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ABSTRACT 

 

Model uncertainty is a primary source of uncertainty in the assessment of the performance 

of repositories for the disposal of nuclear wastes, due to the complexity of the system and 

the large spatial and temporal scales involved. 

This work considers multiple assumptions on the system behaviour and corresponding 

alternative plausible modelling hypotheses. To characterize the uncertainty in the 

correctness of the different hypotheses, the opinions of different experts are treated 

probabilistically or, in alternative, by the belief and plausibility functions of the Dempster-

Shafer theory. 

A comparison is made with reference to a flow model for the evaluation of the hydraulic 

head distributions present at a radioactive waste repository site. Three experts are assumed 

available for the evaluation of the uncertainties associated to the hydro-geological 

properties of the repository and the groundwater flow mechanisms. 

 

KEYWORDS: MODEL UNCERTAINTY, DEMPSTER-SHAFER THEORY, 

RADIOACTIVE WASTE REPOSITORIES 
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Acronyms 

 

DS Dempster-Shafer 

DST Dempster-Shafer Theory 

bpa basic probability assignment 

UOD Universe Of Discourse 

PRA Probabilistic Risk Assessment 

 

Notation 

lM  generic l-th model developed within the model set expansion approach 

n  total number of possible models 

y  quantity to be predicted by the model 

x  input of the model (vector sign omitted for ease of representation) 

lS  structure of the generic l-th model 

)(yFl  cumulative distribution of y  predicted by the model lM  

)(yF  Bayesian estimator of the cumulative distribution of y 

)( lMP  probability that the model lM  is the correct one 

lp  parameter of the categorical distribution indicating )( lMP  

 lpf  probability density function of lp  

k  number of assumptions on which the model M is based 

iH  i-th assumption on which a model is based 

iX  Universe Of Discourse of the assumption iH  

in  number of available alternative hypotheses for the i-th assumption 

i
jH  j-th alternative hypothesis for the i-th assumption 
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)( i
jHp  probability that the j-th alternative hypothesis for the i-th assumption is the correct one 

z  generic uncertain variable 

Z  Universe of Discourse of z  

)(P  power set 

A  generic element of )(P  

 

 

1. INTRODUCTION 

 

Model uncertainty is considered a primary source of uncertainty in the assessment of the 

performance of repositories for the disposal of nuclear wastes. By definition, a model is a 

representation of a real system and uncertainties inevitably arise whenever there are possible 

alternative interpretations of the system and its phenomena, which are all plausible in light of 

the current knowledge of the system.  

Methods to deal with model uncertainty include prediction expansion, model set expansion 

and formal Bayesian approaches. In prediction expansion 
(1)

, a single model is chosen as the 

best one to represent the system. However, it is recognized that this model has drawbacks and 

may represent only some characteristics of the system better than others. Sensitivity studies 

are performed on the various assumptions to analyze the effects on the model output. The 

associated uncertainty is dealt with by applying a random adjustment factor to the model 

results. The adjustment factor may be multiplicative or additive, or both. However, it is not 

clear if the technical exercise of quantifying the gap between reality and the model (i.e., the 

quantification of the adjustment factor distribution) is feasible in practical analyses. 

Furthermore, a question arises on the reasoning behind this approach: if information exists 

that leads the expert to say something about the error in the prediction of a model, its 

correction can be simply considered as a modification of the original model 
(2,3)

. 



5 

 

In model set expansion, the characteristics of the system under consideration are analyzed and 

models are created in an attempt to emulate the system based on goodness-of-fit criteria 
(4,5)

. 

The models may use different assumptions and require different inputs. Each model has its 

own advantages and disadvantages, including limitations on and ranges of applicability. 

These models are then combined to produce a meta-model of the system.  

Several methods have been proposed regarding the construction of this meta-model. They 

include mixture 
(3)

, the NUREG-1150 approach 
(6)

, the joint US/EC Probabilistic Accident 

Consequence Uncertainty Analysis (PACUA) approach 
(7)

, and the Technical Facilitator-

Integrator approach 
(8)

. All of these methods rely on expert opinion. This is particularly 

inevitable in the case of interest here of the performance assessment of radioactive waste 

repositories, for which the predictive capabilities of the models cannot be verified over the 

time frames and spatial scales which they are required to apply to. As a consequence, the 

analyst cannot obtain empirical confirmation of the validity of a model from observations, so 

that the evaluation of the model must rely exclusively on the subjective interpretation of the 

information available at the time of the analysis. This leads to the conclusion that any attempt 

to address the issue of model uncertainty in a quantitative manner will rely on the use of 

expert judgment. In the mixture approach, the set of plausible models and their probabilities 

of being correct are agreed upon by the experts. The output distributions of the models are 

then linearly combined, with weights corresponding to the probabilities of correctness. The 

model distributions should be presented to the analysts before they are combined, allowing a 

transparent look at the range of variability that are combined into the meta-model. In some 

works, the model set expansion approach has been framed within a Bayesian approach to the 

estimation of the required parameters and combination of the individual model outputs 
(9-11)

. 

These approaches are theoretically very attractive due to their mathematical rigor and ability 

to incorporate both objective and subjective information in a probabilistic representation. 
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On the other hand, it has been argued that since a model is a simplification of reality, it is 

possible to conclude that “every model is definitely false” 
(12)

; therefore, it seems 

inappropriate to evaluate the probability that a model produces outputs that replicate perfectly 

the reality, because this is impossible by definition: the probability of a model being more or 

less correct can only be interpreted in relative terms, i.e. as the probability that the model 

produces outputs more or less close to reality, in comparison with other models. In this view, 

the alternative models can be included into a meta-model parameterized with an index 

parameter   whose values (1,2,…n) are associated to the different plausible models (M1, 

M2,…, Mn) and the uncertainty about the model can be converted into uncertainty about the 

value of  , represented by a given probability distribution. In practice, probability 

distributions can be assessed over the appropriate model structure and reinterpreted as 

associated to the model index parameter; this also allows comparing the impact of the 

uncertainty about the model with other uncertainties. 

An alternative to this probabilistic representation of the uncertainty on the model is offered by 

a representation based on the belief and plausibility functions of the Dempster-Shafer Theory 

(DST). This approach requires an expert to provide for each plausible model an interval of 

values, limited by a lower bound, called belief, representing the amount of belief that directly 

supports a given model and an upper bound, called plausibility and measuring the fact that the 

model could possibly be true “up to that value” because there is only so much evidence that 

contradicts it. The Dempster rule of combination can then be used for the aggregation of the 

uncertainties of different experts on the correctness of the models. Actually, given that the 

models emerge from multiple modelling assumptions on the various aspects of system 

behaviour, the uncertainty analysis is made at the hypothesis level and then propagated into 

the uncertainty characterizing the entire model. 
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Finally, more powerful, fully formal Bayesian approaches have also been proposed for the 

treatment of model uncertainty. For example, in 
(13)

 the available models are treated as sources 

of information that can be used to predict the true value of the model output through the 

application of Bayes theorem. The proposed methodology allows for utilizing various types of 

information, including experimental data and subjective evidence and for updating the prior 

distribution of the model output when new information becomes available 
(11)

. 

In the present work, the model set expansion approach to model uncertainty has been 

embraced to handle a situation in which multiple assumptions are made on the behaviour of 

the system, giving rise to corresponding alternative plausible modelling hypotheses whose 

correctness is judged by different experts; a comparison of the classical probabilistic and 

Dempster-Shafer theory of Evidence frameworks of uncertainty representation is performed. 

Formal Bayesian methods are not considered in the comparison since the focus is on the 

proper setting of the Dempster-Shafer representation and it is assumed that all the information 

on the correctness of the hypotheses is available at the moment of the analysis, with no need 

of subsequently updating the probability distribution of the model output. 

With respect to the application of the Dempster-Shafer theory of Evidence framework within 

the model set expansion approach, the belief and plausibility functions of the Dempster-

Shafer theory of Evidence are used for the representation of the uncertainty in the correctness 

of the different hypotheses; then, the Dempster rule of combination is used for i) the 

aggregation of the uncertainties of different experts on the correctness of the hypotheses and 

ii) the propagation of the uncertainties regarding the individual assumptions into the 

uncertainty characterizing the entire model. 

The proposed approach is applied to a groundwater flow model for the evaluation of the 

hydraulic head distributions present in the far field region of a radioactive waste repository. 

Two classes of model assumptions are required, regarding the hydro-geological properties of 
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the media in which the repository is located and the groundwater flow mechanisms. Three 

fictitious experts evaluate the associated uncertainties: the first one gives an evaluation of the 

correctness of the plausible alternative hypotheses for the first assumption on the geological 

properties, the second one for the second assumption on the groundwater flow mechanisms 

and the third one gives directly an opinion on the correctness of the overall groundwater flow 

models developed. 

The paper is organized as follows. In Section 2, a brief overview of the model set expansion is 

given. Section 3 discusses the representation of model uncertainty by the probabilistic and the 

Dempster-Shafer (DS) frameworks. In Section 4, the problems of aggregating the 

uncertainties of different experts and of propagating the uncertainties in the model 

assumptions onto the uncertainty characterizing the entire model are addressed by a 

probabilistic and a DS approach. In Section 5 the proposed uncertainty representation, 

aggregation and propagation techniques are applied to a groundwater flow model for the 

evaluation of the hydraulic head distributions present at a radioactive waste repository.  Some 

conclusions on the advantage and limitation of the proposed method are drawn in the last 

Section. 

 

2. MODEL SET EXPANSION APPROACH 

 

Consider the objective of expressing the uncertainty associated with the model prediction of 

the uncertain scalar output y  of a system, due to the existence of a set of n models  lM , 

whose alternative structures  lS , l=1,...,n are based on different hypotheses all plausible in 

light of the existing information on the system behaviour. The distribution 

)()( ll MyFyF  of y provided by the generic model, , is conditional on the structure of the 

model as well as on the values of its internal parameters. 
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The family of distributions { )( yFl } represents the uncertainty in the unknown y  due to 

uncertainty in the models’ structure; it can be probabilistically combined in a summary 

measure by means of a standard Bayesian approach 
(2,14)

. Indicating with )( lMp  the 

epistemic probability which expresses the analyst’s confidence in the set of assumptions 

underpinning the l -th model (here the term epistemic is used to characterize the  uncertainty 

due to incomplete state of knowledge), the unconditional aleatory distribution )(yF  is given 

by the standard Bayesian estimator: 

 





n

l

ll MpyFyF
1

)()()(      (1) 

 

This average value has often encountered objections when employed for decision-making. 

The argument is that the decision maker should be aware of the full epistemic uncertainties 

  lMp . Their average value (1) can lead to erroneous decisions, particularly when the 

epistemic uncertainty is very large, since the average can be greatly affected by high values of 

the variable even though they may be very unlikely. In general, the entire distribution of the 

uncertainties should be presented to the decision-maker who may then choose his/her own 

criteria upon which to base the decisions. 

Furthermore, the model set expansion approach is based on two fundamental assumptions: 

mutual exclusiveness and collective exhaustiveness of the set of models. While the first 

assumption can be often accepted in practice, excluding the case in which one of the model is 

a special case of another model, the second is often not met in practice because it requires that 

a perfect model not only exists but that it also be one of the n models considered. In general, 

the complexity of the phenomena is such that the list of plausible models considered is 

necessarily incomplete. Moreover, progress in understanding the physical laws underpinning 
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the process under analysis and the increasing computational capabilities are such that models 

evolve in time. 

3. REPRESENTATION OF MODEL UNCERTAINTY 

 

In this work, the probabilistic framework for the representation of the uncertainty regarding 

the probability of model correctness is compared with the Dempster-Shafer framework. 

 

3.1. The probabilistic approach to model uncertainty representation 

 

Within a classical probabilistic approach, the uncertainty on the correctness of the alternative 

models lM  is modelled by the distributions of values  ll MPp  , each one representing the 

probability that the l-th alternative is the correct one, nl ,...,1 . This representation can be 

mathematically formalized through the introduction of a categorical random variable lM , 

whose distribution is completely given by the probabilities associated with each model 

alternative     lll pMPcorrectM Pr , with   



n

l

l

n

l

l pMP
11

1, according to the 

assumptions of exclusivity and exhaustivity of the set of models. The values of the 1n  

probabilities lp  defining the distribution of lM  need to be elicited from the experts; for 

example, in the simplest case of two alternative models, 21 , MM , the experts would need to 

quantify )( 11 MPp  , i.e. the probability that 1M  is the correct model; the value of 

)( 22 MPp   is then simply given by 12 1)( pMP  . 

In practical cases, an expert may not have sufficient information and knowledge to provide 

fixed, certain values of the probabilities lp  and may prefer to express uncertainty on such 

values in terms of a subjective probability distribution ),...,,( 121 npppf ; in the case of two 

possible alternatives 21 , MM , the expert instead of assigning a fixed value of 1p , may provide 
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a probability density function expressing his/her epistemic uncertainty; if for example the 

expert believes that the value of 1p  is located somewhere between 0.3 and 0.6, with no 

preference for any value within the range, this uncertainty could be represented by a uniform 

probability density function in [0.3, 0.6]. The uncertainty regarding the probabilities lp  

described by the distribution f is often referred to as second-order uncertainty 
(15)

. 

The model set expansion approach of Section 2 can be modified to include this new source of 

epistemic uncertainty. In particular, the standard Bayesian estimator of the output distribution 

(eq.1) becomes: 

 

121121

1

...),...,,()()( 


  








 nn

n

l

ll dpdpdppppfpyFyF    (2) 
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3.2. The Dempster-Shafer approach to model uncertainty representation 

 

In this Section the DS evidence theory 
(16)

 is considered for the representation of the epistemic 

uncertainty affecting the expert knowledge of the probability  lMP  that the alternative 

model lM , l=1,...,n be correct. In the DS framework, a lower and an upper bound are 

introduced for representing the uncertainty associated to  lMP . The lower bound, called 

belief, )( lMBel , represents the amounts of belief that directly supports lM  at least in part, 

whereas the upper bound, called plausibility, )( lMPl , measures the fact that lM  could be the 

correct model “up to that value” because there is only so much evidence that contradicts it. 

From a general point of view, contrary to probability theory which assigns the probability 

mass to individual elementary events, the theory of evidence makes basic probability 

assignments (bpa)  Am  on sets A  (the focal sets) of the power set  ZP  of the event space 

Z , i.e. on sets of outcomes rather than on single elementary events. 

In more details,  Am  expresses the degree of belief that a specific element x  belongs to the 

set A  only, and not to any subset of A . The bpa satisfies the following requirements: 

 

       
 

1;0,1,0:  
 ZPA

AmmZPm     (3) 

 

Also, probability theory imposes more restrictive conditions on the specification of the 

likelihood of events as a result of the requirement that the probabilities of the occurrence and 

non-occurrence of an event must sum to one. 
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As a result, while in probability theory a single probability distribution function is introduced 

to define the probabilities of any event or proposition, represented as a subset of the sample 

space, in evidence theory there are two measures of likelihood, belief and plausibility: the 

belief about events and propositions is represented as intervals, bounded by two values, belief 

and plausibility. The belief in a proposition (set) A  is quantified as the sum of the probability 

masses assigned to all sets enclosed by it: 

 

  



AB

BmABel )(       (4) 

 

Hence, it is a lower bound representing the amount of belief that directly supports the 

proposition at least in part. Plausibility is the sum of the probability masses assigned to all 

sets whose intersection with the proposition is not empty: 

 

  



0

)(
AB

BmAPl       (5) 

 

Hence, it is an upper bound on the possibility that the proposition could be verified, i.e. it 

measures the fact that the proposition could possibly be true “up to that value” because there 

is only so much evidence that contradicts it. 

 

4. THE MULTIPLE-ASSUMPTIONS MULTIPLE-EXPERTS MODEL 
UNCERTAINTY PROBLEM 

 

Let us consider a model M that consists of a set of k assumptions iH , i=1,…k where each 

assumption can assume ni alternative plausible hypotheses i

i

j njH ,...,1,  . Combining all the 
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ni possible alternative hypotheses for each i-th assumption, 



k

i

inn
1

 model structures 

nlSl ,...,1,   in principle arise. For example, for a model for computing the neutron flux 

distribution in a nuclear reactor, there can be an assumption 1H  on the spatial discretization 

of the reactor core in homogeneous regions, with hypothesis 
1

1H  corresponding to the 

homogeneous core model of only 1 region and 
1

2H  corresponding to N regions, and an 

assumption 2H  on the number of groups of precursors and  delayed neutrons, with 12

1 H  

and 52

2 H . This gives rise to 422
2

1






k

i

imn  model structures: 

),(),,(),,(),,( 2

2

1

24

2

2

1

13

2

1

1

22

2

1

1

11 HHSHHSHHSHHS  . 

Suppose that iQ  different experts ii

q QqE ,...,1,   give their opinions on the correctness of the 

alternative hypotheses for each i-th assumption, i=1,...,k. The objective of this Section is to 

compare the probabilistic and the Dempster-Shafer approaches in the estimation of the 

probability of model correctness based on the expert opinions. 

A systematic framework is proposed for the representation of the uncertainty associated to the 

alternative model structures, as evaluated by the model experts with reference to the multiple 

alternative hypotheses. The framework consists in the following two steps: 

i) the aggregation of the opinions of the different experts on the correctness of 

a given hypothesis of assumption; 

ii) the propagation of the uncertainties arising from the expert evaluation of the 

individual assumptions into the uncertainty characterizing the entire model 

structure. 
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4.1. Aggregation of expert opinions and propagation of uncertainties in 
the probabilistic framework 

Assume that the iQ  experts have evaluated the probabilities of correctness of the in  

alternative hypotheses regarding assumption iH  in the model. Different approaches exist for 

the combination of multiple expert opinions. Axiomatic approaches such as the linear opinion 

pool 
(17)

 and the logarithmic opinion pool 
(18)

 are intuitive, easy to understand and calculate; 

for these reasons, they are often preferred in practice when there is no clear evidence 

justifying the adoption of a different pooling.  

In this work the logarithmic opinion pool is adopted since, contrary to the linear opinion pool, 

it satisfies the principle of external Bayesianity. 

According to the logarithmic opinion pool, the combined probability distribution  i

jHp  is: 

 

     


i
qQ

q

wi

jq

i

j HPkHP
1

            inj ,...,1  (6) 

 

where  i

jq HP  is the expert q -th probability distribution for assumption iH , k  a normalizing 

constant and qw  the weight used to represent the relative quality of the different experts. In 

the simplest case, the experts are viewed as equivalent and the combined distribution is 

proportional to the geometric mean of the individual distributions. Supposing that 3iQ   

experts are available, the results of the aggregation is the same whether formula (6) is directly 

applied to all 3 experts probabilities  i

jq HP  or it is firstly applied to the probabilities given 

by two experts and then the obtained probability is combined with the remaining expert 

probability. 

Although axiomatic approaches have been largely used for aggregation of expert opinions, it 

has been pointed out that they cannot satisfy simultaneously a number of seemingly 
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compelling desiderata 
(19)

 and no foundationally-based method for determining the weights in 

their formula 
(20)

 have been proposed. For these reasons, in the last decades attention has 

shifted from the axiomatic approaches to the development of combination methods based on a 

clear Bayesian paradigm for aggregating information from experts 
(18)

. However, Bayesian 

approaches are not considered in this work since the property of external Bayesianity of the 

logarithmic opinion pool aggregation method is considered sufficient for the purpose of a fair 

comparison with the DST aggregation; still, future work will be devoted to the analysis of 

Bayesian approaches for the aggregation of expert opinions in the context of model 

uncertainty here of interest, which concerns also the propagation of uncertainties on the 

individual assumptions onto the uncertainty characterizing the entire model structure. 

Let us consider, first of all, the case in which there is no epistemic uncertainty on the 

probability distribution of the in  alternative hypotheses iH  of the i-th assumption 

characterized by in  discrete values parameters   i

i

jij njHPp ,...,1,  . Assuming complete 

independence of the hypotheses, the probability )( lMP  of model ),...,,( 21

21

k
llll k

HHHS   to be 

correct is given by: 





k

i

il

k

i

i

ll ii
pHPMP

11

)()(      (7) 

In case the experts are uncertain on the exact values of the probabilities ijp  and thus provide 

the joint probability density functions ),...,,( 121 iniii pppf , then also the probability of 

correctness of model )(, lll MPpM   is uncertain. From eq.(7), the joint probability density 

function ),...,,( 121 npppf  can be obtained numerically. 
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4.2. Aggregation of expert opinions and propagation of uncertainties in 
the Dempster-Shafer framework 

Within the DST, the assignment by the iQ  independent experts can be aggregated through the 

Dempster Rule of combination 
(16,21)

. 

For simplicity, let us consider two experts whose evidence on the value of an uncertain 

variable is expressed in terms of two sets of basic probability assignments (bpa’s), 

)(),( 21 AmAm  on the sets A  of the power set )(ZP  of Z . Assuming that the bpa functions on 

the frame of discernment are based on independent arguments and bodies of evidence 
(16)

, 

aggregation of this evidence into a joint bpa )(12 Am  can be obtained by means of Dempster 

rule 
(23)

: 

 

 
   

  00

0
1

12

21

12











m

A
K

CmBm

Am ACB

 (8) 

 

where the complementary normalization factor K  is given by 

 

   



0

21

CB

CmBmK  (9) 

According to 
(4)

 and 
(5)

 above, the degree of evidence )(1 Bm  regarding focal set  ZPB , 

from the first expert and the degree of evidence )(2 Cm  focused on focal set  ZPC , from 

the second expert, are aggregated by taking their product    CmBm 21   focused on the 

intersection focal set ACB  . This way of combining evidence sources is analogous to the 

way in which in probability theory joint probability density functions (pdfs) are calculated 

from two independent marginal pdfs, and is thus justified on the same grounds. However, 

some intersections ii CB   of different focal elements iB  and iC , from the first and second 
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expert, may result in the same set iA  so that one must sum their product contribution to obtain 

)(12 Am . Furthermore, some of the intersections may be the empty set, for which 0)0(12 m . 

Then, introducing K  as the sum of products    CmBm 21   of all focal elements B  of 1m  and 

C  of 2m  such that 0CB , a normalized joint basic assignment 12m  (as required by 

 


)(
1)(

ZPA
Am ) is obtained by dividing by K1 . As K  is determined by the sum of 

products of the bpa’s of all sets where the intersection is null 
(5)

, it represents the basic 

probability mass associated with conflict; it is a measure of the amount of conflict between 

the two mass sets and the normalization factor K1  has the effect of completely ignoring 

conflict by attributing any mass associated with conflict to the null set 
(21)

. Consequently, 

counterintuitive results are obtained in the face of significant conflict among experts, which 

has raised serious criticism to the formula 
(22)

. Other assignment rules have been proposed to 

more properly represent the conflict 
(22,24)

; this, however, is out of the scope of the present 

work. 

If 2iQ  experts are available, then their opinion can be aggregated by applying 1iQ  

times the Dempster Rule (eq.(4)). Notice that, since the Dempster-rule satisfies the 

associativity property     CBACBA  , the order in which it is applied does not 

influence the final result 
(23)

. 

The problem of the propagation of the uncertainty in the assumptions onto the uncertainty in 

the model structure is here addressed by considering the general problem of aggregating 

uncertainties on independent variables. In this respect, let us introduce k  independent 

uncertain variables iz  defined on their UODs kiZ i ,...,1,    and let us suppose that there are 

k  experts, the i-th of them providing the bpa  i

i Am  for each )( ii ZPA  . According to the 

DST, the joint belief and plausibility of an element  kAAAA ,...,, 21  of the power set of 

kZZZZ ×…××= 21  are defined by: 



19 

 

 




k

i

ii

k ABelAAABeABel
1

21 )( =) ,…,,l(=)(  (10) 




k

i

ii

k APlAAAPAPl
1

21 )( =) ,…,,l(=)(  (11) 

 

From the obtained belief and plausibility functions it is possible to obtain the basic probability 

assignment    kAAAmAm ,...,, 21  by (25): 

 

 





AB

BAcard
BBelAm )(1)(

)(
 (12) 

 

An alternative way that permits to directly compute the bpa of an element ),...,,( 21 kAAAA   

of  ZP  is based on the application of the Dempster rule to the cylindrical extensions of the 

power sets elements 
(26)

. The cylindrical extension 
iA  of an element iA  of iZ  over Z  is 

defined by considering for the variables kii xxxxx ,...,,,...,, 1121   their entire UODs: 

 kiiii ZZAZZA ,...,,,,..., 111    (13) 

 

Given that the knowledge of the i-th expert is assumed to be only on the variable iz , he/she is 

not able to assign specific masses to any subsets jA  of iZ , ij  . For this reason, it is 

intuitive for the i-th expert to associate to the cylindrical extension 
iA  defined on Z  the 

same mass given to iA  on the UOD iZ : 

 

   i

i

i

i AmAm   (14) 
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whereas all the other elements of  ZP  that are not cylindrical extensions of an element of iZ  

have null mass: 

 

  0Ami  if   ii ZPA   such that AAi   (15) 

 

Finally, for the aggregation of the masses given by different experts, it is possible to apply the 

Dempster rule to the cylindrical extensions. For example, considering two discrete 

independent variables 21 , zz  and supposing that Expert 1 assigns a bpa  1

1 Am  to all the sets 

1A  of  1ZP  and Expert 2 assigns a bpa  2

2 Am  to all the sets 2A  of  2ZP , the mass of all 

the sets  21 , AA  of the power set of 21 ZZZ   can be obtained by: 

 

 

   

   













0

21

),(

21

21

1212
1

),(
21

CB

AACB

CmBm

CmBm

AAmAm  (16) 

 

that, due to eqs.(14) and (15), becomes: 

 

   

   





















0

2

2

1

1

),(

2

2

1

1

21

12

21

2121

1
),(

CB

AACB

CmBm

CmBm

AAm  (17) 

 

Furthermore, since in the case here discussed the set  21 , AA  can be obtained only by the 

intersection of   21 AA , and the intersection 
  21 CB  is never empty, eq.(17) becomes: 
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       2

2

1

1

2

2

1

1

21

12 ),( AmAmAmAmAAm    (18) 

 

leading to the same results of the direct product of the belief and plausibility functions 

(eqs.(10) and (11)). 

Notice, however, that eq.(17) can be applied also to the case in which the two experts assign a 

bpa on overlapping UODs whereas both its simplified version of eq.(18) and the method of 

eqs.(10) and (11) are not applicable to this case. For example, if Expert 1 assigns a bpa to the 

elements  21 , AA  of the power set of 21 ZZ   and Expert 2 to the elements  32 , AA  of the 

power set of , the application of eq.(12) to the cylindrical extensions  21, AA  and 

 32 , AA  over 321 ZZZ   permits to aggregate the uncertainty of the experts by assigning a 

mass to the elements  321 ,, AAA . 

In the case of interest of this work, the i-th uncertain assumptions iH  has an UOD iX  

defined by the set of the alternative hypotheses,  i

n

i

i
HH ,...,1 . The generic model 

 k

llll k
HHH=S ,....,, 21

21
 can then be seen as an element of the Cartesian product of the UODs 

iX , i.e.  n

k21 MMMX×…×X×X=X ,...,, 21 . If we suppose that there are k  experts, 

the i-th of them providing the bpa  i

i Am  for each  ii XPA  , it is then possible to compute 

the belief and plausibility of the model lM  with structure ),...,,( 21

21

k

llll k
HHHS   by applying 

eqs.(10) and (11): 

 

   


k
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lil i
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(19) 
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or the mass by eq.(17): 

 

  


k

1i

i

lil )H( m=Mm
i

 (20) 

 

Notice that by using eqs.(10), (11) or (18) also the belief, plausibility and masses of the 

elements of the power set of  formed by more than one model can be directly obtained. 

 

5. CASE STUDY 

 

Various conceptual models have been proposed for describing the groundwater flow and 

solute transport at a radioactive waste repository site in unsaturated, fractured tuff formations. 

The analysis of the differences in the models has been mainly concerned with the fundamental 

assumptions underpinning their structures and their implications on the overall assessment by 

the models 
(27,28)

. In the analysis, all of the models have been considered based on the same 

system geometry. A spatially uniformly distributed flux at the repository horizon equal to 0.1 

mm/yr is assumed as boundary condition for all models. Steady-state groundwater flow 

through a one-dimensional system, occurring from the base of the repository to the water table, 

is also assumed. Only four radionuclide species, Tc-99, I-129, Cs-135 and Np-237, are 

assumed to be released from the repository and transported as solute. The transport model is 

based on the assumption of a single, dominant, non-branching transport path. Radionuclide 

retardation factors were based on the distribution coefficient Kd for each radionuclide. No other 

chemical reactions were included. Gaseous phase transport was not included either.  The 

quantity considered as output of the model in this work is the hydraulic head distribution. In 

the analysis only the uncertainty due to the model structure is considered while the uncertainty 

on the model parameters is completely ignored. 
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With respect to the assessment of groundwater flow, the hypotheses made on two main, 

general assumptions drive the modeling: 1H  = “hydraulic and geological properties” and 2H  

= “groundwater flow mechanisms”. Tables I and II report the alternative hypotheses 

considered for the two assumptions on groundwater flow 
(1)

. 

 

Table I. Alternatives for assumption 1H  “hydraulic  and geological properties” 

 

 

 

Table II. Alternatives for assumption 2H  “groundwater flow mechanism” 

 

As a first case, consider that two experts have been asked to quantify the probabilities of 

correctness of the alternative hypotheses of the two assumptions 1H  and 2H . In particular, 

Expert 1 gives a judgment only on the correctness of the alternative hypotheses of the first 

assumption 1H  whereas Expert 2 on the probability of correctness of the alternative hypothesis 

for the second assumption 2H . Since the opinions elicited from the experts regard two 

different assumptions of the model, there is no overlapping between their knowledge and thus 

one needs only to tackle the problem of propagating the uncertainty in the assumptions onto the 

model. Let us also assume that the expert does not possess sufficiently refined knowledge of 

the system to express his/her belief on the correctness of the alternative hypotheses by discrete 

probability values, but that he/she feels more confident in giving an interval of possible values 

for the probabilities of correctness. For example, in evaluating the two different alternative 

hypotheses for the assumption 1H , Expert 1 judges that the probability  1

11 HP  of the 

correctness of hypothesis 1

1H  is a value between 0.6 and 0.95. Expert 2 opinion on the three 

alternatives for assumption 2H  is that  2

12 HP  is between 0.6 and 0.8. whereas  2

22 HP  is 

between 0.03 and 0.10. 
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5.1. Application of the probabilistic framework 

 

For the assumption 1H ,  the categorical random variable is binomial with possible 

realizations 1

1H  and 1

2H  whose probabilities are: 

 

  11

1

11 pHP   
(21) 

  12

1

21 pHP   

 

The expert assignment to the only parameter  1

1111 HPp   of the binomial distribution is 

affected by epistemic uncertainty; in particular, the expert suggests only the two limiting 

values of 0.6 and 0.95 for 11p ,  with no additional preference for values within the range, so 

that it seems reasonable to represent the uncertainty by a uniform probability density 

function  11pf  on the range defined by the limiting values (Figure 1). 

 
Figure 1. Probability density function representing the epistemic uncertainty on 11p . 

 

With respect to the assumption 2H ,  the probability, assigned by Expert 2, of the possible 

alternative hypotheses are: 

 

  21

2

12 pHP    ]80.0,60.0[U  

(22)   22

2

22 pHP    ]10.0,03.0[U  

  2221

2

32 1 ppHP   

 

Notice that, since 12221  pp ,  the two parameters 21p  and 22p  of the multinomial 

distribution are not independent, i.e. a given value of 21p  constrains 22p  to be lower than 

211 p .  However, in the case here considered 2221 pp   is always less than 1 and thus the 
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two parameters are independent, i.e.       212221, 212221
, pfpfppf pppp  .  In particular, 

uniform distributions  are again assumed for 2221, pp  .  

 

Figure 2. Probability density functions representing the epistemic uncertainty on 21p  and 22p . 

 

 

The uncertainty propagation from the alternative hypotheses onto the groundwater flow 

model structure leads to the introduction of a multinomial variable  whose possible 

realizations are: 

 

           2

3

1

26

2

3

1

15

2

2

1

24

2

2

1

13

2

1

1

22

2

1

1

11 ,,,,,,,,,,, HHMHHMHHMHHMHHMHHM 

 

Assuming the independence of the two assumptions 1H  and 2H ,  it is possible to compute 

the probability of correctness of the 6 models which emerge from the combination of the 2·3 

alternative hypotheses, by simply multiplying the probability of correctness of the 

constituting alternative hypotheses: 

 

      12111

2

12

1

11112 pppHPHPMP   

(23) 

        22111

2

12

1

21212 1 pppHPHPMP   

      32211

2

22

1

11312 pppHPHPMP   

        42211

2

22

1

21412 1 pppHPHPMP   

        5222111

2

32

1

11512 1 ppppHPHPMP   

         6222111

2

32

1

21612 11 ppppHPHPMP   

 

Note that the parameters 54321 ,,,, ppppp  defining the multinomial distribution of M ,  are 

dependent given that they must satisfy the constraint 154321  ppppp  and thus 

they are characterized by the joint probability density function  54321 ,,,, pppppf .  Figure 
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3 reports the marginal probability density functions  lp pf
l

 of the parameter 5,...,1, lpl  

obtained numerically. 

 

Figure 3. Marginal probability density functions of the parameters 54321 ,,,, ppppp  defining the 

multinomial distribution of M. 

 

From the obtained joint probability density function  54321 ,,,, pppppf ,  it is then possible 

to estimate the probability of correctness of the models by: 

 

      5,...,1,,,,|)( 5432154321   idppfpdpdpdpdpdppppppfpMPMP iipiiii i
 

(24) 

 



5

1

6 1)(
i

iMPMP  

 

which gives: 

 

 

 

 

 

  05.0

18.0

02.0

05.0

16.0

54.0

6

5

4

3

2

1













MP

MP

MP

MP

MP

MP

 (25) 

 

5.2. Application of the DST framework 

The UOD 1X  of the assumption 1H  is formed by two elements,  
1

2

1

1 , HH ; therefore, the 

definition of the corresponding bpa requires assigning a probability mass to all the three 

elements of the power set of 1X ,  i.e.     1

2

1

1

1

2

1

1

1 ,,, HHHHXP  .  The opinion provided by 

the expert that the probability of the correctness of alternative 
1

1H  is a value between 0.6 and 

0.95 leads to consider: 
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  60.01

11 HBel  

(26) 

  95.01

11 HPl  

 

From this assignment, using the relation: 

 

    1 APlABel  (27) 

 

the belief and plausibility of 1

2H  are obtained: 

 

  05.01

21 HBel  

(28) 

  95.01

21 HPl  

 

From eq.(12) the following masses of the elements of the power set  1XP  are then 

obtained: 

 

60.0)( 11 HMm  

(29) 05.0)( 21 HMm  

35.0),( 211 HH MMm  

 

The second assumption 2H  is characterized by a UOD 2X  formed by the three alternatives 

2

3

2

2

2

1 ,, HHH ,  leading to a power set of 8 elements. Since the development of a full-fledged 

technique for the elicitation of the bpa from the expert knowledge is outside the scope of 

this work, here we limit ourselves to assigning directly the limiting values to the belief and 

plausibility of 
2

1H  and 
2

2H : 
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10.0)(,03.0)(

80.0)(,60.0)(

2

22

2

22

2

12

1

12





HPlHBel

HPlHBel
 (30) 

 

whereas in order to respect the constraints of a bpa, it is assumed that: 

 

35.0)(,15.0)( 2

32

2

32  HPlHBel  (31) 

 

These values of belief and plausibility of the elements of the frame of discernment lead to 

the following bpa: 

60.0)( 2

12 Hm  

(32) 

03.0)( 2

22 Hm  

15.0)( 2

32 Hm  

02.0),( 2

2

2

12 HHm  

15.0),( 2

3

2

12 HHm  

02.0),( 2

3

2

22 HHm  

03.0),,( 2

3

2

2

2

12 HHHm  

 

The probability masses elicited from Experts 1 and 2 can be finally combined according to 

eq.(18). Table III reports bpa, belief and plausibility of the subsets of the frame of 

discernment  654321 ,,,,, MMMMMM  formed by a single element.  

Notice that there is a considerable mass of   


6

1
46.01

i iMm  assigned to the remaining 

subsets, i.e. a mass that cannot be attributed to a single model.  

 

Table III.  Basic probability assignment, belief and plausibility of the six model hypotheses.  
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It is also interesting to note that models  2

1

1

11 , HHM   and  2

1

1

22 , HHM   are characterized 

by a large difference between their belief and plausibility. This is caused by the fact that 

assumption 1H  is characterized by a large amount of mass not allocated to a single 

hypothesis. For example, Expert 1 judges that the set  2

1

1

1 , HH  has a mass of 0.35; this means 

that there is a considerable evidence that one of these two models is correct but it is not 

possible to specify which one. For this reason, the strength of the belief in the models 1M  and 

2M  is limited by the fact that it contains only the mass that can be attributed to the individual 

model, whereas the plausibility has an higher value because it includes all the mass that is not 

against such model and so it contains also the relatively large mass attributed to  2

1

1

1 , HH . 

This effect of large uncertainty on the beliefs in the correctness of the models is less evident 

for the other models because the masses on the alternatives 
2

2H  and 2

3H  are lower than 

)( 2

1Hm . 

Finally notice that    63 MBelMBel   whereas    63 MPlMPl  . Also this effect depends 

on the fact that there is a mass of 0.15 that Expert 2 assigns to  2

3

2

1 , HH , which increases the 

plausibility of model 6 and not of model 3. 

5.3. Prediction of the hydraulic head 

In order to further compare the probabilistic and the DS frameworks, the estimation of the 

model output, i.e. the hydraulic head at d=90 meters is here considered. The output values of 

models 6531 ,,, MMMM  have been taken from 
(1)

, whereas, since models 2M  and 4M  have 

not actually been developed, their predictions have been arbitrarily set. The case in which 

some models, based on particular combinations of assumptions, are not developed will be 

further addressed in Section 5.4. Here, since by observing the predictions of models 

 2

3

1

15 , HHM   and  2

3

1

26 , HHM   one can argue that the effect of hypothesis 
1

2H  is to 
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decrease the prediction of the corresponding model with hypothesis 1

1H , the predictions of 

models 2M  and 4M , characterized by hypothesis 1

2H , have been set, respectively, to a lower 

values than the predictions of models 1M  and 3M , characterized by hypothesis 1

1H . Table 

IV reports all the model outputs considered in this Section. 

 

Table IV. Estimation of the hydraulic head at d=90 meters 

 

According to the probabilistic framework, the probability  izp  that the hydraulic head  

takes the value iz  is: 

 

    543215432154321 ,,,,,,,,|)( dpdpdpdpdppppppfpppppzpzp ii   (33) 

 

and thus it is equal to the probability  iMP  of the corresponding model iM  (eq.(25)). Figure 

4 reports the discrete cumulative distribution representing the probability that the hydraulic 

head distribution at 90 metres is minor or equal to z .  

 

Figure 4. Discrete cumulative distribution of the hydraulic head distribution. 

 

Furthermore, the expected value of the hydraulic head can be computed by: 

      817,,,,,,,,| 54321

6

1

5432154321  


dpdpdpdpdppppppfpppppzpyyE
i

ii  (34) 

Within the DST framework, the basic probability assignment on the frame of discernment of 

the model output values  654321 ,,,,, zzzzzz  corresponds to the bpa defined on the frame of 

discernment of  654321 ,,,,, MMMMMM  (Table III). In particular, it is interesting to 
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compute, using eqs.(4) and (5), the belief  and plausibility of the sets   6,...,1,  izz i  which 

can be interpreted as limiting cumulative density distributions (Figure 5). 

Notice that the probabilities  izzP   obtained by applying the probabilistic framework are 

always within the interval of the corresponding belief and plausibility values. Thus, although 

the two approaches differ in the representation and propagation of the expert uncertainty on 

the probability of the model to be correct, in this case they lead to coherent results. 

Finally, notice that synthetic measures of the expected value of the hydraulic head obtained 

from the belief and possibility distributions have been proposed in 
(29)

, but they are not 

investigated in this work since decision makers usually demand to know the entire 

distribution of the uncertainties. 

 

Figure 5. Belief (circles), plausibility (squares) of the sets  izz ,....,1  obtained by the DST approach and 

cumulative density probability values (dots) obtained by the probabilistic approach. 

 

5.4. Model uncertainty in presence of non developed models 

In this Section, the problem of aggregating the uncertainties of different experts on the 

correctness of the models is addressed on a case in which some possible models are not 

developed, although they have non zero probability of being correct for some experts. This 

case may arise when it is decided that some theoretically plausible models should not be 

developed due, for example, to the opinion of an expert or other practical limitations. 

In particular, the previous case study is re-considered with the addition of the opinion of a 

third expert that judges models 2M  and 4M  surely not plausible. Furthermore, it is assumed 

that Expert 3 does not give any information to specify which of the remaining models 

6531 ,,, MMMM  is the correct one. 
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5.4.1. Probabilistic framework 

According to the probabilistic framework, Expert 3 opinion is represented by introducing a 

multinomial variable with possible realization 654321 ,,,,, MMMMMM  whose probabilities 

are: 

 

  3113 pMP   

(35) 

  03223  pMP  

  3333 pMP   

  03443  pMP  

  3553 pMP   

  35343332313663 1 ppppppMP   

 

where 32p  and 34p  are equal to 0, whereas since Expert 3 does not give any suggestions on 

his/her beliefs on the remaining models, it is reasonable to characterize by uniform probability 

density functions the uncertainty on the parameters 3331 , pp  and 35p  of the multinomial 

distribution. Notice, however, that, due to the constraint 1353331  ppp , it is not possible 

to assume that the parameters of the multinomial distribution are independent and thus one 

should use a joint probability density function defined by: 

 

 

 







otherwisepppf

pppifpppf

0,,

16,,

353331

353331353331
 (36) 
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where the value of 6 is the normalization constant. From this a-priori distribution of the 

parameters of our multinomial distribution, the following estimation of the probabilities of the 

six models are obtained: 

 

 

 

 

 

 

  25.0

25.0

00.0

25.0

00.0

25.0

6

5

4

3

2

1













MP

MP

MP

MP

MP

MP

 (37) 

 

According to this interpretation, the total lack of information on which model between 

6531 ,,, MMMM  is correct translates in the assignment of equal probabilities to the four 

models. 

For the aggregation of the probabilities on the correctness of the 6 models given by Expert 3 

with the probabilities obtained by combining the opinions of Expert 1 and Expert 2 reported 

in eq.(25), the logarithmic opinion pool method is used, assigning in eq.(6) equal weights to 

 iMP12  and  iMP3 . Thus, 

 

     iii MPMPkMP 312123   (38) 

 

leading to the results reported in the second column of Table V. 

Notice that if the aggregation of  iMP3  with  iMP12  were performed by using the linear 

opinion pool, non zero probabilities would be obtained for 123 2( )P M  and 123 4( )P M , leading to 

the paradox that a non-zero probability is assigned to a model that is actually not developed. 
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Table V. Probabilities of correctness of the six models obtained by combining the three experts opinions 

(second column), only Expert 1 and 2 opinions (third column) and relative variation obtained by 

considering Expert 3 opinion (last column). 

 

 

Note that the effect of the aggregation of Expert 3 opinion with Experts 1 and 2 opinions is to 

set to zero the probabilities 123P  of models 2M  and 4M . Furthermore, due to the constraint 

that the sum of the probabilities of all the models must be one, the probability 

    17.0412212  MPMP  must be attributed in 123P  to the remaining four models through a 

process of renormalization of the probabilities. Given that Expert 3 does not specify any 

preference between the remaining models 6531 ,,, MMMM , one would expect that the 

probabilities 123P  would all increase, with respect to the probabilities 12P , to consider the 

mass     17.0412212  MPMP . However, using the logarithmic opinion pool method, it is 

obtained that  1123 MP  decreases of 16.0%, whereas the other models probabilities increase, 

but not uniformly as it can be seen by observing the relative variations reported in the last 

column of Table V. The cause of this counterintuitive effect is that the probabilistic 

framework forces to assume that each of them has a probability of 0.25 and thus the 

aggregation of   54.0112 MP  with   25.033 MP  through the geometric mean causes a 

decrease of  1MP  that is not counterbalanced by the renormalization of the probabilities. 

 

5.4.2. DS framework 

 

According to the DST framework, it is possible to represent Expert 3 judgment on the 6 

models by the bpa: 
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 

      65432165313

65313

,,,,,,,,0

1,,,

MMMMMMPMMMMAAm

MMMMm




 (39) 

 

Notice that this representation of Expert 3 uncertainty on the models correctness is completely 

coherent with the information that he/she gives. In particular, through eqs.(4) and (5), it is 

possible to show that it is equivalent to assign belief zero and plausibility 1 to all the subsets 

containing one of the four models ),,,( 6531 MMMM . 

By combining 3m  with 12m  using eq.(8), a new bpa 123m  characterized by mass equal to 0 for 

all the subsets that contain 2M  and/or 4M  is obtained. Table VI represents bpa, belief and 

plausibility of the subsets formed by a single model while Table VII compares the bpas before 

and after the aggregation of Expert 3 opinion. 

 

Notice that the DST combination of Expert 3 opinion with Expert 1 and 2 opinions results in a 

bpa with mass 0 for all the subsets that contain 2M  or 4M . Thus, analogously to the 

probabilistic case of the previous Section, the four models 6531 ,,, MMMM  form an 

exhaustive set of models and the previous observation made on the limitation of the 

exhaustiveness hypothesis still arises. In this respect, it is interesting to point out the 

possibility, within the DST framework, to assume that the frame of discernment of an 

uncertain quantity is formed by all its known possible realizations and by an unknown 

element (30), (31).  This approach, that seems very promising to address the hypothesis of 

exhaustiveness of the models, will be further investigated in future works. It is also interesting 

to consider that within the DST approach, contrary to the probabilistic approach, Expert 3 

opinion causes an increase of 63% of the masses assigned to 1M  by Experts 1 and 2. This is 

due to the fact that a considerable part of the mass   35.0, 2112 MMm , that Experts 1 and 2 
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are not able to specify to which of the two models belongs, is assigned by eq.(8) to 1M , since 

  023 Mm . Analogously, the mass assigned to the other single model subsets increases due 

to the fact that they collect all the mass assigned by Experts 1 and 2 to subsets containing 2M  

and/or 4M . 

 

Table VI. Mass, belief and plausibility of the subsets formed by a single model 

 

 

Table VII. Comparison of the masses assigned to the single model subsets obtained by combining the three 

experts opinions (second column), only Expert 1 and 2 opinions (third column) and relative variation 

obtained by considering Expert 3 opinion (last column) 

 

 

Finally, Figure 6 reports the belief and plausibility values obtained within the DST approach 

for the hydraulic head z and the corresponding cumulative density values obtained by the 

probabilistic approach. Due to the different aggregation mechanism of Expert 3 opinion, the 

cumulative distribution is far below the DS limiting distribution. For example, the probability 

that  be lower than or equal to 810 is 0.46 according to the probabilistic framework and 

between 0.59 and 0.79 for the DST framework. 

 

 

6. CONCLUSIONS 

In this paper, the problem of representing and propagating model uncertainty within the 

model set expansion approach has been considered by the Dempster-Shafer Theory of 

Evidence compared to a classical probabilistic framework, with reference to a case study of a 

model of groundwater flow of interest for the performance assessment of radioactive waste 
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repositories. The methodological set up has considered the case in which multiple 

assumptions are made for the development of the model, giving rise to corresponding 

alternative plausible modelling hypotheses on whose correctness the opinions of different 

experts is sought. 

Through the illustration of an example concerning the assumptions underpinning a model of 

groundwater flow, the DST has been shown a proper framework for effectively representing 

the uncertainty on the correctness of the different hypotheses by means of two limiting values, 

belief and plausibility, overtaking the difficulties that experts encounter in characterizing their 

uncertainty using single probability values or probability density functions. The added value 

of the approach is particularly evident in the case in which some possible models are not 

developed, for any reason, a situation which may lead to counterintuitive and non 

conservative results if addressed probabilistically. 

Furthermore, within the DST, the Dempster rule of combination offers a natural basis for both 

the aggregation of the uncertainties of different experts on the correctness of the hypotheses 

and the propagation of the uncertainties regarding the individual assumptions onto the 

uncertainty characterizing the entire model. This is regardless of the limitations of the rule, 

which ignores conflicting expert opinions, which can be overcome by more elaborate 

aggregation rules not introduced here as the issue is out of the scope of the present work. 

With respect to the future development of the work, notice that the model set expansion 

approach is based on the two assumptions of mutual exclusiveness and collective 

exhaustiveness of the set of models: while the first assumption may be acceptable, upon 

verification, the second is certainly not met in practice because it requires that the perfect 

model is one of the models taken into account, which is not realistic. This aspect deserves 

further study in the future; in this respect, it seems worth considering modifications to the 
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DST which assume that the frame of discernment of an uncertain quantity is formed by all its 

known possible realizations and by an unknown element which covers lack of completeness. 

Another direction of development of the work deemed necessary regards the case in which 

new information on the model assumption correctness, including experimental data and 

subjective evidence, becomes available after the initial analysis and, thus, updating of the 

output distribution is required; in this respect, formal Bayesian approaches to model 

uncertainty seem very fit to the purpose due to their ability to update the distribution of the 

model output and should be compared to their counterparts within the DST framework of 

analysis. 

Finally, the characterization of the model output uncertainty here analyzed, is expected to be 

used within the Probabilistic Risk Assessment (PRA) framework for the performance 

assessment of radioactive waste repositories: whereas the output probability distribution 

provided by a probabilistic approach to model uncertainty can be directly used in the PRA 

framework, the DST produces lower and upper cumulative density functions which can be 

used to bound the value of the probability that the output is below a given value, an 

informative metric that can be used in the PRA framework. 
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Table I. Alternatives for assumption 1H  “hydraulic  and geological properties” 

 
1

1H  “15 hydrogeological vertical layers ” 

1

2H  “4 hydrogeological vertical layers” 

 

 

 

Table II. Alternatives for assumption 2H  “groundwater flow mechanism” 

 
2

1H  “Groundwater flow in porous matrix only” 

2

2H  “Groundwater flow in fractures only” 

2

3H  “Groundwater flow in matrix and fracture 

simultaneously” 

 

 

 
Table III.  Basic probability assignment, belief and plausibility of the six model hypotheses.  

Model bpa belief plausibility 

1M  0.36 0.36 0.76 

2M  0.03 0.03 0.32 

3M  0.02 0.02 0.10 

4M  0.00 0.00 0.04 

5M  0.09 0.09 0.33 

6M  0.01 0.01 0.14 
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Table IV. Estimation of the hydraulic head at d=90 meters 

Model Head(90m) 

 2

1

1

11 , HHM   810m 

 2

1

1

22 , HHM   762m
 

 2

2

1

13 , HHM   900m 

 2

2

1

24 , HHM   852m 

 2

3

1

15 , HHM   860m 

 2

3

1

26 , HHM   812m 

 

 

 
Table V. Probabilities of correctness of the six models obtained by combining the three experts opinions 

(second column), only Expert 1 and 2 opinions (third column) and relative variation obtained by 

considering Expert 3 opinion (last column). 

 

Model 123P  
12P    1212123 / PPP   

1M  0.46 0.54 -0.16 

2M  0.00 0.16 -1.00 

3M  0.14 0.05 1.77 

4M  0.00 0.02 -1.00 

5M  0.26 0.18 0.45 

6M  0.14 0.05 1.69 
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Table VI. Mass, belief and plausibility of the subsets formed by a single model 

Subset Mass Belief Plausibility 

1M  0.59 0.59 0.79 

2M  0.00 0.00 0.00 

3M  0.03 0.03 0.10 

4M  0.00 0.00 0.00 

5M  0.09 0.09 0.34 

6M  0.02 0.02 0.14 

 

 

 
Table VII. Comparison of the masses assigned to the single model subsets obtained by combining the three 

experts opinions (second column), only Expert 1 and 2 opinions (third column) and relative variation 

obtained by considering Expert 3 opinion (last column) 

Subset 123m  12m    1212123 / mmm    

1M  0.59 0.36 0.64 

2M  0.00 0.03 -1.00 

3M  0.03 0.02 0.67 

4M  0.00 0.00 -1.00 

5M  0.10 0.09 0.03 

6M  0.018 0.01 1.57 

Sum of all the 

other masses 

0.270 0.49 -0.45 
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Figure 1. Probability density function representing the epistemic uncertainty on 11p . 
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Figure 2. Probability density functions representing the epistemic uncertainty on 21p  and 22p . 
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Figure 3. Marginal probability density functions of the parameters 54321 ,,,, ppppp  defining the 

multinomial distribution of M. 
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Figure4. Discrete cumulative distribution of the hydraulic head distribution. 
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Figure 5. Belief (circles), plausibility (squares) of the sets  izz ,....,1  obtained by the DST approach and 

cumulative density probability values (dots) obtained by the Bayesian approach. 
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Figure 6. Belief (circles), plausibility (squares) of the sets  izz ,....,1  obtained by the DST approach and 

cumulative density function values (dots) obtained by the Bayesian approach. 

 


