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USING EXPERT MODELS IN HUMAN RELIABILITY ANALYSIS 

– A DEPENDENCE ASSESSMENT METHOD BASED 

ON FUZZY LOGIC 

 

 

L. Podofillini, V.N. Dang, E. Zio, P. Baraldi, M. Librizzi 

Abstract  
In Human Reliability Analysis (HRA), dependence analysis refers to assessing the 

influence of the failure of the operators to perform one task on the failure probabilities 

of subsequent tasks. A commonly used  approach is the Technique for Human Error 

Rate Prediction (THERP). The assessment of the dependence level in THERP is a highly 

subjective judgment based  on general rules for the influen ce of five main factors. A 

frequently used  alternative method extends the THERP model with decision trees. 

Such trees should increase the repeatability of the assessments but they simplify the 

relationships among the factors and the dependence level. Moreover, the basis for 

these simplifications and the resulting tree is d ifficult to trace. The aim of this work is a 

method for dependence assessment in HRA that captures the rules used  by experts to 

assess dependence levels and incorporates this knowledge into an algorithm and 

software tool to be used  by HRA analysts. A Fuzzy Expert System (FES) underlies the 

method. The method and the associated expert elicitation process are demonstrated 

with a working model. The expert rules are elicited  systematically and converted  into a 

traceable, explicit, and  computable model. Anchor situations are provided as guidance 

for the HRA analyst’s judgment of the input factors. The expert model and the FES-

based  dependence assessment method make the expert rules accessible to the analyst 

in a usable and repeatable means, with an explicit and  traceable basis. 

Keywords: human reliability analysis; human action dependence; expert 

judgment; fuzzy expert system; expert elicitation.  

Acronyms /  Abbreviations 

DT – decision tree    FES – fuzzy expert system 

FL – fuzzy logic    HFE – human failure events 

HRA – Human Reliability Analysis  MF – membership function 

PSA – Probabilistic Safety Assessment THERP – Technique for Human Error Rate 

Prediction 
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1 Introduction  
Expert judgment is required  in many areas of risk analysis, where the relevant factors 

and their relationships are complex and the data are insufficient as a basis for either a 

statistical estimate or for constructing an empirical model with which estimates may be 

obtained . Two ways of using expert judgment can be distinguished. The first way 

relates to collecting and aggregating the judgment of experts on the variables of 

interest, e.g. a failure probability or a seismic hazard  curve (e.g. Cooke, 1991). Formal 

approaches for this exist, which are very useful to bring out the assumptions and 

reasoning underlying the judgments and to document them so that they can be 

appraised  by others (Cooke, 1991; O’Hagan et al., 2006). However, some disadvantages 

are the cost and time they require and the potential presence of biases in the expert 

estimates (for a complete d iscussion see: Otway & von Winterfeld t, 1992). A second 

way of using expert judgment is based  on collecting information from experts to build 

a computable model (called  the expert model) with which the desired  value may be 

obtained . Examples include the computerized  diagnostic aids used  in nuclear p ower 

plants, e.g. Chang et al. (1995), and  clinical decision support systems used in medicine, 

e.g. Kawamoto et al. (2005). 

The work reported  here addresses an application of expert judgment in  HRA, the part 

of PSAs that deals with human performance and its impact on risk. In HRA, 

dependence analysis refers to assessing the influence of the failure of the operators to 

perform one task on the failure probabilities of subsequent tasks (Swain & Guttman, 

1983). In qualitative terms, a dependence is said to exist between two tasks, that is two 

Human Failure Events (HFEs) if the failure of the second HFE is more likely given that 

the operators have failed  in their performance of the first HFE than following success 

of the first HFE.  

The assessment of dependence has a significant impact on the overall results of a PSA, 

since the dependent failure probability may be an order of magnitude or more larger 

than the independent one. An appropriate assessment of dependence is thus essential 

to avoid  underestimation of the risk and to ensure a realistic risk profile from the PSA 

results. In identifying the HFEs for which dependence should  be considered , i.e. the 

scenarios in which multiple HFEs appear, a common practice is to use large screening 

probabilities for the HFEs. If the probabilities estimated  without accounting for 

dependence are used , the relevant sequences (with multiple HFEs) may be truncated. 

A quantification of the scenarios without consideration of dependencies may miss 

candidates for potential dependencies (NUREG-1792, 2005). 
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The development of an expert model for HRA dependence assessment and an 

assessment method based  on this model is aimed at increasing the repeatability of 

these assessments. The expert model can systematically and transparently represent 

the assumptions and rules underlying the assessment ; at the same time, it can 

represent relatively complex assessment rules that account for the interactions among 

the input factors. The attractiveness of a method based on an expert model is that it 

makes the expert knowledge and rules accessible to an HRA analyst. Since dependence 

assessments are needed within each HRA (each PSA study), such a method can 

circumvent the need  to convene an expert or experts in a formal elicitation  for each 

study. 

This work focuses on dependencies among post-initiator HFEs. In current PSAs, the 

dependence model from the Technique for Human Error Rate Prediction (THERP) 

HRA method  (Swain & Guttman, 1983) is commonly used . It has two parts:  a 

qualitative assessment of a dependence level, ranging in d iscrete steps from zero 

(independent tasks or actions) to com plete dependence, and  the quantification of the 

impact of the assessed dependence level on the conditional probability of the 

subsequent task based  on a set of formulas. The THERP model refers to five main 

factors: spatial relatedness, time relationship , functional relatedness, stress, and the 

similarities among the personnel performing the tasks. While the THERP dependence 

model provides general guidelines for the influence of these factors on the dependence 

level (cf. Table 10-1 in Swain & Guttman, 1983), the assignment of the level is 

essentially a direct expert judgment, a highly subjective process that can be weak in 

terms of transparency and repeatibility. The ASME Standard  for Probabilistic Risk 

Assessment notes that ―the state of the art in HRA is  such that the assessment of 

dependency is largely based  on the analyst’s judgement.‖ (Note (1) to HR-G7, ASME, 

2005). 

To address these issues and  reduce the subjectivity inherent in judging the dependence 

level d irectly, the assignment of the dependence level is frequently supported  with 

decision trees (DTs), for instance, in the SPAR-H (Gertman et al., 2005) method, in the 

EPRI HRA ―calculator‖(Julius et al., 2005), as well as in the recently presented  method 

DEPEND-HRA (Cepin, 2006, 2008a, 2008b). However, the decision tree representation 

frequently very much simplifies the relationships among the input factors and the 

dependence level. In addition, the basis for the decision tree is d ifficult to trace. It 

should  be noted  that although the mentioned  methods have been specifically 

developed for nuclear power plants applications, human failure dependence 

assessment is an important part of the HRA for any technical system (Kennedy et al., 

2007). 
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Current practice has a number of weaknesses. The absence of specific guidance makes 

the use of the THERP dependence method d ifficult and  the results may lack 

traceability and repeatability. This also makes the review of the assessment by a second 

person d ifficult (e.g. in peer or regulatory reviews). The use of DTs improves the 

situation: the analyst has to give judgments on the input factors, but is not required  to 

draw conclusions on the dependence level, which the DT yields. The central idea is 

that the input factors should  be less subjective quantities than the dependence level 

(optimally, they should  be ―measurable‖). Yet, DTs are not flexible in the sense that the 

analyst judgments are typically constrained  to rigid  options, which refer to extreme 

situations (Yes/ No, High/ Low). Moving away from binary options also increases the 

number of branches and the combinations of factors to evaluate. Moreover, d ifferent 

implementations of DTs exist, which may produce significantly d ifferent results 

(Cepin, 2008c): since DTs are often not built from a traceable process of expert 

elicitation, it is difficult to understand the reasons if two DTs give d ifferent results.  

Section 2 d iscusses these shortcomings in more detail.  

Note that another recent subject of research related  to dependence assessment is on 

how dependent HFEs should  be incorporated  in large system fault tree analysis 

(Vaurio, 2000). This subject relates to dependencies among pre-initiator HFEs and  a 

more detailed  d iscussion is outside the scope of the present paper . Also related  to 

dependence assessment is the idea of the existence of human performance limiting 

values (HPLV) (Kirwan, 2008). It may be the case that accident sequences have very 

low joint human error probability (e.g. 10-4 or 10-5), even after dependence is evaluated:  

the idea is that HPLV should  be applied to include for possibly overlooked error 

mechanisms or error-inducing conditions. 

The aim of this work is a method for dependence assessment in HRA that captures the 

rules used  by experts to assess dependence levels and  incorporates this knowledge into 

an algorithm and software tool to be used  by HRA analysts. The Fuzzy Expert System 

(FES) formalism underlies the method. A FES collects the experts’ knowledge as a set 

of Fuzzy Logic (FL) rules that are mathematically manipulated  by Fuzzy Set theory 

(Zadeh, 1965). Fuzzy set theory has been exploited  for HRA in a number of 

applications (Terano et al., 1983; Onisawa, 1988a, 1988b; Liang & Wang, 1993; Kim & 

Bishu, 1996; Suresh et al., 1996; Huang et al., 1996; Richei et al., 2001; Konstandinidou et 

al., 2006; Marseguerra et al., 2006). In most of these, the focus is on using FL to convert 

human error context descriptions into inputs for existing HRA methods, with the aim 

of accounting for ambiguity and subjectivity of the descriptions. For example, in 

Konstandinidou et al. (2006) and  Marseguerra et al. (2006), fuzzy logic is applied  to 
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compute HEPs via the CREAM method, by converting the characterization of the 

performance shaping factors into fuzzy numbers. Only in Richei et al. (2001) is the 

problem of build ing a FES from the expert knowledge also addressed .  

At this stage, the focus of the work has been to investigate the suitability and  

practicality of the FES representation  for an HRA dependence assessment method for 

post-initiator HFEs. This paper presents the basic concepts of the proposed method  

and demonstrates the approach using a working model of the dependence 

relationships. The working model is intended to represent a set of moderately complex 

relationships among the input factors and the dependence level, which could  be 

expected  from an expert elicitation. These relationships represent one possible 

interpretation of the THERP dependence guidelines, but one with more detail. It 

admitted ly does not include all relevant factors but its complexity is sufficient for the 

purpose of demonstrating the methodology. The details of the FES model are reported 

in a companion paper (Zio et al., 2009).  

To illustrate its use, the FES-based  has been applied  for dependence assessment of a 

pair of operator actions in response to an accident scenario in a Boiling Water  Reactor. 

The FES-based  method for assessing dependence has the advantage of being able to 

represent fully the experts’ rules (in this case, the rules of the working model), 

including rules for the interaction of the dependence (input) factors. With anchor  

situations provided as guidance for the HRA analyst’s judgment of the input factors, 

the method yields the dependence level based  on the expert rules. An expert elicitation 

to obtain a comprehensive set of rules to replace the working model is planned for  

future work. 

The paper is organized as follows. Section 2 gives an overview of the problem of 

dependence assessment, of the current practice and limitations. Section 3 presents the 

features of the proposed dependence assessment method . The approach for building 

the underlying FES-based  model is presented in Section 4. Section 5 presents an 

application of the method . Section 6 d iscusses traceability, repeatability, verification 

and valid ity issues. 

2 Dependence assessment in HRA: practice and 
limitations 

2.1 The dependence assessment method in THERP 

The dependence assessment method  in the THERP HRA method (Swain & Guttman, 

1983) is one of the most widely used  in the PSA practice. Referred  to as the ―THERP 
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method‖ in this paper, this dependence assessment method has the following main 

components: 

 Use of conditional human error probabilities (HEPs) to model the effect of 

dependence: the THERP approach amounts to evaluate the probability of 

failure of one task, when it is known that the previous task has failed . 

 Discretization of the conditional HEP into five ranges representing different 

levels of dependence: zero, low, moderate, high, complete. 

 A formula for computing the dependent, conditional p robability for each 

dependence level. For a low level of dependence, the formula produces for  low 

values of the independent HEP (i.e. <0.01) a nominal conditional probability 

value of 0.05 with lower and upper bounds of 0.015 and 0.15, respectively.  

 Guidelines for assessing the level of dependence (summarized  in Table 10-1 of 

Swain & Guttman (1983)).  

The user of the method must analyze the pair of successive tasks and assess the level of 

dependence. To support the analysis of the tasks dependence, the THERP guidelines 

suggest the factors that should  be considered  (THERP Table 10-1 of Swain & Guttman  

(1983)): closeness in time and space, functional relatedness (e.g. tasks related  to the 

same subsystem), stress, similarity of the performers (status, training, responsibility, 

and „many social and  psychological factors―).  

For example, for the factor closeness in time and space, the guideline reads (item 3 of 

Table 10-1 of Swain & Guttman (1983)): 

―Evaluate the spatial and  time relationship among all events. Dependence 

between any two events increases as the events occur closer in space and 

time. For example, d isplays or controls that are physically close to each 

other or that must be manipulated  at about the same time have a higher 

level of dependence than items that are widely separated  either spatially or 

as to the time of their manipulation.‖  

These guidelines cannot be used  systematically and consistently as a basis for assessing 

the dependence level because a lot of room is left to interpretation. This makes the 

assessment a rather d ifficult task, requiring a considerable amount of expert judgment, 

which may lack transparency and traceability and leads to low repeatability of the 

results. Another problem with the d irect elicitation of probability is the presence of 

biases, of many types (Cooke, 1991; Otway, H. & von Winterfeld t, D., 1992).  
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2.2 Supporting the THERP model with decision trees 

The expert judgment assessment of the level of dependence is in practice often 

supported  with a decision tree (DT).  In these cases, the quantitative impact of the 

assessed  dependence level is still modeled  with the THERP dependence assessment 

method. 

Repeatability should  improve when expert judgment is structured  and supported  by a 

DT. The analyst has to give judgments on the input factors, but is not required  to draw 

conclusions on the dependence level, which comes from the model. An example is 

shown in Figure 1, which reports the SPAR-H DT for post-initiator HFEs (Gertman et 

al., 2005). The input factors of the model are (Figure 1):  

 Crews (Same/ Different)  

 Time (Close in time/ Not close in time)  

 Location (Same/ Different)  

 Cues (Additional cues/ No additional cues). 

Different implementations of DTs exist. Cepin (2008b) shows that this can lead  to 

significant d ifferences in the result of the HRA and in the evaluation of the risk 

contributors. Since a traceable process of expert elicitation is often missing , it is d ifficult 

to understand the reasons if two DTs give d ifferent results.  

Another limitation is that DTs are not flexible and may not allow assessments to be 

representative of the context under analysis. The need  to avoid an excessive branching 

of the tree usually limits the number of branches per factor  to two to three values 

(labels). These labels represent extreme Yes/ No conditions (see Figure 1 for example), 

which may be d ifficult to match to a particular context. Indeed, there may be consensus 

on considering a separation by 5 minutes as ―close in time‖ and one of hours as ―not 

close in time‖. However, a separation of 20 minutes may be d ifficult to match to any of 

the two options, thus requiring a more intermediate judgment that would  better 

represent the context. 

 

INSERT Figure 1. The SPAR-H dependence decision tree 

 

INSERT Table 1. The EPRI HRA Calculator ® dependence 

decision tree (Grobbelaar et al., 2005). 
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3 Basic concepts of the dependence assessment 
method 

Figure 2 shows a high-level overview of the dependence assessment method. The 

underlying FES model and  the expert elicitation process for its construction are 

presented  in the next Section 4. The mathematical details of the FES can be found in a 

companion paper (Zio et al., 2009). The d ifferent components of the method are 

described  next.  

 

INSERT Figure 2. Overview of the dependence model. Different 

models are needed for pre-initiators, and different types of post-

initiators. 

 

3.1 Input factors 

Similarly to the DTs approach, each of the input factors is represented by a linguistic 

variable, qualified  in terms of linguistic labels (Figure 3). For example: input factor 

―similarity of performers‖ may be qualified  in terms of a linguistic variable with 

linguistic labels: None - Low – Medium … - Very high. Unlike with DTs, the number of 

linguistic labels for each input factor is higher than two, thus giving more flexibility to 

the input judgments.  

At the same time, the use of a higher number of linguistic labels may become a source 

of variability in the inputs, so that concrete guidance is needed for the analyst 

judgments. As shown in Figure 3, this is provided through anchor points that represent 

prototype conditions of the input factors for a typology of tasks . Different dependence 

models and thus d ifferent sets of anchors may be used  for pre-initiators, different types 

of post initiators, etc. The selection of the proper anchors and their characterization in 

terms of the linguistic labels is one of the outputs of the expert elicitation process. 

Note that numerous studies on expert judgment elicitation have shown that the use of 

anchors may be counterproductive and bias the judgments if the underling scale is 

continuous (see Brewer & Chapman, 2002 for an example, among many others, of a 

paper d iscussing the anchor effect, and  Stevens, 1946, for the definitions of the 

measurement scales). However, in our case the anchors are essential because the scale 

on which they are placed  is very abstract for the analyst (what does high ―similarity  of 

cues‖ mean? or what does a similarity of performers of 0.33 mean?). Anchors therefore 

are necessary to provide reference situations that can orient an analyst. 
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With respect to the context characterization, the analyst can provide judgments on the 

input factors in d ifferent ways, for example on a scale (Figure 3). Four anchors are 

shown in the figure:  the analyst may provide a point inpu t on the scale (input 1), or 

the range where his/ her belief belongs (input 2).  

A feature of FES is that they allow overlapping of the linguistic labels (overlapping 

horizontal bars in Figure 3) to represent the fact that in the common perception, the 

transition between the linguistic concepts associated to the labels (e.g. between 

―medium‖ and  ―high‖) is not crisp, but often uncertain and ambiguous. This can be 

formally accounted  for by introducing overlapping fuzzy sets to represent the input 

variables. Figure 4 shows a possible association of fuzzy sets and  trapezoidal 

membership functions. Note that the association is not shown to the analyst who 

interfaces only with anchor points and  linguistic labels. 

Indeed, the natural scale for the input factors is continuous and the d iscretization 

introduced by the overlapping labels is a simplification. Yet, this does not seem to be a 

limitation. The five-level scale is actually attractive because experts and analysts are 

already very familiar with it from the five THERP levels. Furthermore, as it will be 

presented  in the next Section 3.2, the basis of the fuzzy logic model is a set o f rules. 

This is a concept with which experts and  analysts should be already familiar with, 

since rules (although much coarser) are at the basis of DTs as well.  

 

Insert Figure 3. Analyst elicitation on anchored scale; two analyst 

input types are shown: as a point value (arrow) and as an interval 

(horizontal bar). 

 

Insert Figure 4. Possible association of fuzzy sets and membership 

functions (trapezoids) to the input qualitative variable. 

 

 

3.2 The underlying model 

The inference model represents the relations between the input factors and the 

dependence level. This represents the expert knowledge, which in FES is modeled  into 

a set of rules capturing the relationships between the d ifferent values of the input and 

output variables. An example rule reads as follows: 

IF  

 ―Factor 1‖ is ―Low‖ AND ―Factor 2‖ is ―Medium‖ AND … ―Factor N‖ is 
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―High‖  

THEN  

 Dependence is ―High‖ 

The next Section presents the expert elicitation process to convert the expert 

knowledge into fuzzy rules. 

The input judgments of the analysts are converted  into fuzzy numbers, which 

represent the degree to which the judgments match each of the qualitative labels. The 

fact that a judgment can match, with d ifferent degrees, multiple labels allows FES to 

handle uncertain and ambiguous statements. Multiple rules are then activated , with a 

degree that follows from the degree to which each input statement matches the labels 

involved in the rule. The degree of activation of the rules is then the basis for the 

derivation of the output of the model, which, as described  in the next Section 3.3, is 

represented  by degrees of belief in the d ifferent dependence levels. The FL procedure 

used  in this work to associate the output of the model to a given input assessment is 

based  on the Mamdami fuzzy logic (Zio et al., 2009). Accordingly, the degree to which 

an input assessment matches a label involved in a rule is computed as the maximum 

value of the intersection of the input assessment and label fuzzy sets (Figure 5, left), the 

degree of activation of a rule is computed  as the minimum value of the degree to which 

each input assessment matches the labels involved in the rules  (Figure 5, right) and  the 

contribution to the output of a given rule is the minimum value between the rule 

degree of activation and the fuzzy set in the rule output  (Figure 5, right). Finally the 

output fuzzy set is obtained  by taking the union of all the involved rule output s. 

Insert Figure 5. Left: example of computation of the degree to 

which the Factor 1 input assessment matches the label “Low ” and 

the Factor 2 input assessment the label “High” . Right: 

computation of the degree of activation of the rule If “Factor 1” is 

“Low” and “Factor 2” is “High” THEN “Dependence” is 

“Medium” as minimum value between the degrees to which 

Factor 1 and Factor 2 input assessments match the corresponding 

labels in the rule. 

3.3 Outputs 

From the input factors describing the context of two successive actions with respect to 

their failure dependence, the method  produces two outputs. The first consists in the 

degrees of belief (expressed  in terms of possibility) for the d ifferent dependence levels. 

The THERP dependence levels are used  (None, Low, Medium, High, Complete). This 

output shows how the analysts’ judgments translate into a possibilistic distribution of 

the dependence levels.  
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The second type of output gives quantitative figures to the dependence level. This 

output is the expected  value of the conditional probability and its associated 

uncertainty. These are the figures that are included into the PSA.  

The operation that allows passing from the first type of output to the second is called 

defuzzification (Zadeh, 1965) and, to be formalized , entails associating fuzzy sets and 

degrees of membership to the levels of dependence.  

In the method proposed in this paper, this is done by eliciting information from the 

THERP handbook. In particular, Table 20-21 of (Swain & Guttman, 1983) suggests 

nominal values and uncertainty bounds for the conditional probability associated  to 

each dependence level. A possible association of fuzzy sets to the THERP dependence 

levels consists in taking membership functions with triangular shape in log10 scale 

centered  on the associated  dependence level nominal values and with supports given 

by the lower and upper confidence bounds, as reported  in Figure 6. 

Note that the presented method is still based  on the five THERP dependence levels, 

although a finer characterization of the dependence level could  have been obtained 

with more levels or by adopting a continuous dependence scale (for example, using 

Bayesian belief nets). However, it was decided  to use the THERP dependence levels 

and  the THERP relationships between the levels and  the conditional HEPs because 

these are familiar to experts and analysts. This is an important point for the acceptance 

of the method.  

 

Insert Figure 6. Fuzzy sets and membership functions associated 

to the THERP dependence levels. Elicited from THERP guidelines 

(Swain & Guttman, 1983). 

 

4 Building the dependence model: example on a 
working model 

The concepts of the elicitation process are here illustrated  on a working model of 

dependence, applicable for post-initiator HFEs of a nuclear power plant for full-power 

scenarios. The actual expert elicitation exercise will be performed in subsequent work. 

The information that needs to be provided by the expert is: 

 The important factor relevant to dependence and how they relate 

 Selection and positioning of the anchors 
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 Impact of the factors on the dependence level 

4.1 Determining input factors and anchors 

The first information to elicit from the expert concerns the important factors for 

dependence and how they relate. An influence diagram like the one in Figure 7 is the 

result:  it shows the working model used  to explore the methodology.  

Table 2 lists the input factors, the qualitative labels and  the anchor points used  in the 

working model. The expert has to locate the anchors on the input scale, so as to build 

the input interface of Figure 3.  

According to the working model, three factors d irectly impact the dependence level 

(Figure 7): ―closeness in time‖, ―task relatedness‖ and ―similarity of performers‖. 

―Tasks relatedness‖ is further specified  in terms of the ―similarity of cues‖ and 

―similarity of functions/ goals‖ , as Figure 7 shows. These factors include most, but not 

all, of the relevant factors. For example, the use of the same procedures may also have 

influence on the dependence between two tasks. On the other hand, this working 

model was considered  to be of enough complexity for this illustrative application  of 

the methodology.  

Note that the scale for factor ―closeness in time‖ does not relate to an absolute time 

scale (Figure 3). For example, the anchor point ―5 minutes‖ is meant to be an example 

of the concept of closeness in time, rather than a time mea surement: a judgment of ―8 

minutes‖ could  be also placed  on the ―5 minutes‖ anchor position if the analyst feels 

that the situations are not d ifferent. Alternative anchors for ―closeness in time‖ are 

under evaluation, relating to typical tasks in NPP. In this way, as for example it was 

done in Kirwan (1997c), the judgement is not only connected  w ith the numeric time 

separation.  

Figure 8 shows the results of the expert elicitation of the input factors and of the 

anchors. The Figure shows the input interface of the model as seen by the analyst. 

 

Insert Figure 7. Influence diagram of the working model. 

 

Insert Figure 8. Results from elicitation of the input factors and 

the anchors: the dependence model as seen by the analyst. 
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4.2 Relationship between the input factors and dependence level 

The expert knowledge on dependence is converted  into the FES rules. This is done by: 

1) using statements given by the experts to fill some of the rules of the fuzzy expert 

system, and 2) filling the rest of the fuzzy rules via a rules interpolation approach.  

The statements from the expert can be of d ifferent forms. In this paper each statement 

evaluates particular combinations of the input labels. When the expert is asked to 

evaluate the selected  contexts, he/ she is also shown the relative positioning of the 

anchors on the scale, so as to help him / her to contextualize his/ her statements (Figure 

9). These evaluations allow partially filling the Table of rules, as shown in Figure 9 for 

―task relatedness‖.  

Then, the missing ―relationships‖ are filled  in by an automatic ―interpolation‖ 

procedure which smoothly spreads the consequent labels over the fuzzy rules  

(Marseguerra et al., 2004; Zio et al., 2009) (Figure 10). 

 

Insert Figure 9. Table of rules for the intermediate variable Task 

relatedness (partial fill from the expert statements) 

 

Insert Figure 10. Table of rules for the intermediate variable Task 

relatedness (complete fill by rules interpolation) 

 

5 Use of the working model: dependence in 
operators’ early response to ATWS 

5.1 Scenario description 

The case study considered  refers to a set of operator actions required  to avoid  excessive 

boron d ilution in the reactor cooling system in case of an Anticipated  Transient 

Without Scram (ATWS) scenario in a nuclear Boiling Water Reactor (BWR).  

In the considered  scenario, the operators have successfully initiated  the Standby Liquid 

Control System (SLCS) to shut the reactor down. To facilitate the reactor shut down, 

the operators are d irected  by the procedures to increase the void ing by reducing the 

level in the reactor to the Top of Active Fuel (TAF). Additionally, they are required  to 

inhibit the actuation of the Automatic Depressurization System (ADS), which is 

activated  by the signal of low water level in the reactor, generated  while lowering the 

reactor water level to TAF. In case of failure to inhibit the ADS, the reactor pressure 

would  be automatically decreased  and low pressure injection systems (Core Spray 
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System, CSS), would  be activated. The injected  water could  dilute the boron injected  by 

the SLCS and the consequential failure to control reactivity. In case of failure to inhibit 

ADS actuation, the operators are called  to control the level in the reactor using low 

pressure injection, tripping one of the CSS pumps and controlling the other pump.  

The signal to activate the ADS is generated about 7 minutes after the event of failure to 

scram.  At that point, the operators have about 15 minutes to take actions to limit the 

low pressure injection flow. 

The pair of operator tasks involved in the dependence assessment are 1) inhibit the 

ADS and  2) control the reactor vessel level in order to prevent d iluting boron 

concentration after failure to inhibit the ADS. Both actions are d irected by the same 

emergency procedure. 

5.2 Five cases of analyst judgment  

At first, three judgment cases are presented , corresponding to different possible 

interpretations of the context by the analyst. The last two cases show how the model 

responds to the variation of one input from cases 2 and 3. 

Case 1 – input judgments as point values on anchors   

Figure 11 shows an example of this type of input on the model interface and Figure 12 

shows the corresponding fuzzification of the judgments by means of trapezoidal MFs. 

 ―Time‖ (upper left corner of Figure 11 and Figure 12): as said  in the scenario 

description of Section 5.1, the separation in time of the two actions is expected 

to be around 15 minutes.  The most reasonable anchor representing this context 

is ―5 minutes‖, the conservative judgment closest to the real context.   

 ―Cues‖ (upper right corner of Figure 11 and Figure 12): the initial cues for ADS 

inhibition are related  to high reactor power level due to the failure to scram. 

The cues for control of low pressure injection are related  to the reactor vessel 

level, which has to be manually maintained . This situation matches the anchor 

―different indicators for d ifferent parameters‖.   

 ―Goals‖ (lower right corner of Figure 11 and Figure 12): the two actions relate to 

the same function (shut down the reactor by boron control), carried  out via 

d ifferent systems. This situation matches the anchor ―same function by 

d ifferent systems‖ . 

 ―Performers‖ (lower left corner of Figure 11 and Figure 12): the action is carried 

out by the same team. This matches the anchor ―same team‖. 
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Figure 13 reports the output of the dependence model as it results from the above 

judgments. The model assigns a level of ―Low ‖, without uncertainty  (in the Figure, the 

possibility of ―Low‖ is 1, while the possibility of all the other levels is 0). Without 

entering into the details of the underlying fuzzy expert system, the reason for this 

result is that the input judgments are such that only one rule is activated , i.e.: 

IF Time is Close AND 

Cue similarity is None AND 

Similarity of functions/ goals is High AND 

Similarity of performers is High 

THEN Dependence is Low 

Yet the analyst may not be satisfied with the judgments of Figure 11, as they do not 

incorporate entirely his/ her belief on the context. In particular, ambiguity and 

uncertainty may come with his judgments. The next cases show how the presented 

model handles these aspects. 

 

INSERT Figure 11. Analyst input on the anchored scale for case 

1: point estimates matching the anchors 

 

 

INSERT Figure 12. Fuzzy input with trapezoidal MFs for case 1: 

point estimates matching the anchors.  

 

 

INSERT Figure 13. Output of dependence level for case 1: point 

estimates matching the anchors. 

 

 

Case 2 – input judgments as point values between labels or between anchors  

This case shows how the model responds to a judgment of the analyst which is in 

between labels. To better show the effect of this type of judgment, only one input is 

given as an ―in between‖ judgment (i.e. similarity of cues), while the other ones are left 

to the values of Case 1. 

Consider the assessment on ―cues‖ at the basis of the judgment in Case 1. An analyst 

may want to represent that cues are not totally d ifferent  as it is implied  in the 

description of Case 1. Indeed, ADS actuation is commanded by the signal of low water 

level in the reactor.  Therefore, level in the reactor is also one of the parameters that the 
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operators have to monitor while inhibiting ADS. The context is therefore more 

ambiguous than that represented  in Case 1. The analyst may therefore feel more 

confident to assign a point assessment somewhere in between the label ―NONE‖, 

representing ―different indicators for d ifferent parameters‖ and the label ―LOW‖, 

representing a somewhat higher level of dependence.  

Figure 14 shows the input of the analyst on the model interface and Figure 15 shows 

the corresponding fuzzification of the judgments by means of trapezoidal MFs. 

Figure 16 reports the output of the dependence model in form of the possibility values 

of the d ifferent levels of dependence. It can be seen that the ambiguity of the judgment 

reflects in the model output, which assigns possibility to both levels of ―low‖ and 

―medium‖ (in particular, 0.8 to LOW and 0.2 to MEDIUM). The relative possibilities 

values of the low and medium labels depend on the location of the input assessment 

arrow of the analysis in Figure 14. 

The reason for this output is that as a result of the input judgments, two rules are 

activated, i.e.: 

IF Time is Close AND 

Cue similarity is None AND 

Similarity of functions/ goals is High AND 

Similarity of performers is High 

THEN Dependence is Low 

IF Time is Close AND 

Cue similarity is Low AND 

Similarity of functions/ goals is High AND 

Similarity of performers is High  

THEN Dependence is 

MEDIUM  

 

 

INSERT Figure 14. Analyst input on the anchored scale for case 

2: point estimates between anchors. 

 

INSERT  Figure 15. Fuzzy input with trapezoidal MFs for case 2: 

point estimates between anchors.  

 

INSERT Figure 16. Output of dependence level for case 2: point 

estimates between anchors. 

 

Case 3 – range assessments (uncertainty) 
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This case shows how uncertainty in the context can be represented  in the jud gment and 

how this reflects in the output dependence assessment. Again, only one input is varied 

from the judgments at the basis of Case 2 to show this effect. 

Consider the judgment on the input factor ―closeness in time‖. According to the 

scenario description, the operators have about 15 minutes to take actions to limit the 

low pressure injection flow. In Case 1, in order to have the input matching an anchor, 

the conservative judgment of 5 minutes was made. However, more realistically an 

analyst may want to represent the uncertainty in the ―about 15 minutes‖ as an interval 

range between 5 and 20 minutes (Figure 17 and Figure 18).   

Figure 19 reports the output of the dependence model in form of the possibility values 

of the d ifferent levels of dependence. It can be seen that as a consequence of the varied 

input judgment, the output assessment is spread  on the three values of ZERO, LOW, 

and MEDIUM, peaked on the LOW level.  The activated  rules are in fact: 

 

IF Time is Neither AND 

Cue similarity is None AND 

Similarity of functions/ goals is High AND 

Similarity of performers is High  

THEN Dependence is Zero 

IF Time is Neither AND 

Cue similarity is Low AND 

Similarity of functions/ goals is High AND 

Similarity of performers is High  

THEN Dependence is Low 

IF Time is Close AND 

Cue similarity is None AND 

Similarity of functions/ goals is High AND 

Similarity of performers is High  

THEN Dependence is Low 

IF Time is Close AND 

Cue similarity is Low AND 

Similarity of functions/ goals is High AND 

Similarity of performers is High  

THEN Dependence is 

Medium 

 

 

Insert Figure 17. Analyst input on the anchored scale for case 3: 

range assessment 
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Insert Figure 18. Fuzzy input with trapezoidal MFs for case 3: 

range assessment. 

Insert Figure 19. Output of dependence level for case 3: range 

assessment. 

 

Cases 4 and 5 – response of the model to judgment variation on one input   

This cases show how the model responds to the variation of one input from the values 

that were used  in cases 2 and 3. Note, these last two cases do not correspond to a 

specific dependence analysis assessment, but they are presented  here as examples of 

sensitivity analysis. 

The inputs for cases 4 and 5 are the same as those of cases 2 and 3, respectively, except 

for the judgment on factor ―similarity of cues‖, which is now centered  on the anchor 

―single indicator for the same parameter‖ (with falls on the input label HIGH, without 

overlapping to any other label).  

The output of the dependence model is reported  in Figure 20: as expected , both output 

assessments are shifted  towards higher dependence levels, as a consequence that the 

input judgment has been moved towards higher similarity of cues. In case 4, the level 

of HIGH is assigned without uncertainty (Figure 20, left), because the input assessment 

is such to activate only one rule: 

IF Time is Close AND 

Cue similarity is High  AND 

Similarity of functions/ goals is High AND 

Similarity of performers is High 

THEN Dependence is 

High 

  

Instead , the output d istribution of case 5 is spread  over two levels (MEDIUM and 

HIGH), as an effect of the uncertainty in the ―closeness in time‖ judgment, which is 

expressed  as an interval range (Figure 20, right). For brevity, the rules activated  in case 

5 are not reported .   

Insert Figure 20. Output of dependence level for cases 4 (left) and 

5 (right). 
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6 Discussion  

6.1 Repeatability and traceability 

The motivation behind  the development of the presented  method has been to give 

repeatability and traceability to the dependence assessment among successive human 

actions affecting safety of installation .  

Repeatability comes from the fact that the proposed method is based  on  an explicit, 

computable model. Indeed, as with DTs, the judgments are given on the input factors 

and the applicable dependence level follows from the model and  not from direct expert 

judgment. With respect to the judgments to be provided on the input factors, 

repeatability benefits from provid ing anchor situations to the analyst: the more 

representative and defined  the anchors are, the less controversial, and  therefore 

variable, the input judgments are.  

Unlike DTs, traceability of the dependence model is assured  by a systematic expert 

elicitation approach, made up of two traceable steps (first fill and interpolation  of the 

fuzzy logic rules relating the input to the dependence level). Once the dependence 

model is built, it is easy to go back and verify the base expert’s statements that 

originated  the model. In principle, the traceability of the process to build  DTs could  be 

potentially improved by provid ing better documentation, but this has been rarely the 

case. 

6.2 Verification and validation issues 

Model verification and validation are two essential steps in the development of any 

method  and are being taken into consideration in the development of the present 

dependence method .  

Verification is intended as the process to make sure that the model represents correctly 

the experts’ knowledge (O’Keefe & Smith, 1987). After construction, the expert model 

has to be assessed  (verified) by the experts whose expertise is captured  in the model. In 

this phase, feedback needs to be provided to the experts to allow them to determine 

whether the expert system model is a good representation of their knowledge, and  if 

not, to modify the model appropriately. Techniques for provid ing this feedback are 

currently under investigation by the authors: they  include visualization techniques as 

well as importance measures. Some preliminary results can be found  in Podofillini et 

al. (2008). 

A fundamental step for the acceptance of the dependence model is its validation. Yet, 

the empirical validation of a human error dependence model is a very d ifficult task. In 

what follows, the status of HRA validation generally and as it regards dependence is 
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outlined . The most significant HRA validation efforts have addressed  mostly failure 

probabilities for ―execution‖, that is, carrying out a series of actions or steps on a 

system. A review of validation efforts for a number  of HRA methods can be found in 

Kirwan (1997b). These sources note the d ifficulty of validating the failure probabilities 

for decision or d iagnosis that are predicted with HRA methods. This is due in 

particular to the lack of reference data, which in turn is caused  by the sensitivity of 

decision failures to a broad  range of variables (contextual factors). Indeed, data 

collection efforts have addressed  mostly failure probabilities for ―execution‖, as, for 

example, in Kirwan, et al. (2008), where the focus is on communication errors.  

There are on-going efforts that should  improve the state of HRA data in the future. 

One of these is an attempt to analyze operating experience and to obtain in this way 

empirical relationships between the factors and the observed human failure events: the 

Human Error Repository and Analysis (HERA) project and  database sponsored  by the 

U.S. Nuclear Regulatory Commission  (Hallbert et al., 2006). A second effort is the 

International HRA Empirical Study being performed by an international group of 

organizations jointly with the OECD Halden Reactor Project, in which the predictions 

of HRA methods are being compared  with simulator data  (Lois et al., 2008 and Dang et 

al., 2007). While both quantitative predictions (the HEPs) and qualitative predictions 

(the ―driving‖ or most important input factors identified  in the Human Reliability 

Analysis) will be addressed  in this work, the number of data points will not be 

sufficient to validate comprehensively the relationship between the input variables and 

the predicted  failure probabilities, a  relationship represented  by each HRA method. 

Concerning the validation of a dependence model, the basis or mechanisms that 

potentially lead  to dependence within a series of actions relate strongly to the decision -

making of the personnel associated  with these actions. Therefore, one may anticipate 

that data will be very d ifficult to collect. A major  reason is that the action and failure 

probability of interest are conditioned on a previous personnel failure. Given the 

expected  performance levels, this initial failure is relatively d ifficult to ―provoke‖ 

systematically and realistically such that the subsequent performance can be examined. 

In case the validation strategy would be to test the model’s predictions against 

simulator data, this poses challenges also as to how the simulator experiments should 

be designed (e.g. what accident scenarios should  be simulated).  

This suggests that a model of dependence for HRA cannot be based  on (built from) a 

set of data from which the overall relationship between the input variables and the 

output variable of interest can be quantitatively estimated . For the same reason, it can 

be expected  that the validation of such a model cannot be done against a 
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comprehensive set of data that is able to explore extensively the range of the model 

response.   

However, these d ifficulties should  not d iscourage and some way of test ing the 

empirical basis of the model should be pursued. Three concept alternatives can be 

anticipated  here:  

 Validation of the model against a limited  set of data, thus validating only some 

of the input-output relationships, only those that cover the considered  data.  

 Validation of the effect of individual factors. This would  address the question if 

/  how the effect of variations in one input factor (averaging the effect of the 

other factors or keeping these at fixed  values) as anticipated  by the model 

compares with the empirical data.  

 Validation of the relative strength of the factors and of their interactions. This 

would  address the question if the factors that are predicted  as being important 

by the model result as being important also from the data.  

It is expected  that the experience with the mentioned International HRA Empirical 

Study will help in defining how to go about the above concept alternatives. 

While validation against empirical data has the mentioned challenges, alternative 

approaches to validation are being considered  for the short term.  

Indeed, there is a significant history working with the THERP dependence approach, 

in its original formulation or supported  by DTs. This can be used  to draw some 

conclusions on the reasonableness of the numbers produced for dependence 

calculations, i.e. on its so-called  face valid ity (Kirwan, 1997a).  

Data from experts can also be used  to replace empirical data for a validation exercise. 

This can be done in two ways (which are not exclusive). The first is to give case studies 

to the experts and  partition the cases in two sets: one set is used  to inform the 

relationships and build  the model and  the rest is used  to test the prediction capability 

of the model. The other way is to test the predictions against those from ano ther set of 

experts. These options will be considered  in the design of the expert elicitation process.  

6.3 Additional discussion 

It is worth noting that other expert modelling approaches exist that can handle 

dependence among the input factors. Probabilistic models such as influence d iagrams 

and Bayesian belief networks (Phillips et al., 1990) and connectionism networks 
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(Sträder, 2000) are some examples. Research is also being performed by the authors to 

compare the performance of these probabilistic approaches with Fuzzy approaches. 

Finally, note that the so-called  second-generation HRA methods (ATHEANA (Cooper 

et al., 1996), MERMOS (Le Bot et al., 1998), CREAM (Hollnagel, 1998)) do not quantify 

dependence based  on conditional HFEs probabilities as the presented  method assumes. 

Their common notion is that the likelihood of HFEs is driven by performance 

conditions determined by the context where the action takes place, rather than  by 

intrinsic human error probabilities associated  with the task. Following this notion, the 

context must include preceding HFEs and the failure probability estimated  for any 

action should  reflect a) the effect of preceding HFEs on the scenario and on the 

operators’ situation assessment, and  b) the relationships between the actions, which 

would  include many of the dependence factors. In this way, a model of dependence 

remains essential in a second -generation analysis even if the proposed dependence 

assessment method may not be applicable. As second-generation methods have not yet 

been extensively applied , improving dependence assessment and quantifying 

conditional probabilities remain issues of major concern.  

Another way of handling dependence is through the use of dynamic PSA tools, see e.g. 

(Chang & Mosleh, 2007), which allow to d irectly simulate the evolution of the system 

after each human intervention and therefore, in principle, to better define the context in 

which the dependent actions are carried  out.    

7 Conclusions and Outlook 
Human failure dependence assessment is a highly subjective part of HRA and efforts 

to improve the transparency and  repeatability of the assessments are needed. This 

paper proposes a dependence method that is based  on an expert model, built from a 

transparent expert elicitation process. The expert model is a Fuzzy Expert system. This 

representation has been selected  since it is suitable for models mostly built from expert 

judgment, as opposed to empirical data. A working model of dependence has been 

developed to investigate the concepts underlying the proposed method; its internal 

relationships have been set by the authors. The expert elicitation exercise will be 

performed in the future. The model has been applied  for dependence assessment of 

two operator actions in response to an anticipated  transient without scram in a nuclear 

boiling water reactor. 

Improving the transparency and repeatability of human reliability dependence 

assessment, while keeping the method practical to use h ave been the goals of the 

research. The features of the model to achieve these goals are as follows.   
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The proposed method is based  on an explicit, computable model. As in a decision tree, 

an analyst is required  to give judgments on the input factors of the model, and  not 

d irectly on the dependence level (which is the output of the model). While improving 

the repeatability of the assessment, this is also expected  to reduce its uncertainty, 

compared  to the case of giving judgments d irectly on the dependence level. Indeed, 

uncertainty on input judgments exists as well, but with anchors to provide references 

for the scale, the inputs can be made less subjective than the dependence level.  

The computable model is built from a systematic expert elicitation approach, made up 

of two traceable steps. This is important because, in connection with what said  above, 

the accuracy of the results produced by the method depends on the accuracy of the 

computable model. Given that empirical validation of the model accuracy is extremely 

challenging, it is important that the build ing process is traceable, to allow scrutinizing 

the experts’ statements contained  in the expert model.  

With the use of the expert model, the analyst’s input judgments are d irectly and 

formally converted  into the output, the (d iscrete) dependence level. Compared  to a 

decision tree-based  approach, the result gives a dependence assessment that can more 

closely reflect the analysts’ understanding of the dependence factors for a given set of 

tasks.  

Anchor situations are provided as guidance for the analyst’s assessment of the input 

factors. Using up to five input linguistic labels for the factors, compared to the typical 

two of (binary) decision trees, may be perceived  as subject to more subjectivity as well 

as cumbersome by analysts and  experts. However, the anchor points may counteract 

the effect of having more labels for each factor , by provid ing concrete references for 

determining the input factor for the specific case under analysis. 

Neither the HRA analysts nor the experts whose knowledge is represented  by the 

expert model need  to be familiar with Fuzzy Expert systems: no aspect of the Fuzzy 

formalism is shown to analysts and  experts and  they interface only with the input 

linguistic labels and  with the anchor points. This is very similar to the interface of 

decision trees commonly used  (e.g. SPAR-H and the EPRI HRA Calculator ®). 

Once the model is finally built, verification and validation are also important aspects. 

In particular, validation of the depend ence model against empirical data is 

significantly challenging, due to the d ifficulty of collecting failure probability data. 

However, it is expected  that it will be possible to draw  some conclusions on the model 

face valid ity. Indeed, although the currently used  THERP-based  approaches may suffer 

from a number of limitations, there is a significant experience in working with these 
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and this can be used  to check the reasonableness of the results produced by the 

proposed method.  
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Table 1. The EPRI HRA Calculator ® dependence decision tree (Grobbelaar et al., 

2005). 

Time between cues 
Adequate 

resources 
Stress Level 

Simultaneous 

No 
High 

CD 
Low 

Yes 
High CD 

Low HD 

0-15 min Yes 
High CD 

Low HD 

15-30 min Yes 
High HD 

Low MD 

30-60 min Yes 
High MD 

Low LD 

> 60 min Yes 
High LD 

Low ZD 
NOTE: The above table from the EPRI HRA Calculator ® applies for two actions performed by the same 

crew, at the same location (the control room) and guided by different cues 
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Table 2. Linguistic variables, qualitative labels and anchor points for the working 

model 

Linguistic variable Qualitative labels Anchors1 (provided by the 

expert) 

Closeness in time close in time, widely 

separated in time,  

neither 

24 h
 

8 h 

1 h 

30 min 

20 min 

5 min 

Cue similarity None/very low, low, medium, 

high,  very high/complete 

Different sets of indicators for different 

parameters 

Different sets of indicators for the 

same parameter 

Single indicator for the same parameter 

Different sets of indicators for the 

same physical quantity 

Same sets of indicators for the same 

sets of parameters 

Function/goal similarity None/very low, low, medium, 

high,  very high/complete 

Different functions by different 

systems 

Different functions by the same system 

Same function by different systems 

Same function by the same system 

Similarity of performers None/very low, low, medium, 

high,  very high/complete 

TSC vs control room shift  

Different teams 

Different individuals (same 

qualification) 

Same team 

Same person 

 
1
 It is expected that multiple sets of time anchors will be distinguished in the final model. For example, 

time anchors should be placed in different locations on the scale for short and long term actions: a time 

separation of 20 minutes between the two actions, can be considered as wide if the first action is to be 

performed few minutes after the annunciation of the related cues: on the other hand, the same separation 

of 20 minutes can be considered as ―very small‖ if the first action is to be performed within hours from 

the annunciation of the related cues.  
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Dependency Condition Table 
Condition 

number 

Crew 

(same or 

different) 

Time 

(close in time 

or not close in 

time) 

Location  

(same or 

different) 

Cues 

(additional 

or no 

additional) 

Dependency Number of Human Action Failures Rule 

□ - Not Applicable. 

Why?_________________ 

1 s c s na Complete  When considering recovery in a series 

e.g., 2nd, 3rd, or 4th checker 

 

If this error is the 3rd error in the 

sequence, then the dependency is at 

least moderate. 

 

If this error is the 4th error in the 

sequence, then the dependency is at 

least high. 

2 a Complete 

3 d na High  

4 a High  

5 nc s na High 

6 a Moderate 

7 d na Moderate 

8 a Low 

9 d c s na Moderate 

10 a Moderate 

11 d na Moderate  

12 a Moderate 

13 nc s na Low 

14 a Low 

15 d na Low 

16 a Low 

17  Zero 

Figure 1. The SPAR-H dependence decision tree (Gertman et al., 2005). 

 

 

Figure 2. Overview of the dependence model. Different models are needed for pre-

initiators, and different types of post-initiators.  

 

 

 

Closeness in time 

Similarity of performers 

Input assessments 

Expert model Output distribution  

Closeness 

in time 

Task 

relatedness 

Similarity of 

performers 

Dependence 

level 

Similarity of 

functions / 

goals 

Similarity of 

cues 

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.2

0.4

0.6

0.8

1

Dependence

D
e
g
re

e
 o

f 
m

e
m

b
e
rs

h
ip

ZERO LOW MEDIUM HIGH COMPLETE



 

31 

 

 
 

Figure 3. Analyst elicitation on anchored scale; two analyst input types are shown: 

as a point value (arrow) and as an interval (horizontal bar).  

 

 

Figure 4. Possible association of fuzzy sets and membership functions (trapezoids) 

to the input qualitative variable. 
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Figure 5. Left: example of computation of the degree to which the Factor 1 input 

assessment matches the label “Low ” and the Factor 2 input assessment the label 

“High” . Right: computation of the degree of activation of the rule If “Factor 1” is 

“Low” and “Factor 2” is “High” THEN “Dependence” is “Medium” as minimum 

value between the degrees to which Factor 1 and Factor 2 input assessments match 

the corresponding labels in the rule. 

 

 

 

Figure 6. Fuzzy sets and membership functions associated to the THERP 

dependence levels. Elicited from THERP guidelines (Swain & Guttman, 1983). 
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Figure 7. Influence diagram of the working model. 
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Figure 8. Results from elicitation of the input factors and the anchors: the dependence model as seen by the analyst. Anchors may change 

for different typologies of tasks.   
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Figure 9. Table of rules for the intermediate variable Task relatedness (partial fill from 

the expert statements). 

 

 

Figure 10. Table of rules for the intermediate variable Task relatedness (complete fill by 

rules interpolation). 
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Figure 11. Analyst judgments on input factors for failure to control low pressure 

injection given failure to inhibit ADS - case 1: judgments given as point values matching 

the anchors. 

 

Figure 12. Fuzzy input with trapezoidal MFs for case 1: point estimates matching the 

anchors.  
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Figure 13. Output of dependence level for case 1: point estimates matching the anchors. 
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Figure 14. Analyst input on the anchored scale for case 2: point estimates between 

anchors and labels. 

 

Figure 15. Fuzzy input with trapezoidal MFs for case 2: point estimates between anchors 

and labels.  
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Figure 16. Output of dependence level for case 2: point estimates between anchors and 

labels. 
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Figure 17. Analyst input on the anchored scale for case 3: range assessment. 

 

Figure 18. Fuzzy input with trapezoidal MFs for case 3: range assessment.  
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Figure 19. Output of dependence level for case 3: range assessment. 
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Figure 20. Output of dependence level for cases 4 (left) and 5 (right). 

 

 


