let the generic centrality measure of a group of nodes be indicated as: 

 1 2C( , , , )Nx x x  (6) 

with xi = 1 if i  belongs to the group, xi = 0 otherwise. For example, in a network with 3N   

components, C(1,0,0)  indicates the centrality of the first node alone; C(0,0,1)  indicates the 

centrality of the third node alone; C(1,0,1)  indicates the centrality of the pair made of the first and 

third nodes. 

In a network with N  nodes, the number of groups (single nodes, pairs, triplets, and so forth) that in 

principle can be formed is 2N . A complete centrality analysis of all groups to find the most central 

is therefore impractical for large networks. 

To overcome this obstacle, the task of determining the most central groups of components can be 

framed as an optimization problem with respect to the two following objectives: 

 1 1 2 Max       f ( ) C( , , , )
   

Nx x x x
x

 (7) 
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 Min       f ( )
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i

i

x

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with xi = 1 if i  belongs to the group, xi = 0 otherwise. 

The need for introducing the second objective is due to the fact that inevitably the more nodes in a 

group, the higher its centrality and impact on the network; hence, a search directed only by the 

centrality of the groups (objective f1(x)), with no control on their sizes (objective f2(x)) would favor 

large groups, whose simultaneous failure or attack is however not likely. By introducing the second 

objective, which favors small groups, the search is guided to finding the most central groups 

preferably of small size, i.e., the single nodes, pairs, triplets and so forth. 

A Genetic Algorithm (GA) can be devised to address the above optimization task. In the most 

typical applications of GAs, every proposal of solution, represented by the vector x of the 

independent decision variables (control parameters), is coded in a so-called chromosome, 

constituted by so-called genes, each one coding one decision variable of x; a binary coding is 

widely used. Differently from these typical applications, the decision variables (x1, x2,…, xN) of the 

optimization problem considered in this paper are already in the form of a binary string.  Therefore, 

single-gene chromosomes are used, directly coding the composition of the group. The dimension of 

the chromosome is equal to the number of nodes in the network. Table 1 shows two examples of 

chromosome coding for a system of 14 nodes. 

 
Table 1. Examples of chromosomes coding groups of nodes in a network of 14 nodes 

Chromosome coding (14 bits) 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 

0 0 0 1 0 1 0 0 1 0 0 0 0 0 

1 0 0 0 0 1 0 1 1 0 0 0 1 0 

Corresponding nodes in the group 

4,6,9 

1,6,8,9,13 

 

There are two kinds of operations performed in the genetic algorithms search for optimal solutions: 

i) genetic operations, that mimic the process of heredity of genes to create new offsprings (i.e., new 

solutions) at each generation and ii) evolution operations, which mimic the process of Darwinian 
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evolution to create populations from generation to generation. The two basic types of genetic 

operators, i.e., crossover and mutation, provide the basic search mechanism of the GA and depend 

on the chromosome representation used. Crossover takes two individuals (i.e., two solutions) and 

produces two new individuals while mutation alters one individual to produce a single new solution.  

To use a GA for Multiobjective Optimization (MO) entails comparing two solutions with respect to 

the multiple objectives considered [21], [22]. In the case of a single-objective, the comparison is 

trivial: a vector solution x  is better than another one, say y , if the corresponding objective function 

(fitness) value f(x) is greater than f(y). A multiobjective optimization problem, instead, deals with nf 

objective functions fi(∙), i = 1, 2,…, nf ; this requires that two solutions x  and y  are compared in 

terms of dominance of one solution over the other with respect to all nf objectives [23]. The 

multiobjective optimality search process, converges on a Pareto-optimal set of nondominated 

solutions, which provides a spectrum of possible choices for the decision-maker to a posteriori 

identify his or her preferred solution. 

Table 2 summarizes the details of the implementation of the MOGA operators described in Section 

3 along with a number of parameters that control the operation of the genetic algorithm such as the 

population size (i.e., the size of the evolving set of candidate solutions) and the number of 

generations (i.e., the duration of the evolution process). The optimization runs were performed 

starting from an initial random population.  

 

Table 2. MOGA parameters and rules 

 

Number of chromosomes 200 

Number of generations 200 

Selection Fit-Fit 

Replacement Children-parents 

Mutation probability 0.001 

Crossover probability 1 

Number of generations 

without elitist selection 

15 

Fraction of parents chosen 

with elitist selection 

0.25 
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Figure 2 shows the results obtained on the importance of the group in terms of reliability closeness 

centrality. In the Figure, the values of the objective functions in correspondence of all the 

nondominated groups of nodes contained in the MOGA archive at convergence are shown to 

identify the two-dimensional Pareto-optimal surface (circles). The results are compared for 

validation with those obtained by exhaustive computation of all groups of nodes, i.e., the 

computation of the group reliability closeness centrality measure for all the possible combinations 

of n  out of N nodes; due to the fact that the number of groups obtained is 2N , its implementation is 

feasible here thanks to the small size of the network but would require impractical computational 

resources for large networks. 

 

Figure 2. Results of the multi-objective search of the most central groups of nodes in terms of reliability 

closeness centrality 

 

Actually, different groups of equal size can have the same centrality measure value: Table 3 reports 

all the nondominated solutions contained in the archive, identified by the MOGA. For the groups 

composed of one, three and five nodes, there is only one combination that maximizes the reliability 

closeness centrality measure; on the other hand, there is more than one solution for the groups with 

sizes two, four and six to ten; this allows choosing the solution most suitable for a given purpose, 

e.g. system upgrade by components renewal, replacement, or redundancy allocation in order to use 

effectively the budget available. 

In the present case, the smallest group with maximal reliability closeness is of size 10 and there are 

2 of these. The group {1, 2, 3, 5, 7, 10, 11, 12, 13, 14} is particularly interesting because it does not 

contain the highly central node {4} and contains the node {1} that have the smallest individual 

reliability closeness centrality measure, as it can be seen in Table 4.  

 

Table 3. Pareto optimal results of the multi-objective search for reliability closeness centrality groups 
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Group 

reliability 

closeness 

centrality 

Group 

Size 

Components 

0.303 1 4 

0.47 2 (4, 6), (6, 9) 

0.562 3 (2, 6, 9) 

0.602 4 (1, 2, 6, 9), (1, 3, 6, 9), (2, 3, 6, 9)  

0.659 5 (1, 2, 3, 6, 9) 

0.688 6 (1, 2, 3, 6, 7, 9), (1, 2, 3, 6, 8, 9) 

0.761 7 (1, 2, 3, 5, 7, 10, 13), (1, 2, 3, 5, 7, 11, 13), (1, 2, 3, 6, 

7, 10, 13), (1, 2, 3, 6, 7, 10, 14), (1, 2, 3, 6, 7, 11, 13), 

(1, 2, 3, 6, 7, 11, 14) 

0.802 8 (1, 2, 3, 5, 7, 10, 11, 13), (1, 2, 3, 5, 7, 10, 12, 13), (1, 

2, 3, 5, 7, 11, 12, 14), (1, 2, 3, 6, 7, 10, 11, 13), (1, 2, 3, 

6, 7, 10, 12, 13), (1, 2, 3, 6, 7, 11, 12, 14) … 

0.868 9 (1, 2, 3, 5, 7, 10, 11, 12, 13), (1, 2, 3, 5, 7, 10, 11, 13, 

14), (1, 2, 3, 6, 7, 11, 12, 13, 14) … 

0.99 10 (1, 2, 3, 5, 7, 10, 11, 12, 13, 14), (1, 2, 3, 6, 7, 10, 11, 

12, 13, 14) 
 

Table 4. Individual reliability closeness centrality 

Node Reliability closeness 

centrality 

4 0.3031 

9 0.2998 

5 0.2835 

7 0.2742 

6 0.2716 

14 0.253 

10 0.2448 

13 0.2448 

11 0.2371 

2 0.2272 

8 0.2184 

12 0.2081 

3 0.1793 

1 0.1723 

 

To gain an engineering feeling of the impact on the network transmission performance resulting 

from the failure of the nodes of a group of a given reliability closeness centrality value, the relative 

global reliability efficiency variation of the network is reported in Figure 3. The relative variation of 

the global reliability efficiency due to the removal of a group of nodes is computed as the difference 

between the values of the global reliability efficiency (Equation 4) of the network with all the nodes 
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of the group (and all the incident arcs) removed and of the original network with no nodes removed, 

normalized to the latter. 

 

Figure 3. Relative variation of the global reliability efficiency as a function of group closeness centrality 

measure 

 

The results show that there is a strong relation between the size of the groups removed and the 

efficiency of the network and that the most reliability-close central groups (i.e., those in the Pareto 

front) are indeed the most important also from the point of view of the negative impact on the 

network global reliability efficiency, when they fail. 

 

5 CASE STUDY 2 

5.1 IEEE RTS 96 electrical transmission network 

The transmission network system IEEE RTS 96 (Figure 4) [16] consists of 24 bus locations 

(numbered in bold in the Figure) connected by 34 lines and transformers. The transmission lines 

operate at two different voltage levels, 138 kV and 230 kV. The 230 kV system is the top part of 

Figure 4, with 230/138 kV tie stations at Buses 11, 12 and 24.  

 

Figure 4. IEEE RTS 96 transmission network 

 

Figure 5 gives the representation of the graph G(24,34) of the transmission network; the 

corresponding 24 24  adjacency matrix {aij} has entry equal to 1 if there is a line or transformer 

between bus locations i  and j  and 0  otherwise. 

 

Figure 5. The IEEE RTS 96 graph representation 
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5.2 Optimal network expansion by MOGA 

A MOGA has been constructed for identifying the best improvements in the connection of the 

network, aimed at increasing its global reliability efficiency in transmission at acceptable costs. The 

improvements are obtained by addition of new lines between nodes with no direct connection in the 

original network. Given the lack of geographical information on the nodes locations, for simplicity 

and with no loss of generality, three typologies of lines have been arbitrarily chosen as the 

minimum, the mean and the maximum values of the failure rates of the transmission lines taken 

from [16]:  

 

1

2

3

0.2267 outages/yr

0.3740 outages/yr

0.5400 outages/yr













 

 

The addition of a new line requires an investment cost assumed inversely proportional to the failure 

rate. The network cost can be then defined as: 

 

  
, ,

C[G] 1/ ij

i j N i j


 

   (9) 

 

The reliability cost of the original IEEE RTS 96 is  C G 332.0120  in arbitrary monetary units and 

the reliability efficiency is  RE G 0.2992 , which is a relatively high value representative of a 

globally reliable network.  

The network global reliability efficiency and cost are adopted as objective functions in the MOGA 

optimization of the network improved structure. 

From the algorithmic point of view, a proposal of improvement amounts to changing from 0 to 1 

the values of the elements in the adjacency matrix corresponding to the added connections. The 

only physical restriction for adding direct new connections is that the connected nodes must be at 
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the same voltage level (138 or 230 kV), otherwise the addition of a transformer would also be 

needed. From the genetic algorithm point of view, the generation of proposals of network 

improvements can be achieved by manipulating a population of chromosomes, each one with a 

number of bits equal to 214 which is double the number of zeros (i.e., the number of missing direct 

connections ij) in the upper triangular half of the symmetric adjacency matrix {aij}. The bits are 

dedicated to each missing direct connection ij so as to code the three different available types of 

lines with failure rates λ1, λ2 and λ3: in other words, the bit-string (00) is used to code the absence of 

connection, (01) connection line with a λ1-type line, (10) connection with a λ2-type line and (11) 

connection with a λ3-type line. The initial population of 200 individuals is created by uniformly 

sampling the binary bit values.  

During the genetic search, each time a new chromosome is created, the corresponding matrices {aij} 

and {pij} are constructed to compute the values of the two objective functions, network global 

reliability efficiency and cost of the associated improved network. 

Figure 6 shows the Pareto dominance front (squares) obtained by the MOGA at convergence after 

10
3
 generations; the circle represents the original network with RE[G] 0.2992  and 

C[G] 332.0120 , while the star represents the network fully connected by the most reliable 

transmission lines 2267.01   occ/yr, for which RE[G] 0.57  and C[G] 804.1072 . 

 

Figure 6. Pareto front reached by the MOGA 

 

The optimality search is biased from the beginning (from the initial population) towards highly 

connected network solutions, because the string (00) has a probability of 0.25 whereas the 

probability of adding a connection of any one of the three available types (i.e., the probability of the 

strings 01, 10, 11) is 0.75; this drives the population evolution to highly connected networks in the 

Pareto front (squares in Figure 6), all with values  RE G 0.4417 ,  C G 454.4738  and numbers 

of added connections exceeding 60. 
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In practical applications only a limited number of lines can be added, due to the large investment 

costs and other physical constraints. To drive the genetic search towards low cost solutions (i.e., 

low number of added lines) maximal and minimal trade-offs to the two objectives of the 

optimization (network global reliability efficiency and cost) can be defined within a Guided Multi-

Objective Genetic Algorithm (G-MOGA) scheme, [15]. The preferential optimization has been 

performed by using G-MOGA, with the same population size, evolution procedures and parameters 

of the previous search. In this approach, the search is guided by defining the maximal and minimal 

trade-offs that allow to identify a precise section of the Pareto front. The values of the trade-off 

parameters have been set by trial-and-error to 
12 331.3157 a   and 

21 0a  ; the search converges to 

a small number of solutions in a Pareto front which is more concentrated on low cost networks, 

characterized by a limited number of added connections (asterisks in Figure 6). 

Table 5 lists the five solutions of lowest cost identified by the G-MOGA search: the added 

connections improve the network global reliability efficiency and they do so with relatively small 

costs. 

 

Table 5. The five solutions on the Pareto front obtained by the G-MOGA 

G-MOGA 

Reliability Efficiency Cost 

0.3072 337.6 

0.3168 339.4 

0.3186 339.4 

0.3187 339.4 

0.3193 339.4 

 

6 CONCLUSIONS 

This paper has illustrated the use of MOGA in the analysis of complex, interconnected network 

systems.  

First, the electrical transmission network system of the IEEE 14 BUS has been analyzed by MOGA 

to identify the importance of groups of components, measured in terms of their centrality in the 

structure of interconnection paths. The results obtained using the group reliability closeness 
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centrality measure as importance indicator have shown that the groups classified as most central 

indeed contain the nodes of individual highest centrality but may also include nodes with a 

relatively low centrality. The groups most important from the point of view of group reliability 

closeness have been shown to be also the most vulnerable to direct attacks, by a crude procedure of 

removal of nodes and arcs one at a time. 

Then, a MOGA for improving the electrical transmission network IEEE RTS 96 has been 

implemented with the objective of identifying the lines to be added for maximizing the network 

transmission reliability efficiency, while maintaining the investment costs limited. A preferential 

procedure of optimization has been performed by using G-MOGA for individuating realistic 

network expansion solutions made of few new transmission lines.  

The original contributions of the paper lie in i) the innovative bit coding strategies within a MOGA 

approach; ii) the definition of the appropriate objective functions for efficiently handling the 

combinatorial optimization; iii) the adoption of the guided search, to realistically steer the 

optimization towards practically implementable solutions of network improvement; iv) the 

engineering analysis and implementation of the results of the otherwise “blind” MOGA automatic 

optimization. The case studies have been chosen purposely for the simplicity of the structure of the 

networks, which has allowed the verification of the proposed approach, which demonstrates the 

coherence of the MOGA searches with respect to the physical behavior of the two networks. 

From the point of view of the physical analysis of the electrical transmission system which the 

networks represent, some limitations affect the results obtained. These limitations are all related to 

the fact that the analysis performed focuses only on the topological features of the network, thus 

neglecting its physical characteristics; this is not realistic for electrical transmission networks. 

Work is currently undergoing in establishing effective ways of bringing these physical 

characteristics into the topological analysis. 
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