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Abstract 

The first recorded usage of the word reliability dates back to the 1800s, albeit referred to a person 

and not a technical system. Since then, the concept of reliability has become a pervasive attribute 

worth of both qualitative and quantitative connotations. In particular, the revolutionary social, 

cultural and technological changes that have occurred from the 1800s to the 2000s have 

contributed to the need for a rational framework and quantitative treatment of the reliability of 

engineered systems and plants. This has led to the rise of reliability engineering as a scientific 

discipline. 

In this paper, some considerations are shared with respect to a number of problems and challenges 

which researchers and practitioners in reliability engineering are facing when analyzing today’s 

complex systems. The focus will be on the contribution of reliability to system safety and on its role 

within system risk analysis. 
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1 Introduction 

This paper collects a number of considerations on problems and challenges of current reliability 

engineering research, that were shared during the keynote lecture by the author at the European 

Safety and Reliability Conference ESREL 2007 held in Stavanger (Norway) in 2007. The focus on 

reliability engineering is with respect to its role within the current developments of system safety 

and risk analysis. The focus on the problems and challenges relates to the representation and 

modeling of the complexity of the systems, to the quantification of the system models and to the 

proper representation, propagation and quantification of the uncertainty in the system failure 

behavior and model. The focus on the research for techniques and methods to address such 

problems and challenges is strongly biased towards the new computational developments 

continuously stimulated by the constantly increasing computing power and capabilities. 

The author apologizes at the forefront for the incapability of treating the subject exhaustively, with 

the deserved completeness of material and references and with the due profundity: seeking such 

objectives would have rendered overwhelming the task of writing the paper… as well as that of 

reading it.   

Reliability is a fundamental attribute for the safe operation of any modern technological system. 

Focusing on safety, reliability analysis aims at the quantification of the probability of failure of the 

system and its protective barriers. In practice, diverse types of protection barriers are placed as 

safeguards from the hazard posed by the system operation, within a multiple-barrier concept. These 

barriers are intended to protect the system from failures of any of its components, hardware, 

software, human and organizational. These all need to be addressed by the system reliability 

analysis in a comprehensive and integrated manner (Reason, 1998). 

A fundamental issue in reliability analysis is the uncertainty in the failure occurrences and 

consequences. For the objectives of system safety, this entails protecting the system beyond the 

uncertainties of its accidental scenarios.  

One classical way to defend a system beyond the uncertainty of its failure scenarios has been to: i) 

identify the group of failure event sequences leading to credible worst-case accident scenarios 

{ *s } (design-basis accidents), ii) predict their consequences { *x } and iii) accordingly design 

proper safety barriers for preventing such scenarios and for protecting from, and mitigating, their 

associated consequences.  

Within this structuralist, defense-in-depth approach, safety margins against these scenarios are 

enforced through conservative regulations of system design and operation, under the creed that the 

identified worst-case, credible accidents would envelope all credible accidents for what regards the 
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challenges and stresses posed on the system and its protections. The underlying principle has been 

that if a system is designed to withstand all the worst-case credible accidents, then it is „by 

definition‟ protected against any credible accident (Apostolakis, 2006a).  

This approach has been the one classically undertaken, and in many technological instances it still 

is, to protect a system from the uncertainty of the unknown failure behaviours of its components, 

systems and structures, without directly quantifying it, so as to provide reasonable assurance that 

the system can be operated without undue risk. However, the practice of referring to “worst” cases 

implies subjectivity and arbitrariness in the definition of the accidental events, which may lead to 

the consideration of scenarios characterized by really catastrophic consequences, although highly 

unlikely. This may lead to the imposition of unnecessarily stringent regulatory burdens and thus 

excessive conservatism in the design and operation of the system and its protective barriers, with a 

penalization of the industry. This is particularly so for those industries, such as the nuclear, 

aerospace and process ones, in which accidents may lead to potentially large consequences.  

For this reason, a more rational and quantitative approach has been pushed forward for the design, 

regulation and management of the safety of hazardous systems. This approach, initially motivated 

by the growing use of nuclear energy and by the growing investments in aerospace missions in the 

1960s, stands on the principle of looking quantitatively also at the reliability of the accident-

preventing and consequence-limiting protection systems which intervene in all potential accident 

scenarios, in principle with no longer any differentiation between credible and incredible, large and 

small accidents (Farmer, 1964). Initially, a number of studies were performed for investigating the 

merits of a quantitative approach based on probability for the treatment of the uncertainty associated 

with the occurrence and evolution of accident scenarios (Garrick et al., 1967). The findings of these 

studies motivated the first complete and full-scale probabilistic risk assessment of a nuclear power 

installation (WASH-1400, 1975). This extensive work showed that indeed the dominant 

contributors to risk need not be necessarily the design-basis accidents, a „revolutionary‟ discovery 

undermining the fundamental creed underpinning the structuralist, defense-in-depth approach to 

safety (Apostolakis, 2006a). 

Following these lines of thought, and after several „battles‟ for their demonstration and valorisation, 

the probabilistic approach to risk analysis (PRA) has arisen as an effective way for analysing 

system safety, not limited only to the consideration of worst-case accident scenarios but extended to 

looking at all feasible scenarios and its related consequences, with the probability of occurrence of 

such scenarios becoming an additional key aspect to be quantified in order to rationally and 

quantitatively handle uncertainty (WASH-1400, 1975; NASA, 2002; Aven, 2003; Bedford and 

Cooke, 2001; Henley and Kumamoto, 1992; Kaplan and Garrick, 1984; McCormick, 1981; 
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NUREG, 1983). From the view point of safety regulations, this has led to the introduction of new 

criteria which account for both the consequences of the scenarios and their probabilities of 

occurrence under a now rationalist, defense-in-depth approach. Within this approach to safety 

analysis and regulation, reliability engineering takes on a most relevant role in the assessment of the 

probability of occurrence of the accident scenarios. 

In the next Section, the historic evolution of reliability engineering is briefly re-visited, highlighting 

some of the major achievements and transformations occurred through the years. This paves the 

way for the presentation of the current issues and challenges that reliability engineering is facing 

today. In Section 3.1, these are focused on the representation and modeling of the complexity of the 

system and all its components, hardware, software, human and organizational. The modeling and 

computational challenges thereby arising are discussed with reference to some of the current 

research developments in computational methodologies and techniques for their solution. 

Exemplary cases of complexity, which are discussed in some details, are the multi-state systems and 

the network systems which typically make up the modern infrastructures of distributed service (e.g. 

computer and communication systems, electric power transmission and distribution systems, rail 

and road transportation systems, water/oil/gas distribution systems). In Section 3.2, the focus is on 

the current issues and challenges faced for maintaining a system or structure at the desired level of 

reliability and performance during its operation life. The discussion thus touches upon the problems 

related to the maintenance of complex systems and structures, with its associated challenges of 

diagnosing and predicting the failure behavior of its components with due account of the associated 

uncertainties. The fundamental issue of the proper representation and modeling of uncertainty is 

discussed in Section 3.3, where a number of alternative mathematical frameworks of uncertainty 

representation are mentioned under a set of common objectives for their practical use for rational 

safety and reliability decision making. Section 4 represents a shy daring into some seemingly 

evident needs in the practice of reliability engineering. Finally, Section 5 wraps up some of the 

issues touched upon under a modern, dynamic view of reliability engineering for system safety. 
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2 Reliability engineering from yesterday to today 

It seems that the word reliability was first coined by the English poet Samuel T. Coleridge, who 

along with William Wordsworth started the English Romantic Movement (Engell et al., 1983): 

“He inflicts none of those small pains and discomforts which 

irregular men scatter about them and which in the aggregate 

so often become formidable obstacles both to happiness and 

utility; while on the contrary he bestows all the pleasures, 

and inspires all that ease of mind on those around him or 

connected with him, with perfect consistency, and (if such a 

word might be framed) absolute reliability.” 

These lines Coleridge was writing in the year 1816, in praise of his friend the poet Robert Southey. 

From this initial „familiar‟ use, the concept of reliability grew into a pervasive attribute worth of 

both qualitative and quantitative connotations. In fact, it only takes an internet search of the word 

„reliability‟, e.g. by the popular engine Google, to be overwhelmed by tens of millions of citations 

(Saleh and Marais, 2006). 

From 1816 to 2007 several revolutionizing social, cultural and technological developments have 

occurred which have aroused the need of a rational framework for the quantitative treatment of the 

reliability of engineered systems and plants and the establishment of reliability engineering as a 

scientific discipline, starting from the mid 1950‟s. 

The essential technical pillar which has supported the rise of reliability engineering as a scientific 

discipline is the theory of probability and statistics. This theory was initiated to satisfy the 

enthusiastic urge for answers to gaming and gambling questions by Blaise Pascal and Pierre de 

Fermat in the 1600s and later expanded into numerous other practical problems by Laplace in the 

1800s (Saleh and Marais, 2006; Apostol, 1969). 

Yet, the development of reliability engineering into a scientific discipline in itself needed a practical 

push, which came in the early 1900s with the rise of the concept of mass production for the 

manufacturing of large quantities of goods from standardized parts (rifle production at the 

Springfield armory, 1863 and Ford Model T car production, 1913) (Saleh and Marais, 2006). 
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But actually, the catalyst for the actual emergence of reliability engineering was the vacuum tube, 

specifically the triode invented by Lee de Forest in 1906, which at the onset of WWII initiated the 

electronic revolution, enabling a series of applications such as the radio, television, radar and others. 

The vacuum tube is by many recognized as the active element that allowed the Allies to win the so 

called „wizard war‟. At the same time, it was also the main cause of equipment failure: tube 

replacements were required five times as often as all other equipments. After the war, this 

experience with the vacuum tubes prompted the US Department of Defense (DoD) to initiate a 

number of studies for looking into these failures. 

A similar situation was experienced on the other side of the warfront by the Germans, where chief 

Engineer Lusser, a programme manager working in Peenemunde on the V1, prompted the 

systematic analysis of the relations between system failures and components faults. 

These and other military-driven efforts eventually led to the rise of the new discipline of reliability 

engineering in the 1950s, consolidated and synthesized for the first time in the Advisory Group on 

Reliability of Electronic Equipment (AGREE) report in 1957. The AGREE was jointly established 

in 1952 between the DoD and the American Electronics Industry, with the mission of (Coppola, 

1984): 

1) Recommending measures that would result in more reliable equipment; 

2) Helping to implement reliability programs in government and civilian agencies; 

3) Disseminating a better education on reliability. 

 

Several projects, still military-funded, developed in the 1950s from this first initiative (Coppola, 

1984; Raymond Knight, 1991; Denson, 1998). Failure data collection and root cause analyses were 

launched with the aim of achieving higher reliability in components and devices. These led to the 

specification of quantitative reliability requirements, marking the beginning of the contractual 

aspect of reliability. This inevitably brought the problem of being able to estimate and predict the 

reliability of a component before it was built and tested: this in turn led in 1956 to the publication of 

a major report on reliability prediction techniques entitled „Reliability Stress Analysis for Electronic 

Equipment‟ (TR-1100) by the Radio Corporation of America (RCA), a major manufacturer of 

vacuum tubes. The report presented a number of analytical models for estimating failure rates and 

can be considered the direct predecessor of the influential military standard MH-217 first published 

in 1961 and still used today to make reliability predictions.  

Still from the military side, during the Korean war maintenance costs were found quite significant 

for some armed systems, thus calling for methods of reliability prediction and optimized strategies 

of component maintenance and renovation. 
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In the 1960s, the discipline of reliability engineering proceeded along two tracks: 

• Increased specialization in the discipline by sophistication of the techniques, e.g. 

redundancy modeling, bayesian statistics, markov chains etc. and by the development of the 

concepts of reliability physics to identify and model the physical causes of failure and of 

structural reliability to analyze the integrity of buildings, bridges and other constructions. 

• Shift of the attention from component reliability to system reliability and availability, to 

cope with the increased complexity of the engineered systems, like those developed as part 

of military and space programs like the Mercury, Gemini and Apollo ones. 

 

Three broad areas characterized the development of reliability engineering in the 1970s: 

• The potential of system-level reliability analysis (Barlow and Proschan, 1975) motivated the 

rational treatment of the safety attributes of complex systems such as the nuclear power 

plants (WASH-1400, 1975). 

• The increased reliance on software in many systems led to the growth of focus on software 

reliability, testing and improvement (Moranda, 1975). 

• The lack of interest on reliability programs that managers often showed already at that time, 

sparked the development of incentives to reward improvement in reliability on top of the 

usual production-based incentives. 

With respect to methods of prediction reliability, no particular advancements were achieved in those 

years. 

 

In the following years, the last 20-25 years, the scientific and practicing community has witnessed 

an impressive increase of developments and applications of reliability engineering, aimed at 

rationally coping with the challenges brought by the growing complexity of the systems and 

practically taking advantage of the computational power becoming available at reasonable costs. In 

this respect, the European Safety and Reliability Conferences (www.esrahomepage.org ), to the last 

edition of which (ESREL 2007) is dedicated the present special issue, have played an important role 

in providing a forum for fostering these advancements. 

 

The developments and applications of these years have been driven by a shift from the traditional 

industrial economy, valuing production, to the modern economy centered on service delivery: the 

fundamental difference is that the former type of economy gives value to the product itself whereas 

http://www.esrahomepage.org/
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the latter gives value to the performance of the product in providing the service. The good is not the 

product itself but its service and the satisfaction of the customer in receiving it. 

This change of view has led to an increased attention to service availability as a most important 

quality and to a consequent push in the development of techniques for its quantification. This entails 

consideration of the fact that availability is a property which depends on the combination of a 

number of interrelated processes of component degradation, of failure and repair, of diagnostics and 

maintenance, which result from the interaction of different systems including not only the hardware 

but also the software, the human and the organizational and logistic systems. 

 

In this scenario, we arrive at our times. Nowadays, reliability engineering is a well established, 

multidisciplinary scientific discipline which aims at providing an ensemble of formal methods to 

investigate the uncertain boundaries between system operation and failure, by addressing the 

following questions (Cai, 1996; Aven and Jensen, 1999): 

 

• Why systems fail, e,g by using the concepts of reliability physics to discover causes and 

mechanisms of failure and to identify consequences; 

• How to develop reliable systems, e.g by reliability-based design; 

• How to measure and test reliability in design, operation and management; 

• How to maintain systems reliable, by maintenance, fault diagnosis and prognosis. 

 

3 Old problems and new challenges 

With reference to the questions posed in the previous Section, old problems afflict reliability 

engineering. These relate to: 

• The representation and modeling of the system; 

• The quantification of the system model; 

• The representation, propagation and quantification of the uncertainty in system behaviour. 

 

These old problems develop into new challenges when addressed with respect to the modern 

complex systems and operation tasks. 
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3.1 System complexity 

With respect to the complexity of the systems and the modelling of their behaviour, few examples 

directly relevant to reliability engineering are discussed in the following Sections. Consideration is 

given to the system as a whole, comprised of its hardware, software, organizational and human 

elements. 

3.1.1 Multi-state systems 

Modern systems have four basic components: hardware, software, organizational and human. 

Reliability engineering was originally developed to handle rationally the failures of the components 

of the first type.  

A commonly adopted assumption underlying the quantitative analysis of hardware failures by 

reliability engineering methods is that systems are made up of binary components (i.e., devices that 

can be in two states: functioning or faulty). Yet, there are many systems, such as, for example, the 

manufacturing, production, power generation and gas and oil transportation ones, whose overall 

performance can settle on different levels (e.g. 100%, 80%, 50% of the nominal capacity), 

depending on the operative conditions of their constitutive multi-state elements (Figure 1) (Wood, 

1985; Garribba et al., 1985; Gandini, 1990; Aven, 1993; Griffith, 1980; Lisnianski and Levitin, 

2003; Parikh et al. 2001). In the literature, such systems are referred to as Multi-State Systems 

(MSS) and their analysis entails the development of new representation, modeling and 

quantification techniques. 

To formalize the analysis of MSS, consider a system made up of n components. Each component i 

may stay in one of mi states, i=1, 2, …, n, so that the system is characterized by a set S of 





n

i

isys mm
1

 states. Concerning the single component, each state is characterized by a different 

level of component performance. The states of a component i can be numbered according to 

decreasing performance levels, from state 1 (100%) to state mi (0%). Let us denote by jiw ,  the 

performance of component i when operating in state j, j= 1, 2, …, mi. Note that a set of 

performances characterises the single component, independently on the system in which it is 

embedded. Concerning the whole system, let jW  denote its performance level when in state 

),...,,( 21 njjjj  , where ji represents the state of the i-th component, i=1,2, …, n. The system 

performance jW  is determined on the basis of the individual components‟ performances, 
1,1 jw , 

2,2 jw ,…, 
njnw ,  and depends on the system logic of operation of the considered system.  
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In practice, multi-state systems may be requested to work at different performance levels at 

different times. For example, the production of electrical and thermal power plants varies according 

to the daily and seasonal load demands. Assume that at time t a minimum level of system 

performance )(* tW  is required (Figure 1). The system availability, usually defined in terms of the 

system being in safe or faulty state, is generalized according to whether its performance is larger or 

smaller than *W  (for ease of notation, the dependence on t is neglected in the writing). Then, the 

MSS availability ),( * tWA  of the system at time t is the probability that at that time the system is in 

any state j  with performance )(* tWW j  . If the probability that at time t the system is in state j  

is denoted by )(tPj , the availability reads: 

)(),(
)(

*

*

tPtWA
tWW

j

j




           (1) 

By extension of the definition of the instantaneous availability (1), the concepts of average and 

limiting availability (Barlow and Proschan, 1975; Aven and Jensen, 1999; Zio, 2007c) may be 

introduced with reference to the system performance threshold *W , in order to quantify integral, 

time-independent measures of performance availability of the system (i.e., the probability that the 

system is in a performance state above threshold for a given percentage of its life time). 

A complication of the modeling task comes from the fact that often in practice MSS are such that 

operational dependencies exist between the system overall state and the state of its components. For 

example, in a production line with a nodal series structure and no buffers between the nodes 

(hereafter also called blocks), if one of the nodes throughput changes (e.g. switches from 100% to 

50% due to a deterministic or stochastic transition of one of its components), the other nodes must 

be reconfigured (i.e. their components must deterministically change their states) so as to provide 

the same throughput (Poszgai and Bertsche, 2003). In the limit, the failure of one of the series nodes 

implies that the production of the other nodes be turned off. Examples of such systems are those 

operated according to the so called Just-In-Time production philosophy for reducing manufactory 

wastes and unnecessary storages by „producing the right amount at the right time‟ (Monden, 1998). 

When one node is reconfigured, some of its components are changed to new operative states in 

which they may undergo stress and ageing processes different from those characterizing the states 

occupied prior to reconfiguration (for instance, in some cases, the components may be considered in 

a „no ageing‟ state while turned off, i.e. in cold stand-by) and this influences the overall availability 

and performance of the system. Such physical dependencies among the system state and the 

operation of its components are quite difficult to represent by analytical modeling (Wood, 1985; 

Garribba et al., 1985; Gandini, 1990; Aven, 1993; Griffith, 1980; Lisnianski and Levitin, 2003), due 
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to the complexity involved. Yet their modeling has become fundamental in the computation of the 

realistic production availability of systems such as the oil and gas production plants and others (Zio 

et al., 2006; Production Assurance ESREL, 2007). 

Monte Carlo (MC) simulation (Dubi, 1998; Marseguerra and Zio, 2002) appears to be the only 

feasible approach to quantitatively capture the realistic aspects of the MSS stochastic behavior 

(Poszgai and Bertesche, 2003; Zio et al., 2007a). The feasibility of application to realistic cases 

stems on the capability of properly representing and modeling the multi-state dynamics of the 

components and systems, e.g. by Petri Nets (Dutuit et al., 1997; Larsen et al., 2000; Schneeweiss, 

2004; Sachdeva et al., 2007), and on the possibility of evaluating the model in reasonable 

computing times, e.g. by biasing techniques (Marseguerra and Zio, 1993 and 2000; Labeau and Zio, 

2001). Further developments are certainly needed in this direction, together with some verification 

on real-size systems. 

 

 

 

Figure 1: Binary and multi-state systems 

 

3.1.2 Network systems 

System reliability methods have been originally tailored to deal with „fixed‟, localized systems and 

plants which can be rationally represented by logical/functional structures of components, albeit 
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complex. In this representation, the failures of the components are seen with respect to their 

consequence on the system function. 

On the other hand, nowadays many systems of distributed service exist (the so called 

infrastructures, e.g. computer and communication systems, electric power transmission and 

distribution systems, rail and road transportation systems, water/oil/gas distribution systems), 

constituted by networks of components (Figure 2). In these systems, there is an additional 

dimension of complexity related to the difficulty of representing, modeling and quantifying the 

effects on the system of a failure of a component.  

A number of these systems are considered critical for the social welfare of modern societies and 

thus need priority protection (CNIP, 2006; Birchmeier, 2007). While the EU and other national and 

transnational administrations are recognizing the importance of this safety issue with specific 

directives and programs (OHS, 2002; EU 2005 and 2006; IRGC, 2006), it seems that the classical 

methods of reliability and risk analysis fail to provide the proper instruments of analysis. 
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Figure 2: Example of network infrastructures for distributed service: Transnational electrical 

network (Top) and City Metro Transport System (Bottom) 

 

Indeed, there is an emerging feeling in the community of experts in risk, safety, reliability and 

security that a new paradigm is needed for analyzing and managing the complex distributed systems 

and critical infrastructures which constitute the backbone of modern Industry and Society (e.g. 

computer and communication systems (Aggarwal, 1975; Kubat, 1989; Samad, 1987), power 

transmission and distribution systems (Jane et al., 1993; Yeh and Revised, 1998), rail and road 

transportation systems (Aven, 1987), oil /gas systems (Aven, 1987 and 1988) ). Identifying and 

quantifying the vulnerabilities of such systems is crucial for designing the adequate protections, 

mitigation and emergency actions against their failures (CNIP, 2006; Rocco et al., 2007; 

Vulnerability ESREL, 2007). These needs are enhanced in a World where deregulation of the 

services is favored and malevolent acts of terrorism and sabotage are a serious threat (CNIP, 2006; 

Rocco et al., 2007; Vulnerability ESREL, 2007). 

The current methodologies of reliability engineering, risk assessment and management are applied 

successfully on man-machine-environment systems with well-defined rigid boundaries, with single, 

well-specified targets of the hazard and for which historical or actuarial data (e.g. accident initiators 
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and components failure rates and empirical data on accident consequences) exist in support to 

robust quantification models which account for the uncertainties deriving from both random 

variations in the behavior of the elements of the system under analysis and from lack of knowledge 

of the system itself (Apostolakis and Lemon, 2005). 

In the current framework, reliability engineering aims at searching for the causal links among the 

system elements (components, structures, people, etc.) and modeling and integrating their behavior 

so as to quantify that of the system as a whole. 

On the other hand, risk management aims at achieving rational, risk-informed decisions by carrying 

out an optimization process aimed at maximizing specified preferential objectives in presence of 

uncertainty. The simplest example of such process is the classical cost-benefit analysis. 

This approach to reliability engineering and risk analysis (assessment and management) of 

complicated technological systems (Kastenberg, 2005): 

 assumes that the system has fixed boundaries, there is a fixed well-defined target and there are 

actuarial data available to support the quantification models, 

 is sustained by the classical Newtonian/Cartesian view of the World, which is founded on the 

following creeds on the system behavior: 

1. it can be understood from the behavior of its constitutive elements (reductionism) and their 

causal links (cause-and-effect); 

2. it can be determined from objective empirical observations (subject/object dualism). 

 

As illustrated in (Kastenberg, 2005), the above framework of analysis may not be fully apt to deal 

with many existing complex network systems which, on the contrary, are characterized by a 

behavior which: 

 emerges as a whole and hence cannot be understood and properly described by looking at its 

constitutive parts, which do not exhibit such behavior when taken by themselves 

(emergent/holistic property), 

 may change significantly for small changes in the input (chaotic), 

 can partly be described only subjectively (subjective). 

The above characteristics of the newly arising complex network systems are such that societal and 

environmental impacts of accidents and attacks are no longer geographically local (e.g. a blackout 

in a power transmission and distribution network or a malevolent attack to a transportation network) 

nor clearly perceptible in time because either spreading very quickly (a virus in the Internet) or very 

slowly (an accident in a radioactive waste deposit whose consequences may affect future 

generations). 
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The new risk scenario of modern Industry and Society briefly depicted above creates some 

unprecedented challenges to research and practice, such that a new paradigm of risk may be in order 

and new methods for reliability and risk analysis needed. 

In particular, an innovative and promising approach to the analysis of complex technological 

network systems and infrastructures comes from the findings of Complexity Science (Kauffman, 

1993; Capra, 1996; Science, 1999; Bar-Yam, 1997; Barabasi, 2002). Recent advances in this field 

indicate that many complex systems, technological, natural and even social, are hierarchies of 

networks of components (also called nodes, vertices or elements) interacting through links (also 

called edges, arcs or connections). Although the properties of the individual components can 

usually be characterized in laboratory, these isolated measurements bring relatively little 

information on the behavior of the large scale interconnected systems in which they are embedded. 

This is due to the fact that it is from the local interaction of the components in the interconnected 

network that the system behavior emerges as a whole. 

The apparent ubiquity of networks leads to a fascinating set of problems common to biological, 

ecological, technological and social complex systems, regarding how the underlying network 

topology influences the system behavior and its characteristics of stability and robustness to faults 

and attacks. For example, the topology of the power grid affects the robustness and stability of 

power transmission (Carreras et al, 2002; Crucitti et al, 2004; CNIP, 2006; Jonsson et al. 2007; 

Rosato et al., 2007). 

In this view, the actual structure of the network of interconnections among the components is a 

critical feature of the system: the stability and robustness of these systems depend on the redundant 

wiring of the functional web interconnecting the system‟s components; yet, error tolerance and 

attack robustness are not shared by all redundant networks (Albert et al., 2000).  

For these analyses to be of use at the decision making level, efforts must be made to bring into the 

picture the characteristic safety and reliability attributes of the network components to analyze the 

properties that emerge at the system level (Zio, 2007a). The indicators thereby developed can be 

exploited for the analysis of the vulnerabilities of network systems and thus for their optimal design, 

operation and management. 

The above analyses must be corroborated by detailed system modeling of a limited set of design and 

accident scenarios, e.g. by agent-based and Monte Carlo simulation (CNIP, 2006). 

Furthermore, dependences need to be adequately modeled to investigate the interactions among 

complex infrastructure systems, leading to the so called systems of systems (Carreras et al., 2002; 

CNIP, 2006; Bologna, 2007). The European electric power supply system serves as a good 

illustrating example, facing greater and tighter integration, also of new intermittent power sources, 
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following the liberalization of most markets and being closely interconnected with other 

infrastructures, particularly the information and communication network. More in general, 

communication, power, transportation networks are complex infrastructure systems which interact 

with each other in even more complex ways: from these interactions increased risks of failures may 

arise in the individual systems from unexpected emergent behavior. Investigating the risks and 

vulnerabilities for these kinds of systems has to go beyond the usual cause/agent-consequence 

analysis to be able to focus on spill-over clusters of failures in case of strong interdependencies 

(Eusgeld and Kroger, 2008). 

 

To investigate these issues, new approaches and paradigms of dependence analysis need to be 

formulated. Indeed, in practice there seems to be no single „silver bullet solution‟ to the problem of 

analyzing the risks associated to interdependent critical infrastructures.  Rather, in view of the 

limitations and deficits of the available methods, albeit mature, and of the need of restricting the 

computation times for application feasibility, a framework of analysis seems in order to effectively 

integrate the different methods in a problem-driven approach to solution. Such framework may 

incorporate elements of Complexity Science methods of network analysis for the initial screening of 

the vulnerabilities of a critical infrastructure, PRA methods of quantitative scenario analysis (Haarla 

et al., 2008; Koonce et al., 2007; Bier et al., 2006; Michaud et al., 2006; Patterson et al., 2006; 

Salmeron et al., 2004) and agent-based modeling to further deepen the vulnerability assessment of 

the screened scenarios (Schlapfer et al., 2008). 

 

 

3.1.3 Organizational and Human Reliability Analysis 

As previously stated, reliability and safety are system properties which emerge from the interactions 

of all the diverse system constituents, hardware, software, organizational and human. Indeed, the 

experience accumulated on occurred industrial accidents in the last few decades has clearly shown 

that the organizational and human factors play a significant role in the risk of  system failures and 

accidents, throughout the life cycle of a system. This is due also to the fact that the reliability of the 

hardware components utilized in technological systems has significantly improved in recent years, 

particularly in those systems requiring high safety standards like those employed in the nuclear and 

aerospace applications. As a consequence, the relative importance of the errors of the organizations 

managing the systems and of the human operators running them on the risks associated to the 

operation of these systems has significantly increased. This explains the significant focus on 

Organizational and Human Reliability Analysis (HRA) and on its full integration within systematic 
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risk analysis and reliability assessment procedures (Gregoriades et al., 2003; Duval et al., 2007). 

This widens the scope of the analysis to the so called „socio-technical‟ systems, considering that 

human and technical performance is influenced by the organization and management of the 

industrial activities, by the safety culture of the organization and by other exogenous factors such as 

regulations, market pressures, political pressures etc. (Trbojevic et al., 2007).  

Even more, insights from research on failures in complex systems have revealed that safety is an 

emergent property of a system and their constitutive elements, rather than a resultant one. In this 

view, systems should not only be made reliable, i.e. with acceptably low failure probability, but also 

resilient, i.e. with the ability to recover from disruptions of the nominal operating conditions 

(Hollnagel et al., 2006). In this regard, a new field of research in resilience engineering is emerging, 

for understanding the factors that determine human and organizational performance and for duly 

incorporating the related risks into the system analysis and management tools, throughout the life 

cycle of the system and accounting for the short- and long-term effects on risk of organizational and 

management decisions and design and operation changes.  

Compared to technical components, the human and organisational components of a technological 

system are characterized by their multidimensional aspect and intrinsic complexity due to the many 

nonlinear interactions which influence their behaviour. Any attempt to capture these aspects into a 

model must face the difficulties related to the subtlety of the scarce information at disposal and its 

subjective interpretation (Duval et al., 2007).  

Yet, a number of qualitative and quantitative methods have been proposed for incorporating 

organisational factors in risk assessment, aiming at the explicit modelling of the influence of 

management and organisational factors to be properly evaluated (Hurst et al., 1991; Wreathall et al., 

1992; Murphy and Pate-Cornell, 1996; Oh et al., 1998; Reason, 1998; Oien, 2001; Aven et al., 

2006). 

However, although the role of human and organizational factors in accident causation is well 

recognized (Rankin and Krichbaum, 1998; Flin, 2007), at present most industries still do not have 

formal methods for the quantification of their effects on risk. Human and organizational errors are 

still mainly controlled through traditional quality assurance and quality control measures. This 

approach may be adequate for simpler systems and operations but are clearly not sufficient for 

managing major hazards in complex operations such as a process plant or nuclear power station. 

For this reason, industries such as the nuclear, oil & gas, maritime have been researching the field, 

particularly with the aim of providing quantitative methods for evaluating organizational and human 

error probabilities and their effects. To achieve the objective, a framework for the proper 

representation and modeling of socio-technical systems is needed (Gregoriades et al., 2003; Duval 



 18 

et al., 2007). This may be achieved by the effective combination of qualitative and quantitative 

representation and modeling methods, e.g. the „Qualitative and Quantitative Bayesian Belief 

Networks‟ (QQBNs) (Mosleh, 2007) and influence diagrams (Vinnem, 2007). 

With respect to modeling human errors, the early methods of analyses, the so-called „first 

generation‟ ones like the Technique for Human Error Rate Prediction (THERP) (Swain and 

Guttman, 1983), Accident Sequence Evaluation Program (ASEP) (Swain, 1987) and Human 

Cognition Reliability (HCR) (Hannaman et al., 1984 and 1985), are built around the pivotal concept 

of human error: because of the inherent deficiencies of humans, they naturally fail to perform tasks 

just like mechanical, electrical, structural components do. In this view, it makes sense to assign a 

probability of failure of a human operator in performing a task of given characteristics. Thus, the 

quantity Human Error Probability (HEP) can be defined with respect to a given task and 

appropriately modified in consideration of the environmental conditions under which it is 

performed. The factors representing the effects of the environment on the human performance of a 

task are called Performance Shaping Factors (PSFs) or Performance Influencing Factors (PIFs).  

The point of view of „first generation‟ methods with respect to failure of a human performing a 

given task is thus clear: the task characteristics, captured quantitatively in the HEP assignment, are 

regarded as the most influential factors for the estimation of the probability of human failure, 

whereas the environment in which the task is performed, which is represented by the PSFs and 

PIFs, is considered as a minor, corrective factor. 

On the other hand, experimental results from extensive studies of human performance in accidents 

have shown that the importance of the contextual conditions in which the task is performed is 

greater than the characteristics of the task itself. This has led to a change in the focus of human 

failure analysis: if the context is the major factor affecting human performance failure, the relation 

between the context and the probability of human failure should be modeled. This is the underlying 

principle of the so-called „second generation‟ methods of HRA like the Cognitive Reliability and 

Error Analysis Method (CREAM) (Hollnagel., 1998) and A Technique for Human Error Analysis 

(ATHEANA) (Cooper et al., 1994). 

Many of the methods above mentioned have proven useful in various situations and yet the 

community of experts in the field seems to agree that further understanding and development in this 

complex issue are needed as a proper understanding of organizational and human errors, and their 

causation, helps in establishing effective safety management systems to control and minimize also 

these errors, thereby improving safety. 

To this aim, simulation is recognized to provide significant potential understanding into the 

dynamics of human performance (Boring, 2007). The logs produced by simulation runs can be 
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analyzed by experts and used to inform an estimate of the likelihood of human error. For this to be 

successful, controlled expert elicitation procedures must be set up to avoid biases in the estimation 

procedure. Otherwise, the simulation results can provide information useful for the estimation of the 

PSFs which can eventually be quantified to produce HEP values (Boring, 2007). This requires 

establishing a mapping between measures of performance from the simulation and the PSFs 

(Boring, 2006). Finally, it is also conceivable to set specific criteria of successful performance in 

given tasks (e.g. time to complete the task) by which the virtual performers are evaluated (Bye et 

al., 2006): by counting the number of times that the task is not successfully performed by the virtual 

performers, one may compute a frequency of failure to be used as estimate of HEP (Boring, 2007). 

In this view, an investigative effort worth of mention is the EU-funded project Virtual Reality and 

Human Factors Applications for Improving Safety (Virthualis, http://www.virthualis.org/ ), aimed 

at developing a system and technological platform that tackles safety by adopting Virtual Reality 

(VR) technology to explore how human factors influence safety issues. VR is expected to enable  

industry to make experiments in a safe and economic way, in a virtual environment rather than in 

the real plant where such experiments cannot be performed because of the costs and risks involved. 

Such experiments can provide the needed measurements and qualitative evaluations of human 

factors and serve as testbeds of different hypothesis, scenarios and methods for reviewing the 

human organisation and work processes, improving design quality for better safety in new or 

existing plants and retrospectively examining past accidents to gain hints for the future procedures. 

Finally, in practice the choice of which HRA method to use for a particular safety assessment will 

remain a difficult problem. This calls for procedures of comparison and validation in order to guide 

the choice of the adequate approach for a given situation.  

As mentioned above, in order to perform a comparison of the available HRA methods the best 

approach is virtual simulation. In this regards, a pilot study is being undertaken at the Halden Man-

Machine Laboratory‟s (HAMMLAB) facility of the OECD Halden Reactor Project (HRP) with the 

aim of providing the technical basis for the comparison of the performance and findings of different 

HRA methods.  The study is intended to be a pilot test aimed at establishing a first guidance in the 

assessment and improvement of HRA methods through the information gained by simulator data. 

The initial testing study will focus on the performance of a number of crews in the Hammlab 

experimental facility, which reproduces the digital instrumentation and control systems and 

equipments in actual nuclear Pressurized and Boiling Water Reactors (PWRs and BWRs). The 

comparison between the results of the HRA methods and the actual experimental performance is to 

be made in terms of the “driving factors” that most influence the human performance and of the 

estimated values of Human Error Probability (HEP).  

http://www.virthualis.org/
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In principle, the use of human operators in virtual simulators allows capturing the full spectrum of 

human PSFs for a given task. However, the possibility of repeated trials is limited and the need of 

forcing error-likely situations may affect the scenario realism. 

Also, although the bulk of the simulation analyses focuses on the qualitative modeling of crew 

behavior, the quantitative results play a fundamental role, as they eventually need to be input into 

the reliability and risk analyses. In this respect, the experiments are expected not to yield 

statistically significant experimental values of HEPs, due to the very high level of performance of 

the trained crews and the small number of simulated sessions; henceforth a surrogate model for 

retrieving experimental values of HEPs is needed. The quantitative evaluation of the results of these 

simulations in terms of crew performance and human error probabilities is expected to be quite a 

difficult task and new methods will need to be developed to address the issue (Zio et al., 2007b). 

Concurrent with the emergence of simulation modeling of the dynamics of human performance, a 

number of new HRA methods are being developed to adequately account for the dynamic 

progression of human behaviour leading up to and following human failure events (Mosleh and 

Chang, 2003; Reer et al., 2004; Strater, 2005; Boring, 2006; Trucco et al., 2006). These are possible 

thanks to the increase of computer power available and aim at augmenting first and second 

generation methods by the use of virtual environments for mimicking the performance of humans in 

actual scenarios, thus providing a dynamic basis for HRA modeling and quantification. In these 

simulation-based HRA methods, a dynamic model is implemented to reproduce human decisions 

and actions during the scenario development and uses the results as basis for human performance 

estimation. A variety of human behaviours may be modeled across a series of Monte Carlo replicas 

to arrive at a frequentist estimation of HEPs. Of course, the modeling tasks associated to the 

simulation pose significant challenges in the need for accounting of the scenario dynamics, 

inclusive of the eventual dependency among successive events (Zio et al., 2007c). Dependency is 

typically accounted for by modifying the probability of downstream errors without systematically 

modeling the progression of the PSF levels across the successive events. On the contrary, a dynamic 

simulation allows accounting for the evolution of the PSF levels and of their effect on the outcomes 

of the downstream events (Boring, 2007). This brings up the issue of scenario granularity regarding 

which level the events in the scenario can be decomposed to. Care must be taken to ensure that the 

level of task decomposition be compatible with the HRA approach being adopted. 

As a final remark on the methods, while first and second generation methods will continue to be 

applied when needed and the latter will continue to be improved, there are exciting developments in 

HRA on the horizon of human performance dynamic simulation. 
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3.1.4 Software for safety and reliability for software 

When considering the requirements on the safety integrity levels of modern safety instrumented 

systems and components, their characteristics of reliability, availability, functionality and safety 

become parts of a unitary view of the safety and control functions involved. Several international 

standards give requirements and guidance on how to design, operate and maintain such systems 

(Hokstad and Corneliussen, 2004). In analyzing these systems, the characteristics of the 

implemented software and hardware protective barriers must be considered. Although hardware 

barriers are considered „more reliable/available‟ than software barriers, due to the longer experience 

in their performance, this often overlooks the extensive work (often manual) involved in proof-

checking the proper functioning of hardware barriers. Indeed, the chosen test interval is for this 

reason substantially longer than that for software barriers, which are easily integrated in automatic 

self-test procedures, with consequent very low probabilities of failures on demands (PFDs) and 

mean fractional dead times (MFDTs). Practical examples show that MFDTs for comparable tasks 

differ by a factor of more than 100 in favor of software barriers (Frankhauser, 2001). On the other 

hand, in complex systems even daily self-tests are not able to reveal all potential failures which 

might limit the proper functioning of the provided barriers. Therefore, proof-checks performed at 

regular intervals are still required to cope with undetected dangerous hardware failures, which are 

not detected by automatic self-tests whose diagnostic coverage is never complete (probability of 

detecting a dangerous failure less than one). 

From the modeling point of view, the complementation of hardware and software barriers for 

system functionality and safety challenges the reliability analysis models which must give due 

account not only to the processes of failure occurrence and repair completion but also to the 

performance of self- and proof-checking tests. 

On the other hand, software reliability is an important challenge in itself for all industries which 

employ digital Instrumentation and Control (I&C) devices, mostly of the COTS type (Commercial-

Off-The-Shelf). When developing models and methods for the analysis of software failure behavior, 

perhaps the most disturbing thing is that the concept of failure mode is not the usual one for 

hardware components. Indeed, whereas analog systems are physical, digital systems do not follow 

physical laws of degradation or failure given that the input determines the output being right or 

wrong (Software Reliability ESREL, 2007). 

In general, two points of view can be taken on software failures (Apostolakis, 2006b): a software-

centric approach which looks for the definition of failure modes and the evaluation of their 

probabilities, just like in any reliability approach of hardware components; a system-centric 

viewpoint which is funded on the practical observation that most failures in software occur due to 
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specification and requirement errors, i.e. software design errors which are quite different from the 

physical failure characteristic of the hardware components.   

An approach to the quantitative analysis of software failures is by fault injection methods which   

deliberately inject faults in the software and count the number of times that the software maintains 

its function in spite of the injected fault (Voas, 1997; Gran and Thunem, 1998; Hiller et al., 2001 

and 2002; Abdelmoez et al., 2004). Given the many processing paths of software and the 

corresponding potentially hidden failure modes, the method remains controversial and needs 

extensive runs for building high confidence in support of the results. Furthermore, case studies must 

be specifically tailored to test susceptibility to common mode failures and verify whether fault 

injection is an adequate method to address such problem.  

Hence, a more feasible approach to software reliability that is followed in practice is one which 

aims at a systematic control of the software development process for building fault tolerance and 

confidence in its reliability. The objective is to evaluate different fault tolerant approaches 

throughout the software process development. This entails the capability of anticipating latent errors 

and providing for their remedy. By preventing errors from progressing into failures that threaten 

system safety, these fault tolerant mechanisms often play a crucial role in ensuring the qualification 

of a digital instrumentation and control system (Fredriksen and Winther, 2007). In this sense, fault 

tolerance complements fault avoidance. 

In any case, assessing software failure probabilities requires a standard process for collecting, 

analyzing and using digital system data from different applications, accounting for their 

peculiarities (e.g. in nuclear plants, digital systems will mainly be used for actuating safety systems 

and not for controlling and running the plant as in the process industry) and taking into 

consideration the rapid changes in the technology (with time constant of few months in certain 

cases).  For example, a major automotive supplier is developing a new database which makes it 

possible to detect most failures occurring during usage, including software failure (Braasch et al., 

2007). 

Furthermore, time-dependence of the system behavior cannot be neglected when digital I&C are 

part of the system; on the other hand, the reliability analysis methods currently used in practice 

account for the time variable at most by discretization in a sequence of macroscopic events 

(NUREG/CR-6901, 2006). The challenge is then twofold: on one side, to develop procedures and 

methods of inclusion in the current analysis methods of dynamic reliability models with digital 

systems, e.g. expanding in a system fault tree the event related to I&C failure; on the other side, to 

continue the efforts of developments of methods of integration of dynamics and reliability analysis, 

both through advancements in the conceptual and analytical modeling (Aldemir et al., 1994; 
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Alzbutas et al., 2007) and implementations in simulation tools for practical applications 

(NUREG/CR-6901, 2006; Mosleh, 2007).  

 

 

3.2 Complex system operation tasks 

Complex tasks need to be performed on modern systems in order to ensure their reliability 

throughout the life cycle. These tasks need to be properly represented, modelled, analyzed and 

optimized.  

3.2.1 Maintenance 

One task which has gained significant relevance is maintenance, for its important fallbacks to both 

productivity and safety (SAFERELNET, 2006a; ESReDa, 2007; Maintenance ESREL, 2007).  

Modern engineering systems are ideally designed for profitable operation throughout their service 

life in compliance with given requirements and acceptance criteria typically related to the safety of 

the personnel and the risk posed to the public and the environment. For ensuring this, it is necessary 

to control the development of deterioration processes by appropriate planning and performing of 

inspections and maintenance actions. Decisions must be taken with respect to what, how and how 

often to inspect and maintain. These decisions need to be made so as to minimizing the impact on 

the productive and safe operation of the system. In other words, inspections and maintenances must 

be planned so that a balance is achieved between the expected benefits and the corresponding 

expected potential consequences.  

From the point of view of the production company, the primary objective of any task and operation 

on its systems and components is to maximize production profit and minimize all losses, including 

assets ones. Obviously, occupational and public safety, environmental and other requirements must 

be satisfied as enforced by regulations. To this aim, maintenance must ensure that the systems and 

components reliability and availability characteristics be kept consistent with the long- and short-

term requirements of the planned production and regulatory directives, at a minimum resource cost. 

The goal of effective maintenance planning is then minimizing unplanned downtime. In practice, 

taking into consideration the financial aspects of system operation, the maintenance philosophy of a 

production plant basically boils down to performing the optimal maintenance plan that is consistent 

with the optimization of production and plant availability, while not compromising safety and the 

associated regulatory requirements. 

The formalization of the above into a modeling approach to identifying the optimal maintenance 

strategy for the components of a production system must consider the production goals, the safety, 
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health and environment objectives, the maintenance costs and penalties for lost production. This 

needs to be done while accounting for all the interacting elements of system operation and the many 

sources of uncertainties which affect them in the integrated process of system life. 

In practice, the solution to this complex multi-objective optimization problem stands on: 1) the 

proper representation of the dynamic interactions among the different system elements which affect 

the system behavior and its maintenance (e.g. by Petri Nets or BBNs; Zille et al., 2007), 2) the 

proper reliability, maintenance, production and economic modeling of the involved processes (e.g. 

by Petri Nets and Monte Carlo simulation; Châtelet et al., 2002), 3) an efficient engine for the 

search of the potentially optimal strategies (e.g. by the arising evolutionary computational methods 

such as genetic algorithms; Marseguerra and Zio, 2000; Marseguerra et al., 2006; Genetic 

Algorithms ESREL, 2007) and 3)  a solid decision making-theory structure for their evaluation 

(SAFERELNET, 2006a).   

An effective, pragmatic way to proceed for establishing maintenance programs in practice has been 

shown to be the Reliability Centered Maintenance (RCM) approach (Nowlan and Heap, 1978; 

Rausand, 1998). This method directs maintenance efforts towards those parts and units which are 

critical from the point of view of reliability, safety and production regularity. The critical 

components are identified by means of properly defined importance measures. A decisional logic is 

supported by specific forms to identify the worthwhile maintenance activities and their timing. The 

approach is more qualitative than the mathematical models for maintenance optimization but it is 

more all-embracing than these models which have only a limited capability of capturing all aspects 

involved in system maintenance because of the need of introducing simplifying assumptions  for 

their solution (Horton, 1992).  

Benefits from the introduction of quantitative decision tools within RCM are continuously sought to 

integrate all the above mentioned maintenance-relevant elements within an effective reliability-

based and risk-based Maintenance Management System employing decision theory for minimizing 

overall service life costs including direct and implied costs of failures, repairs, inspections and 

maintenances. These systems are seeking the maturity of practical procedures and indeed start to be 

applied in various industries from the early development stages of any new product, process or 

system (Jovanovic, 2003) 

Maintenance Management Systems allow the efficient management of the flow of materials, the co-

ordination of the internal activities with the ones of the suppliers and the proper dialogue with the 

productive sector to time the activities in harmony with the necessities of equipment availability for 

production. Indeed, forecasting of production demand is a key element to integrated production and 

maintenance planning and control. This requires the complicated handling and processing of a great 
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volume of data in reasonable time which can be achieved only with the support of an efficient 

computerized system of data processing. 

From the above, it appears that modelling and optimization is the technical support for proper 

maintenance planning and practice. Yet, in spite of the many efforts of many researchers in the field 

it seems fair to say that in some industries the situation is not brilliant and that a significant gap still 

exists between theory and practice. Indeed, maintenance programs are in many cases still based on 

the vendor‟s recommended maintenance schedules which are usually conservative. More efforts in 

the direction of closing the gap should be strongly advocated. From the model developers side, care 

should be put in avoiding the over-parameterization of the models which often are too detailed and 

need the estimation of too many parameters for their application in practice to be feasible (van Rijn, 

2007); from the industrial users point of view, a more open-minded attitude should be undertaken 

with respect to investments and endeavours in the development of protocols for maintenance data 

collection and analysis, so as to provide the information necessary to build properly calibrated and 

tailored maintenance models.  

Paradoxically, plant owners and system managers are constantly looking for opportunities for 

reducing maintenance costs and improving productivity, while not compromising safety. On one 

side, these opportunities may come from optimized preventive dynamic maintenance schemes based 

on the estimation of the rate of occurrence of failures (ROCOF) during the system lifetime. Indeed, 

this index allows tracking the system reliability growth or decrease and can thus play a fundamental 

role in determining the optimal timing of maintenance interventions and replacements (Ascher and 

Fengold, 1984). In this regard, the challenge is to be able to compute the ROCOF under realistic 

assumptions of system dynamic evolution (Yeh, 1995). 

An alternative, complementary opportunity which is receiving increased attention is that of 

condition-based maintenance strategies founded on the concepts of monitoring, fault diagnostics 

and prognostics (Figure 3) (Jarrell et al., 2004; Korbicz et al., 2004). As in Medicine, a clinical 

picture and diagnosis can be made with the values of some measured parameters related to the 

health condition of a human being, in any kind of equipment it is also possible to have an idea about 

its functional condition from the knowledge of the evolution of its significant parameters. 
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Figure 3: Monitoring, fault diagnosis and prognosis for maintenance 

To this aim, equipment and components are inspected periodically by manual or automatic systems 

to monitor their condition and to identify their level of degradation. A decision is then taken 

regarding replacement or maintenance, and this is based upon an analysis of the monitored data 

(Figure 4). 
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Figure 4: System health monitoring  

 

In this view maintenance is carried out when a measurable machine condition shows the need for 

repair or replacement. This strategy aims at identifying problems in equipment at the early stage so 

that necessary downtime can be scheduled for the most convenient and inexpensive time. This 

allows a machine to run as long as it is healthy: equipment is only repaired or replaced when needed 

as opposed to routine disassembly. By so doing, one aims at achieving maximum availability, 

minimizing unscheduled shutdowns of production, scheduling maintenance actions as economically 

as possible. 

Usually, the condition of the system concerned is monitored at a regular interval and once the 

reading of the monitored signal exceeds a threshold level a warning is triggered and maintenance 

actions may be planned. Obviously, the monitoring interval influences the operating cost and 

overall performance of the plant: a shorter interval may increase the cost of monitoring, whereas a 

longer one increases the risk of failure. 

On the other hand, condition monitoring should be reliable in order to avoid false alarms. A 

decision must be taken every time an alarm is indicated. To ignore an alarm may give rise to serious 

consequences. The first option is to make further investigation of the alarm, without stopping the 

machine; the second option is to stop the machine for an overhaul of the suspected part. In the first 

option, a false alarm would result in extra cost due to the time and manpower necessary to make the 
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diagnosis. The second option could result in greater losses, where lost production and manpower 

costs occur simultaneously. The greatest losses will occur when ignoring the alarm.  

Finally, condition-based maintenance implies that maintenance activities be scheduled in a dynamic 

way, since the execution times of certain activities will be continually updated as condition 

information becomes available. Such scheduling is significantly more difficult than scheduling the 

static policies implied by routine preventive maintenance.  

Indeed, the dynamic scheduling of condition-based maintenance represents a challenging task 

which requires the integrated simulation of the system state transitions and the prediction of the 

monitored physical variables which represent the evolving components condition. Hence, it is 

important to develop reliable models of components degradation and for the estimation and 

prediction of its evolution. Given the complexity of the processes underlying mechanical and 

structural degradation and the ambiguous and uncertain character of the experimental data 

available, one may have to resort to empirical models based on collected evidence, some of which 

may very well be of qualitative, linguistic nature. In this direction, soft computing techniques, such 

as neural networks and fuzzy logic systems (inferential systems based on the mathematics of fuzzy 

sets), represent powerful tools for their capability of representing highly non-linear relations, of 

self-learning from data and of handling qualitative information (Zio, 2007b). Embedding these 

models within the simulation of the stochastic processes governing the system life could represent a 

significant step forward for the evaluation of the safety and reliability of a system under condition-

based maintenance and, thus, for the definition of the optimal thresholds of the monitored variables 

which determine the dynamic scheduling of maintenance intervention. 

A condition monitoring system will be efficient only if the information retrieved from the 

monitoring equipment is relevant and it is filed, processed and used by the management in a timely 

manner, so that the decisions can have effectiveness and result in an increase of productivity 

(Roverso et al., 2007).  The capability of acquisition and handling of system and process 

information in real time (Figure 5) is therefore a necessary condition for performing on condition 

maintenance to optimize the performance of the machines and to maximize their use and 

productivity.   
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Figure 5: Data acquisition and handling for condition-based maintenance 

 

3.2.2 Structures life extension and re-assessment 

The possibility of acquiring information on the health state of systems and components is very 

much of interest for existing structural systems and components, for the assessment of their 

remaining life. 

The assessment of existing structures is usually less formalized than in the design phase of new 

structures. On the other hand, the reliability model-based assessment of existing structures is 

gaining considerable interest and there have been a number of practical applications in the areas of 

offshore structures, bridges and ships (Shinozuka, 1983; Oswald and Schueller, 1984; Myotyri et 

al., 2006; Schueller and Pradlwarter, 2006). The main motivation for this stems from the need to 

make proper use of additional „monitored‟ information (general impression, results of visual 

inspection, results of measurements) related to the structure health, from the possibility of building 

a representative stochastic model of structural behavior and from the opportunity of adopting 

appropriate levels of target reliability considering the importance of the structure, the consequences 

of its failure and the cost of its repair (Figure 6). The application in practice of the reliability-based 

assessment of existing structures is supported by the availability of a number of guidance 

documents. 
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Interestingly enough, although the structural reliability analysis methods are equally applicable to 

industrial plant components, e.g. pressure vessels, process piping etc., their use in the field has been 

somewhat limited. Something is moving, particularly in the nuclear sector which is taking interest 

in this for the life extension of their aging plants. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6: Degradation of the strength (S) of an equipment over time, with respect to a constant load 

(L) (Zio, 2007c) 

 

3.3 Complex system analysis: uncertainty 

For what we have seen thus far, reliability engineers are continuously challenged by old and new 

aspects of complexity related to the growth and development of new engineered service and 

production systems and the corresponding need for adequate methods for their analysis. This 

technological journey is always accompanied by the „uncertainty factor‟ which renders the 

challenge even more „exciting‟.  

Uncertainty is an unavoidable component affecting the behavior of systems and more so with 

respect to their limits of operation. In spite of how much dedicated effort is put into improving the 

understanding of systems, components and processes through the collection of representative data, 

the appropriate characterization, representation, propagation and interpretation of uncertainty will 

remain a fundamental element of the reliability analysis of any complex system.  
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With respect to uncertainty, the final objective of reliability analysis and risk assessment is to 

produce insights in the analysis outcomes which can be meaningfully used by the decision makers. 

This entails that a number of topics be successfully addressed (Helton, 2004): 

 How to collect the information (e.g. in the form of expert judgment) and input it into the 

proper mathematical format.  

 How to aggregate information from multiple, diverse sources into a single representation of 

uncertainty. 

 How to propagate the uncertainty through the model so as to obtain the proper 

representation of the uncertainty in the output of the analysis. 

 How to present and interpret the uncertainty results in a manner that is understandable and 

useful to decision makers. 

 How to perform sensitivity analyses to provide insights with respect to which input 

uncertainties dominate the output uncertainties, so as to guide resources towards an 

effective uncertainty reduction. 

 

In view of the above considerations, the proper collection of information by expert judgment will 

continue to play a relevant role in support to the validity and scientific rigor of reliability analysis. 

Thus, further advancements in expert judgments analysis are required to render the uncertainty 

analysis methods robust but at the same time affordable and tailored to the different applications. 

For example, standardization of the calibration of expert judgments would increase the applicability 

of the methods (Mosleh, 2007). 

Uncertainty can be considered essentially of two different types: randomness due to inherent 

variability in the system (i.e., in the population of outcomes of its stochastic process of behavior) 

and imprecision due to lack of knowledge and information on the system. The former type of 

uncertainty is often referred to as objective, aleatory, stochastic whereas the latter is often referred 

to as subjective, epistemic, state-of-knowledge (Apostolakis, 1990; Helton, 2004). Whereas 

epistemic uncertainty can be reduced by acquiring knowledge and information on the system, the 

aleatory uncertainty cannot and for this reason it is sometimes called irreducible uncertainty. 

The distinction between aleatory and epistemic uncertainty plays a particularly important role in the 

risk assessment framework applied to complex engineered systems such as nuclear power plants. In 

the context of risk analysis, the aleatory uncertainty is related to the occurrence of the events which 

define the various possible accident scenarios whereas epistemic uncertainty arises from a lack of 

knowledge of fixed but poorly known parameter values entering the evaluation of the probabilities 

and consequences of the accident scenarios (Helton, 2004). 
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With respect to the treatment of uncertainty, in the current reliability analysis and risk assessment 

practice both types of uncertainties are represented by means of probability distributions (Aven, 

2003). Alternative representations based on different notions of uncertainty are being used and 

advocated in the context of reliability and risk analysis (Cai, 1996; Da Ruan et al., 2001; Helton, 

2004; Soft Methods ESREL, 2007), questioning whether uncertainty can be represented by a single 

probability or whether imprecise (interval) probabilities are needed for providing a more general 

representation of uncertainty (Moore, 1979; Coolen, 2004; Coolen and Utkin, 2007; Utkin and 

Coolen, 2007). It has also been questioned whether probability is limited to special cases of 

uncertainty regarding binary and precisely defined events only. Suggested alternatives for 

addressing these cases include fuzzy probability (Zadeh, 1968; Klir and Yuan, 1995; Gudder, 2000) 

and the concept of possibility (Zadeh, 1965; Unwin, 1986; Dubois and Prade, 1988). Furthermore, 

probabilities have been criticised for not reflecting properly the weight of the evidence they are 

based on, as is done in evidence theory (Shafer, 1976).  

Evidence and possibility theories, in particular, are similar to probability theory in that they are 

based on set functions but differ in that they make use of dual set functions. Contrary to probability 

theory which assigns the probability mass to individual events, the theory of evidence makes basic 

probability assignments  Am  on sets A  (the focal sets) of the power set  XP  of the event space 

X , i.e. on sets of possibilities rather than on single events. This allows the naturally encoding of 

evidence in favor of the different possibilities which may occur.  

Also, probability theory imposes more restrictive conditions on the specification of the likelihood of 

events as a result of the requirement that the probabilities of the occurrence and nonoccurrence of 

an event must sum to one. As a result, while in probability theory, a single probability distribution 

function is introduced to define the probabilities of any event or proposition, represented as a subset 

of the sample space, in evidence and possibility theory there are two measures of likelihood, 

belief/plausibility and possibility/necessity, respectively. For example, the evidence theory 

framework allows for the belief about events and propositions to be represented as intervals, 

bounded by two values, belief and plausibility. The belief in a proposition is quantified as the sum 

of the probability masses assigned to all sets enclosed by it, i.e. the sum of the masses of all subsets 

of the proposition: hence, it is a lower bound representing the amount of belief that directly supports 

a given proposition at least in part. Plausibility is the sum of the probability masses assigned to all 

sets whose intersection with the proposition is not empty: hence, it is an upper bound on the 

possibility that the proposition could be verified, i.e. it measures the fact that the proposition could 

possibly be true “up to that value” because there is only so much evidence that contradicts it. 
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Both evidence and possibility theories allow epistemic uncertainty (imprecision) and aleatory 

uncertainty (variability) to be treated separately within a single framework. Indeed, the 

corresponding dual fuzzy measures provide mathematical tools to process information which is at 

the same time of random and imprecise nature (Baudrit et al., 2006; Baraldi and Zio, 2008). 

The issue of which framework is best suited for representing the different sources of uncertainty is 

still controversial and worth of further discussion. A recent critical review of the alternative 

frameworks of representation of uncertainty is provided in (Flage et al., 2008), from the starting 

point of view that a full mathematical representation of uncertainty needs to comprise, amongst 

other features, clear interpretations of the underlying primitive terms, notions and concepts. The 

review shows that these interpretations can be formulated with varying degrees of simplicity and 

precision.  

 

 

4 Some remarks on the future needs for the practice of reliability 

engineering 

What are some of the future needs to be addressed for the advancement of reliability engineering in 

practice? 

First of all, the presence of regulatory frameworks can have a determining influence on the use of 

risk and reliability methods in practice. Indeed, in those industries in which safety requirements are 

of a prescriptive nature (e.g. the building sector), there is little incentive to invest in expensive 

reliability/risk studies.  

Although regulatory frameworks can definitely be an incentive, a cultural breakthrough is needed 

for plant owners and system managers to be shown and grasp the benefits obtained from the 

incurred costs and the time spent in reliability\risk analyses. 

To this aim, the availability of codes, standards and good guidance documents is essential for the 

wider application of risk and reliability methods by practicing engineers. For example, at present 

there is still a paucity of standards in structural reliability analysis and techniques and this reduces 

their application for maintenance management (SAFERELNET, 2006b). 

Besides, the actual implementation of reliability methods must be supported by reasonably user-

friendly software. Several tools are available for standard applications, whereas those advanced 

issues such as human, software and dynamic reliability need further development of integrated 

simulation software (Mosleh, 2007).  
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Finally, lack of good quality and commonly accepted reliability data makes it very difficult to use 

advanced reliability techniques, even with software available, and raises skepticism about their 

efficacy in reliability predictions (Blanks, 1998). In this sense, industry-wide efforts need to be 

undertaken to develop comprehensive database systems (SAFERELNET, 2006b). 

 

5 Discussion and outlook: integrated dynamic reliability 

methodologies 

Reliability engineering arouse has a scientific discipline in the 1950s, specialized in the 1960s, was 

integrated into risk assessment in the 1970s and recognized has a relevant contributor to system 

analysis with the extensive methodological developments and practical applications of the 1980s 

and 1990s. 

From its infancy, through its childhood and teenage years, reliability engineering has been 

challenged by three fundamental tasks: system representation and modelling, system model 

quantification, uncertainty modelling and quantification. 

Nowadays, in its maturity of the year 2000s, reliability engineering is still confronted by these 

challenges, possibly sharpened by the increased complexity of the systems. Indeed, the reliability 

analysis of the modern complex systems entails an integrated approach in which the hardware, 

software, organizational and human elements are treated in a combined frame which accounts for 

their dynamic inter-dependences in the complex related tasks of system production, maintenance 

and emergency management.  

To cope with such complexity, dynamic reliability methodologies are being advocated to provide a 

framework for simulating directly the response of a system to an initial perturbation, as the system 

hardware and software components and the operating crew interact with each other and with the 

environment. This can be achieved by embedding models of controlled process dynamics and 

human operator behavior within stochastic simulation engines reproducing the occurrence of failure 

and success transitions along the scenarios.  

This way of system modeling goes beyond the classical approach to reliability analysis and risk 

assessment which relies on techniques, such as event and fault trees, to represent the analyst 

understanding of the system logic with respect to its failure mechanisms. Such classical approach to 

system analysis requires significant pre-processing efforts for the analyst to acquire the detailed 

knowledge of the integral system logic and dynamics necessary to structure the accidental scenarios 

into the proper discrete logic frame. In some situations this way of approaching the problem fails to 

capture and reproduce salient features of the system behavior. A typical case is when differences in 
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the sequence order of the same success and failure events along an accident scenario affect its 

outcome. Another case is when the timing of occurrence of the events along the scenario 

substantially affects its evolution and possibly its outcome. Finally, modeling difficulties are 

encountered when the evolution of the process variables (temperatures, pressures, mass flows, etc 

…) affects the occurrence probabilities of the events and thus the subsequent scenario evolution. 

To cope with these issues, dynamic methodologies attempt to integrate dynamic and stochastic 

processes to capture the integrated dynamic response of the systems/hardware and software 

components/operating crew during an accident scenario. In this framework, the analyst is relieved 

from the preprocessing task of identifying the accident scenarios, which are instead automatically 

generated within the dynamic simulation, e.g. by means of the Discrete Dynamic Event Trees 

(DDET) or Monte Carlo (MC) simulation techniques. The basic difference between these two 

techniques is that in the former all possible scenario branches in the system evolution are 

exhaustively followed and qualified while in the latter the scenarios are randomly sampled. 

The payback for saving in the accident scenario identification task is that the number of scenarios 

that are analyzed is much larger than that of the classical logic approaches, so that not only the 

computational burden is increased but also the a posteriori information retrieval and interpretation 

becomes more difficult.  

On the other hand, the dynamic reliability approach brings some clear advantages. First, there is 

potential for the identification of accident scenarios which may have been overlooked by the analyst 

in the preprocessing phase. Second, conservative simplifying assumptions made by the analyst, for 

example on the evolution of some process parameters, can be relaxed as the process evolution is 

simulated directly by the underlying dynamic model. Finally, additional informative insights 

become available as a result of the dynamic reliability analysis, in the form of time-dependent 

probability density functions of components states and process parameters values. In this respect, 

the amount of information retrievable from dynamic reliability methodologies, in terms of number 

of scenarios and probability distributions, can be overwhelming and generally calls for a significant 

effort in the post-processing phase. Yet, retrieving the dominant scenarios of the system dynamic 

evolution can provide significant safety and reliability insights on the criticality of the scenarios and 

on the efficiencies of the protections designed to counteract them.  

In particular within a Monte Carlo simulation framework for dynamic reliability analysis, the 

information on the evolution of the system is hidden in the system life histories that are simulated as 

part of the procedure. Among these histories, there are sequences that reproduce qualitatively 

similar behaviors in terms of the evolution of the physical parameters and of the sequences of 

events, mainly differing for the actual times at which these latter occur. Other sequences may 
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instead differ in behavior, because characterized by different combinations of occurred events, and 

still reach the same final outcome state. The difficulty in identifying and grouping similar scenarios 

lies in the fact that same event sequences may correspond to rather different process parameters 

evolutions and, possibly, end states, depending on the events timing or on their occurrence order. 

Then, grouping the scenarios only on the basis of the occurred events and end states may not be 

sufficient and accountancy of the physical behavior of the process variables should also be 

included. 

In any case, in general to be effective the relevant system reliability analyses must be brought into 

play since the design stage, with continuous feedbacks during operation throughout the system life-

cycle. Indeed, the success of the analysis lies in the early and continued understanding of the logics 

and mechanisms underpinning the system uncertain failure behaviour, which constitute the essential 

information for striving towards maximum productivity by safe operation, through optimized 

maintenance and prompt recovery.  

The potential for understanding relies on proper tools for the representation of the integrated 

system, its modelling and quantification in the face of uncertainty. The increased complexity of the 

engineered systems, with their hardware, software, organizational and human elements and their 

inter-dependences, potentially increases the uncertainty associated to the systems behaviour and 

their modelling, for which factual data (on component failure, software failure, human failure, 

dependent failure, maintenance practice and effects) will continue to be scarce and of poor quality. 

In addition, the development of new production and service technologies will continue to foster the 

emergence of new challenges for the representation, modelling and quantification of the related 

systems and their failure behaviour. 

Finally, there is a new „risk‟ dimension which poses new challenges to the reliability analysis of 

systems and their protective barriers: that related to malevolent acts. Security management systems 

must be invented and implemented, based on analyses conducted with methods which inherit the 

framework of the classical reliability and risk analysis methods but need to be further extended to 

cope with the ubiquity of the hazard, particularly for critical infrastructures, the indefiniteness of its 

nature and the difficulty to clearly identify the most vulnerable system elements in face of a 

different „mechanism of fault injection‟, that driven by malevolent acts. 

In the gloomy panorama of system behavior analysis above depicted, the sunlight of reliability 

engineering will fortunately continue to shine because side-by-side to the above old problems and 

new challenges there is the continuous and strenuous work by the researchers and analysts for 

adapting and improving the existing methods and for developing and tailoring new ones. As 

necessary, these efforts embrace multiple directions of battling the difficulties of practical 
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application through theoretical advancements in system and uncertainty representation and 

modeling and through computational developments for quantification, the latter particularly 

sustained by the power of computer simulation. 
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