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ABSTRACT 

 

This paper presents a similarity-based approach for prognostics of the Remaining 

Useful Life (RUL) of a system, i.e. the lifetime remaining between the present and the 

instance when the system can no longer perform its function. Data from failure dynamic 

scenarios of the system are used to create a library of reference trajectory patterns to 

failure. Given a failure scenario developing in the system, the remaining time before 

failure is predicted by comparing by fuzzy similarity analysis its evolution data to the 

reference trajectory patterns and aggregating their times to failure in a weighted sum 

which accounts for their similarity to the developing pattern. The prediction on the 

failure time is dynamically updated as time goes by and measurements of signals 

representative of the system state are collected. The approach allows for the on-line 

estimation of the RUL.  

For illustration, a case study is considered regarding the estimation of RUL in failure 

scenarios of the Lead Bismuth Eutectic eXperimental Accelerator Driven System (LBE-

XADS). 
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1. Introduction 

Existing Nuclear Power Plants (NPPs) strive to improve safety, maintain availability and 

reduce operation and maintenance costs. Moreover, power uprates and life extensions increase the 

needs of techniques for diagnosing and prognosing the NPPs health, because of the more probable 

occurrence of component degradation and failure as load is increased, or changed, and age 

advances. 

In generality, prognostics is an important and challenging task in Reliability, Availability, 

Maintainability and Safety (RAMS). The primary goal of a prognostic system is to indicate whether 

the structure, system or component (SSC) of interest can perform its function throughout its lifetime 

with reasonable assurance and, in case it cannot, to estimate the Remaining Useful Life (RUL), i.e. 

the lifetime remaining before it can no longer perform its function [Jardine et al., 2006]. 

Approaches to prognostics can be categorized broadly into model-based and data-driven 

[Chiang et al., 2001]. Model-based prognostics attempts to incorporate physical models of the 

system into the estimation of the RUL. However, uncertainty due to the assumptions and 

simplifications of the adopted models may pose significant limitations on this approach. On the 

contrary, data-driven techniques utilize monitored operational data related to system health. They 

can be beneficial when understanding of first principles of system operation is not straightforward 

or when the system is so complex that developing an accurate model is prohibitively expensive. 

Data-driven approaches can often be deployed quickly and cheaply, and still provide wide coverage 

of system behavior. An added value of data-driven techniques is their ability to transform high-

dimensional noisy data into lower dimensional information useful for decision-making [Dragomir et 

al., 2007]. 

In practice, when the cost/benefit ratio of using physics-based degradation evolution models 

is not favorable but sufficient data (possibly simulated) are available for constructing a map of the 

damage space, data-driven techniques may be more apt to the prognostics task. Furthermore, recent 
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advances in sensor technology and refined simulation capabilities enable us to continuously monitor 

the health of operating components and manage the related large amount of reference data. 

Data-driven approaches can be divided into two categories: statistical techniques (regression 

methods, ARMA models, etc.) and Artificial Intelligence (AI) techniques (neural networks, fuzzy 

systems, etc.). 

The most natural data-driven technique for RUL estimation is to fit a curve of the available 

data of the component degradation evolution using regression models and extrapolate the curve to 

the criteria indicating failure. However, the available component history sometimes may be short 

and incomplete, so that extrapolation may lead to large errors. The same problem arises when 

employing ARMA models, although the method can handle also situation in which more run-to-

failure data are unavailable or insufficient [Yan et al., 2004]. 

With respect to AI techniques, the most commonly used prediction methods are based on 

Neural Networks [Peel et al., 2008; Barlett et al., 1992; Santosh et al., 2009]. For prognostic tasks, 

the most promising methods are Recurrent Neural Networks (RNNs) [Campolucci et al., 1999] and 

Neuro-Fuzzy (NF) systems [Wang et al., 2004]. In spite of the recognized power of neural network 

modeling techniques, limitations still exist which prevent their wide use in safety critical 

applications, e.g. in nuclear technology. Skepticism against their use in such application relates to 

the lack of a systematic approach for selecting the structure and parameters of the model and to 

their black-box character which limits intuition with respect to the understanding of their 

performance [Wang et al., 2008]. 

An opportunity for increased transparency and openness of data-driven model is offered by 

fuzzy logic methods, which are increasingly proposed in modern diagnostic technologies. Based on 

the principles of Zadeh’s fuzzy set theory, fuzzy logic provides a formal mathematical framework 

for dealing with the vagueness of everyday reasoning [Zadeh, 1965]. As opposed to binary 
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reasoning based on ordinary set theory, within the fuzzy logic framework measurement uncertainty 

and estimation imprecision can be properly accommodated [Yuan et al., 1997; Zio et al., 2005]. 

The goal of this work is to develop a prognostics tool to be embedded in an operator support 

system for emergency accident management. In this context, the remaining useful life represents the 

recovery time available to the operator for deciding on the corrective action to avoid system failure. 

In emergency situations, poor decisions may be taken because of the short time available for sorting 

out the relevant information and lack of expert knowledge [Glasstone et al., 1998]; on the contrary, 

timely and correct decisions can prevent an incident from developing into a severe accident or 

mitigate its undesired consequences. 

The paper presents the computational framework devised for integrating on-line monitored 

data for system RUL prediction. A set of failure trajectory patterns (hereafter called reference 

trajectory patterns) is collected in a reference library and a fuzzy based data-driven similarity 

analysis is performed for predicting the remaining life of a newly developing failure trajectory 

(hereafter called test trajectory pattern). A novelty of the proposal lies in the reliance on a fuzzy 

definition of trajectory pattern similarity to capture and integrate the ambiguous information carried 

by the measured signal. More specifically, the pattern matching process is based on a fuzzy distance 

evaluation algorithm between the reference and test trajectory patterns [Angstenberger, 2001]. 

An application is presented with reference to dynamic failure scenarios of the Lead Bismuth 

Eutectic eXperimental Accelerator Driven System (LBE-XADS) with digital Instrumentation and 

Control (I&C) [Cammi et al., 2006]. 

 

The paper is structured as follows. Section 2 provides a detailed description of the algorithm 

for the fuzzy data similarity comparison underpinning the prognostic approach to RUL estimation. 

Section 3 presents the mechanistic model of the LBE-XADS. In Section 4, the results of the 
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application of the approach to LBE-XADS accident scenarios are presented. Finally, some 

conclusions are drawn in Section 5. 

 

2. Methodology 

It is assumed that N trajectories of evolution in time  of values of relevant signals (reference 

trajectory patterns) are available from measurements collected in dynamic failure scenarios of the 

system of interest. These trajectories last all the way to system failure, i.e., to the time when anyone 

of the signals reaches the threshold value beyond which the system loses its functionality. 

A failure scenario is developing in the system, whose signals trajectory in time (test 

trajectory pattern) is monitored. 

The idea underpinning the RUL estimation is to evaluate the similarity between the test 

trajectory pattern of the developing failure scenario and the N reference trajectory patterns stored in 

the database and use the RULs of these latter to estimate the RUL of the former, accounting for how 

similar they are [Angstenberger, 2001]. 

Figure 1 shows a schematic sketch of the computational framework; for ease of illustration, 

a single signal  f t  is considered (a generalization to the case of multidimensional trajectories is 

straightforward). 
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Figure 1 The flowchart of the fuzzy based data-driven approach
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In what follows, the steps of the procedure are reported in details: 

- Step 1: fault detection. The signal  f t  is continuously monitored throughout the time 

horizon of observation T , starting from (discrete) time 1t  ; at each time t , its value is 

recorded and appended to the vector of the values collected at the time steps preceding t . 

For reasons which will become clear in the following, the database constituting the reference 

trajectory pattern library is organized in a reference matrix  N kR  , where 
T

k
n

 , whose 

generic element  ,r i j  is the j-th segment of length n  of the values of the i-th reference 

trajectory, 1,2,...,i N , 1,2,...,j k  (Figures 2-3), normalized in the range [0.2,0.8]. As 

long as no signal deviation is detected, the system is qualified as working in nominal 

conditions and the estimate  ˆRUL t  of the remaining useful life made at the generic time t  

is taken equal to the system Mean Time to Failure  MTTF t , obtained from the remaining 

useful life  iRUL t  of all the failure trajectories in the reference library: 

    
 

 
 

 
| |

1 1ˆ

| | | |
i

f fi ii i

f i

i t t i t tf f

RUL t MTTF t t t RUL t
i t t i t t 

   
 

   (1) 

where 
if

t  is the system failure time along the i-th trajectory (i.e., the time when the signal 

value exceeds the threshold beyond which the system loses its functionality),  | |
if

i t t  is 

the cardinality of the set of reference trajectories whose failure time is larger than t  and 

 iRUL t  is their remaining useful life starting from t . At the following time steps, the 

algorithm continues to update the estimate of    ˆRUL t MTTF t , until a fault is detected 

upon a deviation of the signal from its nominal value, outside its range of allowed 

variability; at this time, the RUL estimation algorithm is put to work to match the similarity 
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of the developing signal trajectory evolution to those in the reference library, and combine 

their failure times to provide an estimate of the RUL.  

From the above explanation, it is clear that fault detection plays a relevant role in the RUL 

estimation procedure and structures it so that the RUL estimations are made up of two parts: 

MTTF-based part, first and RUL matching-based part, afterwards. The dividing instance is 

the fault detection: when a fault is detected, from then on the test signal trajectory is 

compared with those of reference to estimate the RUL; before the detection, the RUL is 

estimated as the MTTF. In spite of the importance of fault detection, in this work this is not 

treated specifically and the focus is kept on the RUL estimation task after detection. Future 

works will address the task of fault detection within the proposed approach and with respect 

to two particular developments: i) the possibility of skipping the fault detection process and 

proceeding from the beginning with the matching of the evolving test trajectories with the 

reference trajectories stored in the database: it is foreseeable that before the fault, the test 

trajectory will match well with the non-faulty segments of the reference trajectories and the 

estimated RUL will approximate the MTTF; thus, apart from increased computational and 

storage memory burdens the results are expected to not degrade significantly with respect to 

those obtained in this work; ii) the possibility of including in the computation of the RUL 

the accuracy of the fault detection method in identifying a deviation of the test trajectory 

from the nominal pattern evolution at the early stage as well as account for the reliability of 

fault detection. 
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Figure 2 A reference signal trajectory on a time 

horizon T=3000 [s] 
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Figure 3 Reference signal trajectory of Figure 2 partitioned 

into k=15 segments of length n=3000/15=200 [s], j=1,2,…,15

 

- Step 2: trajectory pointwise difference computation. At the current time t, the latest n-long 

segment of values of the test trajectory pattern    1, 2,...,f t f t n t n t      is 

normalized in [0.2,0.8]. The pointwise difference    between the n values of pattern 

 f t  and those of the reference trajectory segment  ,r i j  is computed: 

      , ,i j f t r i j   , 1,2,...,i N , 1,2,...,j k  (2) 

The matrix  N k   contains the difference measures  ,i j  between all n-long segments of 

the reference trajectories and the test trajectory pattern of the monitored signal. 

- Step 3: trajectory pointwise similarity and distance score computation. Classically, 

similarity is decided crisply: depending on whether the distance or similarity measure 

between two objects exceeds a specified threshold, the objects are classified into distinct 

categories of ‘similar’ or ‘non-similar’ [Angstenberger, 2001]. Such binary classification is  

restrictive when the situation is not so clear-cut and imprecision and uncertainty in similarity 

classification exist [Zimmermann et al., 1985]. In practice, there are numerous cases in 

which the similarity measure should allow for a gradual transition between ‘similar’ and 

r (i,1) r (i,15) r (i,5) … … … 



10 

 

‘non-similar’ [Binaghi et al., 1993; Joentgen et al., 1999]. This can be achieved by resorting 

to a fuzzy logic modeling paradigm in which the pointwise difference of two trajectories is 

judged for similarity with respect to an “approximately zero” fuzzy set (FS) specified by a 

function which maps the elements  ,i j  of the difference matrix  N k   into their values 

 ,i j  of membership to the condition of “approximately zero”. The distance score  ,d i j  

between two trajectory segments is then computed as: 

    , 1 ,d i j i j  , 1,2,...,i N , 1,2,...,j k  (3) 

Common membership functions can be used for the definition of the FS, e.g. triangular, 

trapezoidal, and bell-shaped [Dubois et al., 1988]. In the exploration of these membership 

functions defined on a fixed support of the fuzzy set “approximately zero” and centered in 

the value zero, no particular sensitivity of the RUL estimation results has been recorded with 

respect to the particular shape of the function; in the application illustrated in the work, the 

following bell-shaped function has turned out to give more robust results due to its gradual 

smoothness: 

  
 

 2

2

ln
,

,
i j

i j e






 
  
   (4) 

The arbitrary parameters   and   can be set by the analyst to shape the desired 

interpretation of similarity into the fuzzy set: the larger the value of the ratio 
 
2

ln 




, the 

narrower the fuzzy set and the stronger the definition of similarity (Figure 4). The choice of 

the values of   and   depends on the application; one may proceed to determining the 

value   of the difference value   which must have a degree of membership   equal to   

[Angstenberger, 2001] 
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Figure 4 Bell-shaped membership functions with different values of parameter β 

 

- Step 4: weight definition. The  ˆRUL t  is estimated as a similarity-weighted sum of the 

 iRUL t : 

    ˆ

fi

i i

i t t

RUL t w RUL t


  , 1,2,...,i N  (5) 

The ideas behind the weighting of the individual  iRUL t  is that: i) all failure trajectories in 

the reference library bring useful information for determining the RUL of the trajectory 

currently developing; ii) those segments of the reference trajectories which are most similar 

to the most recent segment of length n  of the currently developing failure trajectory should 

be more informative in the extrapolation of the occurring trajectory to failure. 

To assign the weight iw , the minimum distance *

id  along the i
th

 row of the matrix of 

Eq. (3) is first identified: 

  *

1,...,min ,i j kd d i j , 1,2,...,i N  (6) 
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The weight 
iw  is then computed, resorting to the arbitrarily chosen decreasing monotone 

function: 

  
*1

*1
id

i iw d e


 
 
    , 1,2,...,i N  (7) 

The value of β in (7) is arbitrarily taken equal to that used in Eq. (4), for reducing the burden 

of the parametric sensitivity analysis performed for identifying the parameters most 

affecting the results. 

Then, the weight wi is normalized by: 

 
1

N

i i e

e

w w w


   (8) 

As shown in Figure 4, the smaller the minimum distance the larger the weight given to the i-

th trajectory. 
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Figure 5 Weight vs. distance: the smaller the distance, the larger the weight value 

 

- Step 5: RULi(t) and RUL(t) estimation. With respect to the generic i-th trajectory in the 

library for which 
if

t t , the value  iRUL t  is determined as: 
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i Mi f jRUL t t t  , 1,2,...,i N  (9) 

where    *max arg ,
Mj i

j
t n i j d    is the final time index of the latest-in-life segment of 

the i-th trajectory among those which has minimum distance *

id  from the developing test 

trajectory (n is the test trajectory pattern length,    *max arg , i
j

i j d   gives the largest 

column index j of  ,r i  whose element is equal to *

id ). Thus,  iRUL t  is the remaining 

time before failure on the reference trajectory starting from the end time of the latest-in-life 

segment of minimum distance from the developing trajectory (Figure 6). 
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Figure 6 The remaining time before failure  iRUL t  on the reference trajectory of Figure 2 starting from the end time of the 

latest-in-life segment of minimum distance from the occurring trajectory 
 

This allows a conservative RUL estimation, biased towards “pessimistic” predictions of the 

RUL, because in the case that more than one segment along the i-th reference trajectory is 

closest to the developing test trajectory, the latest one is taken, i.e. the one closest to failure. 

Then, the estimate  ˆRUL t  of the remaining useful life along the developing trajectory is 

simply computed as in Eq. (5) with weights iw  evaluated by Eq. (8). 
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if
t

j 
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3. The LBE-XADS 

The Lead-Bismuth Eutectic eXperimental Accelerator Driven System (LBE-XADS) is a 

sub-critical, fast reactor in which the fission process for providing thermal power  P t  is sustained 

by an external neutron source through spallation reaction by a proton beam  Q t  accelerated by a 

synchrotron on a lead-bismuth eutectic target [Bowman et al., 1992; Carminati et al., 1993; Rubbia 

et al., 1995; Van Tuyle et al., 1993; Venneri et al., 1993]. A simplified scheme of the plant is 

sketched in Figure 7. The primary cooling system is of pool-type with Lead-Bismuth Eutectic 

(LBE) liquid metal coolant leaving the top of the core, at full power nominal conditions, at 

temperature ,C P

LB  equal to 400 °C and then re-entering the core from the bottom through the down-

comer at temperature ,P C

LB  equal to 300 °C. The average in-core temperature of the LBE ,av C

LBT  is 

taken as the mean of ,C P

LB  and ,P C

LB . The secondary cooling system is a flow of an organic 

diathermic oil at 290-320 °C, at full power conditions. Cooling of the diathermic oil in each loop is 

obtained through an air flow  a t  provided by three air coolers connected in series. 

 

Figure 7 LBE-XADS simplified schematics. A = Accelerator; C = core; P = primary heat exchanger; S = secondary heat 

exchanger 
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A dedicated, dynamic simulation model has been implemented in SIMULINK for providing 

a simplified, lumped and zero-dimensional description of the coupled neutronic and thermo-

hydraulic evolution of the system [Cammi et al., 2006]. The model allows the simulation of the 

system controlled dynamics as well as of the free dynamics when the control module is deactivated 

and the air cooler flow is kept constant. 

Both feedforward and feedback digital control schemes have been adopted for the operation 

of the system. The control is set to keep a steady state value of approximately 300 °C of  the 

average temperature of the diathermic oil ,av S

oT : this value represents the optimal working point of 

the diathermic oil at the steady state, full nominal power of 80 MWth. On the contrary, an oil 

temperature beyond the upper threshold ,th u

oT =340 °C would lead to degradation of its physical and 

chemical properties, whereas a temperature below the lower threshold ,th l

oT =280 °C could result in 

thermal shocks for the primary fluid and, eventually, for the structural components [Cammi et al., 

2006]. 

Multiple component failures can occur during the system life. To simulate this, the model 

has been embedded within a Monte Carlo (MC) sampling procedure for injecting faults at random 

times and of random magnitudes. Samples of component failures are drawn within a mission time 

of 3000 [s]. The set of faults considered are: 

 The PID controller fails stuck, with a random flow rate output value 1m  sampled from a 

uniform distribution in [0,797] [kg/s]. 

 The air coolers fail stuck in a random position that provides a corresponding air flow mass 

2m  uniformly distributed in [0,1000] [kg/s]. 

 The feedforward controller fails stuck with a corresponding flow rate value 3m  uniformly 

distributed in [0,797] [kg/s]. 
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 The communication between air coolers actuators and PID controller fails so that the PID is 

provided with the same input value of the previous time step. 

The sequence of multiple failures is generated by sampling the first failure time from the 

uniform distribution [0,3000] [s] and the successive failure times from the conditional distributions, 

uniform from the last sampled time to 3000 [s]. This assumption is conservative, favoring larger 

number of failures in the sequence. 

The evolution of the accident scenarios may lead to three different end states, within the 

mission time of 3000 [s] (Figures 8-12): 

1. Low-temperature failure mode ( ,av S

oT < ,th l

oT ) 

2. Safe mode ( ,th l

oT < ,av S

oT < ,th u

oT ) 

3. High-temperature failure mode ( ,av S

oT > ,th u

oT ) 
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Figure 8 Transient trajectory belonging to the low-

temperature failure mode. System fails shortly 
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Figure 9 Transient trajectorybelonging to the low-

temperature failure mode. System fails at later time 



17 

 

0 10 20 30 40 50 60

260

280

300

320

340

360

Time x50 [s]

T
e
m

p
e
ra

tu
re

 [
C

]

Diathermic oil temperature

Upper safety threshold

Lower safety threshold

 
Figure 10 Transient trajectory belonging to the high-

temperature failure mode. System fails shortly 
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Figure 11 Transient trajectory belonging to the high-

temperature failure mode. System fails at later time
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Figure 12 Transient in which the system does not fail within the time horizon considered, although an accident has occurred 

 

4. Results 

4.1 Application of the RUL(t) estimation procedure 

The application of the procedure for computing the estimate  ˆRUL t  (Section 2) is hereafter 

illustrated; the goal is to demonstrate its feasibility for fast and reliable data-driven prognostics 

which can serve as operator support in emergency accident management. A database of reference 

trajectories for N = 6400 failure scenarios (differing in faulty components, time of faults occurrence 
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and faults magnitude) is organized in the reference matrix  N kR  , where N = 6400 and 
T

k
n

 =30, 

respectively. The elements  ,r i j  of the reference matrix will be compared for similarity with a 

test trajectory pattern containing the values of the temperature signal of the latest 100 time steps of 

the trajectory. For each of the test trajectories the procedural steps are performed as follows: 

Step 1: fault detection. 

The signal  f t  monitored starting from time 1t   [s] to the mission time T = 3000 [s], 

with time step of 1 [s], is the LBE primary coolant temperature. This means that the actual safety 

parameter driving the RUL, i.e., the diathermic oil temperature, is followed only indirectly through 

the LBE temperature values, thus challenging further the robustness of the approach with respect to 

non-observable safety parameters. Obviously, other choices for  f t  may also be valid to drive the 

estimation, e.g. the diathermic oil temperature directly, another indirect parameter like the air flow 

or any combination of the observable parameters. At each time step t , its value is appended and 

stored in the vector containing the 1n =99 values of the signal collected at the previous times. The 

Mean Time to Failure  MTTF t  is calculated resorting to Eq. (1) and  ˆRUL t  is set equal to 

 MTTF t  for each time step, until any component failure is detected; the fault detection activates 

the on-line fuzzy based data-driven RUL estimation. 

Step 2: trajectory pointwise difference computation. 

The pointwise difference  ,i j  between the test pattern    99, 98,...,f t f t t t    and 

 ,r i j  is evaluated. 

Step 3: trajectory pointwise similarity and distance score computation. 

The pointwise differences  ,i j  are mapped into values of membership  ,i j  of the 

“approximately zero” FS. The bell-shaped function of Eq. (4) is taken with parameters values 

0.2   and 0.01  , implying strong sharpness in the FS and thus in the similarity requirement 
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(Figure 4). The distance scores  ,d i j  are then computed by Eq. (3), 1,2,...,6400i  , 

1,2,...,30j  . 

Step 4: weight definition. 

The minimum distances *

id  are evaluated (Eq. (6)), and the relative normalized weights iw  

calculated through Eqs. (7) and (8), 1,2,...,6400i  . 

Step 5: RULi(t) and RUL(t) estimation. 

For each reference trajectory in the library, an estimate  ˆ
iRUL t  for the test trajectory is 

computed (Eq. (9), 1,2,...,6400i  ); then, the  iRUL t  are aggregated in the weighted sum (Eq. 

(5)) with the weights iw  previously calculated. 

For the five trajectories sketched in Figures 8-12, the estimates of the  MTTF t  are plotted 

in Figures 13-17, in thin continuous lines with the bars of one standard deviation of the samples 

 |
i if ft t t t  , where 

if
t  is the time at which the diathermic oil temperature profile of the i-th 

reference trajectory exceeds either thresholds ,th u

oT  or ,th l

oT , with corresponding system loss of 

functionality. The  ˆRUL t  estimates obtained based on trajectory segments of 100n   [s] are 

plotted in bold circles; at the beginning of the test trajectories, the predictions match the  MTTF t ; 

then, once a component failure is detected, the  ˆRUL t  estimate moves away from the  MTTF t  

values towards the real RUL(t) (dashed thick line). In the Figures, the bold vertical line indicates the 

time of diathermic oil threshold exceedance. Notice that none of the estimates exceeds the actual 

failure time. 
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Figure 13 RUL estimation for the trajectory of Figure 8 

belonging to the low-temperature failure mode  
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Figure 14 RUL estimation for the trajectory of Figure 10 

belonging to the low-temperature failure mode 
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Figure 15 RUL estimation for the trajectory of Figure 9 

belonging to the high-temperature failure mode 
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Figure 16 RUL estimation for the trajectory of Figure 11 

belonging to the high-temperature failure mode
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Figure 17 RUL estimation for the trajectory of Figure 12 which does not exceed any safety threshold value, although a failure 

sequence has occurred 
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4.2 Performance evaluation of the RUL(t) estimation procedure 

The performance of the RUL estimation procedure has been tested extensively on a batch of 

P=1280 test trajectories, different from the reference trajectories. Figure 18 shows the  ˆRUL t  

predictions (continuous line with dark bullets) compared to the actual remaining lives for 25 failure 

trajectories (graphically appended in sequence), after the fault has been detected (i.e., starting from 

step 2 of the algorithm). After fault detection, the initial predictions for each test trajectory tend to 

be similar, regardless of the eventual length of the test trajectory life duration because the initial 

deviation from the nominal evolution is little sensitive and only slightly moves the  RUL t  

prediction away from the  MTTF t  value; this results in a conservative trend of initial anticipation 

of the RUL associated to trajectories whose failure actually occurs late in life. The largest RUL 

estimation errors occur for those trajectories in which the component failure is of low-magnitude, 

whose effect only slowly drives the system to failure and the prediction away from  MTTF t  

towards the true  RUL t . 

To globally quantify the performance of the procedure, the mean relative error (RE) at time 

t, between the estimate  ˆRUL t  and its true value  RUL t , is introduced: 

  
   

 1

ˆ
1 P

p p

p p

RUL t RUL t
RE t

P RUL t


   (10) 

where  pRUL t  is the actual remaining useful life at time t of test pattern p, and  ˆ
pRUL t  its 

estimate, 1,2,...,p P . 

Figure 19 shows the empirical probability density function of the mean relative error 

evaluated along 3000 [s] of evolution of the 1280 test trajectories. The distribution is highly skewed 

towards small values, with mean and median values equal to 0.09 and 0.05, respectively. This 

proves that the procedure most frequently makes small relative estimation errors. 
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Figure 18 Predicted and actual remaining life for 25 test accident scenarios 
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Figure 19 Empirical probability density function of the relative errors on the 3000 [s] of the 1280 test trajectories 

 

Figure 20 shows the RE evaluated at time steps of 50 [s] in the last 600 [s] for different 

values of the parameter   in Eqs. (4) and (7), and including the case in which the FS 

“approximately zero” is not introduced in the step 3 of the procedure (i.e., β=∞). It is seen that: 
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- the accuracy in the estimation of the RUL improves over time: as the RUL decreases, the 

performance index approximate its mean value 0.05. 

- the performance degrades as the parameter   influencing the width of the fuzzy set 

“approximately zero” increases: the crisper the similarity definition, the worse the 

estimation performance. 

 

For the application of the present work, the value of 0.01   has turned out to provide 

satisfactory estimation results for all fault types, in few seconds on Intel
®
 Centrino Core™2 Duo 

1.80 MHz for one complete trajectory. 
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Figure 20 Relative Error evaluated each 50 [s] starting from 600 [s] before failure, for 1280 test trajectories, with different 

pointwise similarity fuzziness 

 

5. Conclusions 

A similarity-based prognostics procedure for estimating the Remaining Useful Life (RUL) 

of a system has been proposed. Data from different transient failure scenarios are used to create a 

library of reference patterns of evolution. For estimating the RUL of a test pattern, its evolution data 

are matched to the patterns in the library and their known residual life times are used for the 

estimation, based on a fuzzy pointwise similarity concept. 
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The RUL estimation procedure involves four main steps: (1) computing the pointwise 

difference between test and reference patterns; (2) evaluating their fuzzy pointwise similarity and 

distance score; (3) defining the weights of the individual RUL estimates provided by the reference 

patterns; and (4) aggregating these to evaluate the system remaining useful life. 

A case study regarding the RUL estimation for a large number of fault scenarios of the Lead 

Bismuth Eutectic eXperimental Accelerator Driven System (LBE-XADS) has demonstrated the 

promising potential of the procedure. The estimates of the expected RUL are refined as the failure 

transient develops in time. The results have been very satisfactory from the point of view of both 

accuracy of the estimation and computing time. The procedure may be used to allow predicting the 

remaining useful life before the future failure event with sufficient accuracy and timing for 

proactive maintenance/safety procedures purposes. 
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