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ABSTRACT 

 

A data-driven approach is presented for the on-line identification of the system Failure Mode (FM) 

and the prediction of the available Recovery Time (RT) during a failure scenario, i.e., the time 

remaining until the system can no longer perform its function in an irreversible manner. The FM 

identification and RT prediction modules are linked in a general framework that recognizes the 

patterns of dynamic evolution of the process variables in the different system failure modes. When a 

new failure scenario develops, its evolution pattern is compared by fuzzy similarity analysis to a 

library of reference multidimensional trajectory patterns of process variables evolution; the failure 

mode of the developing scenario is identified by combining the modes of failure of the reference 

patterns, weighed by their similarity to the developing pattern; the similarity weights are then fed to 

the RT prediction module that estimates the time remaining before the developing trajectory pattern 

hits a failure threshold. 

The approach is illustrated on failure scenarios of the Lead Bismuth Eutectic eXperimental 

Accelerator Driven System (LBE-XADS). The accident scenarios are classified in three different 

system failure modes, depending on the value reached by the diathermic oil secondary coolant 

temperature with respect to maximum and minimum safety threshold values set to avoid primary 

coolant thermal shocks and degradation of the oil physical and chemical properties. 

 

Key Words: Failure Scenarios, Failure Mode Identification, Recovery Time Prediction, Data-driven 

Approach, Fuzzy Similarity Analysis, Nuclear Power Plant, Lead-Bismuth Eutectic eXperimental 

Accelerator Driven System (LBE-XADS). 
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1. Introduction 

The primary purpose of prognostics is to indicate whether the equipment of interest can 

perform its function throughout its lifetime; in case it cannot, it is a desirable feature of the 

prognostic methodology to identify the system Failure Mode (FM), i.e., the physical manner in 

which the failure occurs as defined by a safety variable crossing a pre-established threshold, and 

estimate the available Recovery Time (RT) during a failure scenario, i.e., the time remaining until 

the system can no longer perform its function in an irreversible manner. 

The attractiveness of prognostics for Nuclear Power Plant (NPP) accident management 

comes from the fact that by predicting the evolution of the equipment dynamic state, it is possible to 

provide advanced warning for managing the accident and preparing the necessary corrective actions 

to maintain the equipment in productive operation while avoiding any undesired impact on safety 

[IAEA, 2003]. 

In case of an accident, or an initiating event that may develop into an accident, the plant 

personnel must perform various tasks before taking counteracting actions: 

•  Identification of the plant state: this diagnostic task aims at identifying the cause of the 

problem and the states of a number of parameters critical for the plant operation and safety; 

•  Prediction of the future development of the accident; this task consists in: 

- the identification of the system FM, to recognize the corrective actions necessary to 

avoid the failure; 

- the prediction of the available RT, which is the time remaining for taking the 

corrective actions. 

•  Planning of accident mitigation strategies, to be activated if safe control of the accident 

evolution was not successful. 

NPP personnel have the capability to effectively manage a broad range of accidents; their 

successful management of complex accident behaviors requires that they detect the occurrence of 
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the accident, determine the extent of challenge to plant safety, monitor the performance of active, 

passive, automatic and digital systems, select strategies to prevent or mitigate the safety challenge, 

implement the action strategies, and monitor their effectiveness. The capability to effectively carry 

out these tasks during an accident is influenced by the availability of timely and accurate plant 

status information, the awareness of the future accident progression towards the system FM and of 

the RT available for reaction. Poor decisions may be taken because of a misjudgment on the type of 

occurred accident and system progression towards failure and/or because of an assumed short time 

available for sorting out the information relevant to the plant status [Glasstone et al., 1998]; on the 

contrary, timely and correct decisions can prevent an event from developing into a severe accident 

or mitigate its undesired consequences. 

Nowadays, operators are assisted by computer-based accident management support tools, 

since the complicated phenomena that take place in a NPP during an accident situation are more 

accessible to computerized handling than to human expert evaluation [Øwre, 2001]. Yet, the 

problem of what kind of decision support to provide to nuclear power plant operators, in particular 

during transients leading up to accidents, is far from trivial [NEA, 1992; EC, 1999; USNRC, 1999; 

IAEA, 2003]. 

Accident management support tools usually combine tracking and predictive simulators 

[IAEA, 2003]. The former ones monitor the plant status and provide calculated values also of those 

parameters that are not directly observable by the monitoring systems; predictive simulators deliver 

the FM and available RT for accident management. 

Concerning the FM identification for a developing accidental scenario, it has been shown 

that the order and timing of the fault events occurring along an accident sequence, and the 

magnitude of the process variables at the time of event occurrence can be critical in determining the 

evolution of the accident and the FM the system is heading to [Aldemir et al., 2008]. The problem 

of inferring the system state from the measured parameters can be tackled by two general 
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approaches: the model-based techniques [Willsky, 1976] and the model-free methods or data-driven 

approaches [Reifman, 1997; Marseguerra et al., 2006; Zio et al., 2009c]. Approaches to RT 

prediction can also be categorized broadly into model-based and data-driven [Chiang et al., 2001]. 

Model-based approaches attempt to incorporate physical models of the system into the 

estimations. However, the requirement of high computational speed for on line response necessarily 

leads to limited detail in the phenomena modeled, with consequent limited accuracy in the 

representation of the actual plant behavior [Berglund et al., 1995; Serrano et al., 1999]. On the 

contrary, data-driven techniques utilize monitored operational data related to system health. These 

techniques can typically be deployed quickly and cheaply, still providing wide coverage of system 

behavior; one should, however, be aware of the limitations of the data-driven approaches, which 

cannot be guaranteed to function properly in situations that are not included in the database used to 

train them. In this work, we will resort to a data-driven technique for the FM identification and RT 

prediction. 

In general, data-driven approaches can be divided into two categories: statistical techniques 

(regression methods, ARMA models, etc.) and Artificial Intelligence (AI) techniques (neural 

networks, fuzzy logic systems, etc.). 

With respect to AI techniques, Neural Networks (NNs) and Fuzzy Logic (FL) techniques 

have gained considerable attention in the past few years, due to their ability to deal with the 

uncertainties and non-linearities of the real processes, especially in abnormal conditions [Øwre, 

2001]. Successful prediction models have been constructed based on Neural Networks [Barlett et 

al., 1992; Campolucci et al., 1999; Peel et al., 2008; Zio et al., 2008; Santosh et al., 2009] and 

Neuro-Fuzzy (NF) systems [Wang et al., 2004]. In spite of the recognized power of neural network 

modeling techniques, skepticism on their use in safety-critical applications relates to their black-box 

character which limits intuition with respect to the understanding of their performance [Wang et al., 

2008]. 
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An opportunity for increased transparency and openness of data-driven models is offered by 

fuzzy logic methods, which are increasingly proposed in modern control and diagnostic 

technologies. Based on the principles of Zadeh’s fuzzy set theory, fuzzy logic provides a formal 

mathematical framework for dealing with the vagueness of everyday reasoning [Zadeh, 1965]. As 

opposed to binary reasoning based on ordinary set theory, within the fuzzy logic framework 

measurement uncertainty and estimation imprecision can be properly accommodated [Yuan et al., 

1997; Zio et al., 2005]. 

The present work has the goal of enhancing the data-driven framework of RT prediction 

proposed in [Zio et al., 2009b], by including a module of system FM identification; the extension 

provides real-time information that is helpful for setting adequate corrective actions. The 

computational tool considers a set of multidimensional trajectory patterns arising from different 

system accident scenarios (hereafter called reference trajectory patterns) and uses a fuzzy-based, 

data-driven similarity analysis for identifying the FM and predicting the RT of a newly developing 

failure trajectory (hereafter called test trajectory pattern). The pattern matching process is based on 

a fuzzy evaluation of the distance between the signals of the multidimensional test pattern and the 

patterns of reference [Angstenberger, 2001]; the fuzzy distances between the reference patterns and 

the test one are combined to transform the multidimensional data into a one-dimensional similarity 

indicator, which is used for the identification of the FM and prediction of the available RT. To keep 

the focus, the analysis does not cover the identification of the type of faults occurred during the 

developing accidental scenario nor the distinction/identification of the effects of control 

actions/maneuvers or faults, which also determine deviations in the process variables. Future work 

will be directed towards the implementation of a fault detection and classification module for 

further improving the overall capabilities of the accident management support tool. 

Dynamic failure scenarios of the Lead Bismuth Eutectic eXperimental Accelerator Driven 

System (LBE-XADS) with digital Instrumentation and Control (I&C) [Cammi et al., 2006] are 
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considered for the purpose of showing the feasibility of identifying the system FM and predicting 

the available RT. The analysis does not cover the study of the software and its possible failure 

modes, the benefits of fault tolerant features, the interactions of the software with the hardware and 

human components; eventually, these aspects will need to be addressed and included for the final 

implementation of the method in a qualified tool of accident management. 

The paper is structured as follows. Section 2 provides a detailed description of the 

computational algorithm for the FM identification and RT prediction. Section 3 presents the 

mechanistic model of the LBE-XADS, with the description of the monitored signals. In Section 4, 

the results of the application of the approach to LBE-XADS failure scenarios are presented. Finally, 

some conclusions are drawn in Section 5. 

 

2. Methodology 

It is assumed that N trajectories (reference trajectory patterns) are available, representative 

of the evolution of relevant process signals during randomly selected reference failure scenarios, 

ending in anyone of the possible system end states, which can be of failure or not. These trajectories 

last all the way to system failure, i.e., to the time when anyone of the signals reaches the threshold 

value defining the system FM beyond which the system loses its functionality, or to a fixed time 

horizon of observation of the failure process, T . 

At any time, a developing multidimensional signal trajectory (test trajectory pattern) is 

compared for similarity with the N multidimensional reference trajectory patterns stored in the 

database: the failure modes of these are used to identify the FM towards which the evolving 

transient is heading whereas their residual lifes are used to estimate the RT available. 

Figure 1 shows a schematics of the computational framework in the general case of 

multidimensional trajectories of Z monitored signals ( )1 2, ,..., ,Zf x x x t  at time t. 
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Figure 1 The flowchart of the fuzzy based data-driven approach 

 

For illustration, the procedure is here followed step by step: the key modifications for FM 

identification with respect to the previous procedure for RT prediction [Zio et al., 2009a] are 

highlighted, together with the motivations behind it. 

- Step 1: fault detection. The Z-dimensional trajectory of signals ( )1 2, ,..., ,Zf x x x t  is 

continuously monitored throughout the time horizon of observation T , starting from 

(discrete) time 1t = ; at each discrete time t , its values are recorded and appended to the 

matrix of the values collected at the previous time steps. 
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For reasons which will become clear in the following, the database containing the 

information related to the reference trajectory patterns is organized in a failure mode matrix 

[ ]2NFM ×  and in a 3-D structure of process signals patterns [ ]N k ZR × × . The failure mode matrix 

[ ]2NFM ×  contains the reference trajectories failure modes iFM c= , 1,2,...,c C= , 

1,2,...,i N= , where C is the maximum number of possible system FMs and N is the number 

of the reference trajectories. The 3-D process signals patterns structure [ ]N k ZR × ×  contains the 

partitions of the reference trajectories, where 
T

k
n

=  and its generic element ( ), ,r i j z  is the 

projection on the z-th signal axis of ( ),r i j  which is the j-th segment of length n  of values 

of the i-th reference trajectory, 1,2,...,i N= , 1,2,...,j k= , 1,2,...,z Z= , normalized in the 

range [0.2,0.8]. For clarity’s sake, in Figures 2 and 3 a 2-D reference trajectory and its 

partition into 15 elements  are shown, respectively (i.e., Z=2 and k=15). 

As long as no abnormal signal deviation is detected, the system is qualified as working in 

nominal conditions, i.e., the Failure Mode �( )FM t  is identified with the label corresponding 

to safe system, and the estimate � ( )RT t  of the available recovery time evaluated at the 

generic time t  is taken equal to the system Mean Time to Failure ( )MTTF t , obtained from 

the available recovery time ( )iRT t  of all the failure trajectories in the reference library: 

 � ( ) ( ) ( ) ( ) ( ) ( )
| |

1 1

| | | |i

f fi ii i

f i
i t t i t tf f

RT t MTTF t t t RT t
i t t i t t> >

= = − =
> >∑ ∑  (1) 

where 
if

t  is the time of system failure along the i-th reference trajectory (i.e., the time when 

the signal value exceeds the threshold beyond which the system loses its functionality), 

( )| |
if

i t t>  is the cardinality of the set of reference trajectories whose failure time is larger 
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than t  and ( )iRT t  is their residual life starting from t . At the following time steps, the 

algorithm continues to update the estimates of � ( ) ( )RT t MTTF t= , with the system in 

�( ) ' 'FM t safe= , until a fault is detected upon a deviation of the signal outside its range of 

allowed variability (which is a priori gauged with respect to the range of possible 

fluctuations in the signals); at this time, the algorithm for the identification of the FM and 

prediction of the available RT starts matching the similarity of the developing signal 

trajectory evolution to those in the reference library, combining their failure modes and 

failure times to provide an estimate of the system FM and available RT, respectively. 

 
Figure 2 The two monitored signals of a safe 

bidimensional reference trajectory on a time horizon 
T=3000 s 
 

 
Figure 3 The two monitored signals of Figure 2 

partitioned into k=15 segments of length n=3000/15=200 s, 
j=1,2,…,15

 

Step 2: pointwise difference computation of multidimensional trajectory patterns. At the 

current time t, the latest n-long segment of values of the test trajectory pattern 

( ) ( )1 2 1 2, ,..., , , ,..., , 1, 2,...,Z Zf x x x t f x x x t n t n t= − + − +ɶ  is normalized within an arbitrary 

chose range (a common choice is [0.2,0.8] which avoids numerical problems, e.g. arising 

from the zero value in a range centered at the origin). The pointwise difference ( )δ i  
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between the n·Z values of pattern ( )1 2, ,..., ,Zf x x x tɶ  and those of the generic reference 

trajectory segment ( ), ,r i j z , is computed: 

 ( ) ( ) ( )∑
=

−=
Z

z
z zjirtxfji

1

,,,
~

,δ , 1,2,...,i N= , 1,2,...,j k= , 1,2,...,z Z=  (2) 

The matrix [ ]N kδ ×  contains the difference measures ( ),i jδ  between all n-long segments of 

the Z-dimensional reference trajectories and the test trajectory pattern of the monitored 

signals. 

Step 3: computation of trajectory pointwise similarity and corresponding distance score. 

To allow for a gradual transition in the similarity measure [Binaghi et al., 1993; Joentgen et 

al., 1999], the pointwise difference between two trajectories is evaluated with reference to 

an “approximately zero” fuzzy set (FS) specified by a function which maps the elements 

( ),i jδ  of the difference matrix [ ]N kδ ×  into their values ( ),i jµ  of membership to the 

condition of “approximately zero”. The distance score ( ),d i j  between two trajectory 

segments is then computed as: 

 ( ) ( ), 1 ,d i j i jµ= − , 1,2,...,i N= , 1,2,...,j k=  (3) 

In the application illustrated in this work, the following bell-shaped function is used [Dubois 

et al., 1988]: 

 ( )
( ) ( )2
2

ln
,

,
i j

i j e

α
δ

βµ
 −

−  
 =  (4) 

The arbitrary parameters α  and β  can be set by the analyst to shape the desired 

interpretation of similarity into the fuzzy set: the larger the value of the ratio 
( )
2

ln α
β

−
, the 
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narrower the fuzzy set and the stronger the definition of similarity [Zio et al., 2009a]. Other 

common membership functions can be used, e.g. triangular and trapezoidal. 

- Step 4: weight definition. 

All failure trajectories in the reference library can bring useful information for determining 

the available RT and predicting the system FM of the trajectory currently developing; on the 

other hand, those segments of the reference trajectories which are most similar to the most 

recent segment of length n  of the currently developing failure trajectory should be more 

informative in the extrapolation of the occurring trajectory to failure to identify �( )FM t  and 

estimate � ( )RT t . To account for this, �( )FM t  is identified as: 

 �( ) = FM t K , with { }| max ,    1,2,...,K c
c

K W W c C= =  (5) 

where 
| i

c i
i FM c

W w
=

= ∑ ,  1,2,...,i N= ,  1,2,...,c C= , is the sum of the weights iw  of those 

reference trajectories whose iFM c=  and � ( )RT t  is estimated as a similarity-weighted sum 

of the ( )iRT t : 

 � ( ) ( )
fi

i i
i t t

RT t w RT t
>

= ⋅∑ , 1,2,...,i N=  (6) 

To assign the weight iw , the minimum distance *id  along the i-th row of the matrix 

of Eq. (3) is first identified: 

 ( )*
1,...,min ,i j kd d i j== , 1,2,...,i N=  (7) 

The weight iw  is then computed as: 

 ( )
*1

*1
id

i iw d e β
 − 
 = − ⋅ , 1,2,...,i N=  (8) 



12 
 

and normalized: 

 
1

N

i i e
e

w w w
=

= ∑  (9) 

Note that the smaller the minimum distance the larger the weight given to the i-th trajectory 

[Zio et al., 2009]. 

Step 5: FM(t) identification; RTi(t), RT(t) prediction. The i-th reference trajectory of the 

library, 1,2,...,i N= , partakes in the FM identification by voting for the class c it belongs to 

(Eq. (5)), 1,2,...,c C= ; depending on its similarity to the developing trajectory, its vote is 

weighed by the value iw  defined in Eq. (9). The most voted class corresponds to the K-th 

class that labels �( )FM t , providing the identification of the FM for the test trajectory at time 

t. 

With respect to the generic i-th trajectory in the library for which 
if

t t> , the value ( )iRT t  is 

determined as: 

 ( )
i Mi f jRT t t t= − , 1,2,...,i N=  (10) 

where ( )( )( )*max arg ,
Mj i

j
t n i j dδ= ⋅ =  is the final time index of the latest-in-life segment of 

the i-th trajectory among those with minimum distance *
id  from the developing test 

trajectory (n is the test trajectory pattern length and ( )( )( )*max arg , i
j

i j dδ =  gives the 

largest column index j of ( ),r i i  whose element is equal to *id ). Thus, ( )iRT t  is the time 

available before reaching the failure threshold on the reference trajectory starting from the 

end time of the latest-in-life segment of minimum distance from the developing trajectory 

(Figure 4). 
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Figure 4 The RTi(t) for the i-th bidimensional reference trajectory starts from the end time of the latest-in-life segment of 
minimum distance from the occurring trajectory 

 

This allows a conservative RT estimation, biased towards “pessimistic” predictions of the 

available RT, because in the case that more than one segment along the i-th reference 

trajectory is closest to the developing test trajectory, the latest one is taken, i.e., the one 

closest to failure. 

Then, the estimate � ( )RT t  of the remaining useful life along the developing trajectory is 

simply computed as in Eq. (6), with weights iw  evaluated by Eq. (9). 

 

3. The LBE-XADS 

The case study considered is the same as in [Zio et al., 2009a], concerning failure 

trajectories in the Lead-Bismuth Eutectic eXperimental Accelerator Driven System (LBE-XADS), a 

sub-critical, fast reactor in which the fission process for providing thermal power ( )P t  is sustained 
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by an external neutron source through spallation reaction by a proton beam ( )Q t  accelerated by a 

synchrotron on a lead-bismuth eutectic target [Bowman et al., 1992; Carminati et al., 1993; Rubbia 

et al., 1995; Van Tuyle et al., 1993; Venneri et al., 1993]. For completeness of the information in 

the paper, the physical description of the LBE-XADS and of the failures considered are here 

repeated, with reference to the simplified scheme of the plant of Figure 5. The primary cooling 

system is of pool-type with Lead-Bismuth Eutectic (LBE) liquid metal coolant leaving the top of 

the core, at full power nominal conditions, at temperature equal to 400 °C and then re-entering the 

core from the bottom through the down-comer at a temperature of 300 °C. The average in-core 

temperature of the LBE ,av C
LBT  is taken as the mean of the entrance and exit temperatures. The 

secondary cooling system is a flow of an organic diathermic oil at 290-320 °C, at full power 

conditions. Cooling of the diathermic oil in each loop is obtained through an air flow ( )a tΓ  

provided by three air coolers connected in series. 

 

 
Figure 5 LBE-XADS simplified schematics. A = Accelerator; C = core; P = primary heat exchanger; S = secondary heat 

exchanger 
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A dedicated, dynamic simulation model has been implemented in SIMULINK for providing 

a simplified, lumped and zero-dimensional description of the coupled neutronic and thermo-

hydraulic evolution of the system [Cammi et al., 2006]. The model allows the simulation of the 

system controlled dynamics as well as of the free dynamics when the control module is deactivated 

and the air cooler flow is kept constant. 

Both feedforward and feedback digital control schemes have been adopted for the operation 

of the system. The control is set to keep a steady state value of approximately 300 °C of the average 

temperature of the diathermic oil ,av S
oT : this value represents the optimal working point of the 

diathermic oil at the steady state, full nominal power of 80 MWth. 

On the contrary, an oil temperature beyond the upper threshold ,th u
oT =340 °C would lead to 

degradation of its physical and chemical properties, whereas a temperature below the lower 

threshold ,th l
oT =280 °C could result in thermal shocks for the primary fluid and, eventually, for the 

structural components [Cammi et al., 2006]. Conservatively, no dependence on the duration of 

exposition to temperatures beyond the threshold values has been assumed: in other words, the 

system is considered to fail at such temperatures regardless of the time during which it exceeds the 

thresholds. 

Multiple component failures can occur during the system life. To simulate this, the model 

has been embedded within a Monte Carlo (MC) sampling procedure for injecting faults at random 

times and of random magnitudes. Samples of component failures are drawn within a time horizon of 

3000 s. The set of faults considered are: 

•  The PID controller fails stuck at time t1 with a random flow rate output value 1m  sampled 

from a uniform distribution in [0,797] Kg/s. 

•  The air coolers fail stuck at time t2 in a random position that provides a corresponding air 

flow mass 2m  uniformly distributed in [0,1000] Kg/s. 
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•  The feedforward controller fails stuck at time t3 with a corresponding flow rate value 3m  

uniformly distributed in [0,797] Kg/s. 

•  The communication between air coolers actuators and PID controller fails at time t4 so that 

the PID is provided with the same input value of the previous time step. 

The first three faults are applicable to both analog and digital systems, whereas the last one is 

typical of digital systems. Furthermore, the fault magnitude probability distributions are assumed to 

be uniform, even if the components may more likely fail in a certain mode than in others. This 

includes also rare multiple events in the set of failure scenarios and further tests the robustness of 

the FM identification and RT prediction. 

The sequence of multiple failures is generated by sampling the first failure time from the 

uniform distribution [0,3000] s and the successive failure times from the conditional distributions, 

uniform from the last sampled time to 3000 s. This assumption is conservative, favoring larger 

numbers of failures in the sequence. 

The evolution of the failure scenarios may lead to three different Failure Modes (FMs), 

within the mission time of 3000 s, labeled with numbers from 1 to 3: 

FM = 1. Low-temperature failure mode ( ,av S
oT < ,th l

oT ) 

FM = 2. Safe mode ( ,th l
oT < ,av S

oT < ,th u
oT ) 

FM = 3. High-temperature failure mode ( ,av S
oT > ,th u

oT ) 

The following three signals are taken for the identification of the system FM and the prediction of 

the available RT: 

•  Mean in-core LBE temperature, ,av C
LBT  

•  Mean oil temperature of the secondary heat exchanger hot side , ,av S
oT  

•  Mean air flow rate at the secondary heat exchanger cold side, ( )a tΓ  
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Notice that the sampling of the fault events here undertaken is not intended to reproduce the 

actual stochastic failure behavior of the system components; rather, the choices and hypotheses for 

modeling the faults (i.e., the time horizon of the analysis, the number and typology of faults, the 

distributions of failure times and magnitudes) have been arbitrarily made with the aim of favoring 

multiple failures. Further, the components considered subjected to fault and the fault mechanisms 

are not intended to provide a comprehensive description of the system fault behavior but are only 

taken as exemplary and used for generating the dynamic failure scenarios to be used as reference 

and test patterns. 

 
4. Results 

4.1 Application of the procedure for FM(t) identification and RT(t) prediction 

A total of N =6400 reference failure scenarios have been simulated, differing in faulty 

components, times of faults occurrence and faults magnitudes. For each scenario, Z=2 evolution 

trajectories of the process variables ,av C
LBT  and ,av S

oT  are considered. The database of reference 

trajectories is organized in the signals patterns structure [ ]N k ZR × × , where 
T

k
n

= =60; the generic 

element ( ), ,r i j z  of the reference structure is compared for similarity with the z-th signal of the test 

trajectory pattern containing the values of the latest 50 time steps of the trajectory. The matrix 

[ ]2NFM ×  contains the N =6400 reference trajectories failure modes iFM c= , 1,2,3c = , 

1,2,...,6400i = . 

For each of the test trajectories, the procedural steps 1-5 of Section 2 are performed. 

As an example, for the 2-D test pattern trajectories of Table 1, the �( )FM t  identifications 

based on trajectory segments of 50n =  s are plotted in the upper subplots of Figures 6-10; for all 

the trajectories, ( )FM t  is defined as ‘safe’ ( 2FM = ) until the first fault occurs and the pattern 
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similarity matching starts. In the Figures, the bold vertical line indicates the time of diathermic oil 

temperature threshold exceedance, i.e., the time the system fails if effective recovery actions are not 

successfully completed before then. 

 

 t1 [s] m1 [Kg/s] t2 [s] m2 [Kg/s] t3 [s] m3 [Kg/s] t4 [s] 
Trajectory belonging to the low-
temperature failure mode (Fig. 6) 245 426 / / / / 388 

Trajectory belonging to the low-
temperature failure mode (Fig. 7) 1610 667 1290 962 2732 240 2845 

Trajectory belonging to the high-
temperature failure mode (Fig. 8) 2933 492 2731 358 2988 713 2156 

Trajectory belonging to the high-
temperature failure mode (Fig. 9) 1507 560 1382 551 1611 339 153 

Trajectory which does not exceed 
any safety threshold value (Fig.10) 2828 524 2722 72 2085 87 2066 

Table 1 Times and magnitudes of faults occurring during the accidental scenarios considered in Figures 6-10 
 

The estimates of the ( )MTTF t  are plotted in the lower subplots of Figures 6-10, in thin 

continuous lines with the bars of one standard deviation of the samples ( )|
i if ft t t t− > , where 

if
t  is 

the time at which the diathermic oil temperature profile of the i-th reference trajectory exceeds 

either thresholds ,th u
oT  or ,th l

oT , with corresponding system loss of functionality. The � ( )RT t  

estimates, also obtained based on trajectory segments of 50n =  s, are plotted in bold circles; at the 

beginning of the test trajectories, the predictions match the ( )MTTF t ; then, once a component 

failure is detected, the � ( )RT t  estimates move away from the ( )MTTF t  values towards the real 

RT(t) (dashed thick line). Notice that none of the � ( )RT t  estimates exceeds the actual failure time.  
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Figure 6 FM identification (top) and RT estimation (bottom) 

for a trajectory belonging to the low-temperature failure mode 
(FM=1) 

 
Figure 7 FM identification (top) and RT estimation (bottom) 

for a trajectory belonging to the low-temperature failure mode 
(FM=1) 
 

 
Figure 8 FM identification (top) and RT estimation (bottom) 

for a trajectory belonging to the high-temperature failure 
mode (FM=3) 

 
Figure 9 FM identification (top) and RT estimation (bottom) 

for a trajectory belonging to the high-temperature failure 
mode (FM=3)
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Figure 10 FM identification (top) and RT estimation (bottom) for a trajectory which does not 

exceed any safety threshold value, although a sequence of faults has occurred (FM=2) 
 
 

4.2 Performance of the FM(t) identification and RT(t) prediction procedure 

The performance of the method for identifying the FM and predicting the available RT has 

been verified on a batch of P=128 multidimensional test trajectories, different from the reference 

ones.  

Concerning the performance of the FM identification, the fraction of correct identifications 

over the total number P of test trajectories tested is shown in Figure 11, in correspondence of three 

different prediction times 10%T , 50%T  and 90%T  corresponding to the time instants after 10%, 50% 

and 90% of the evolution of the test trajectory patterns, respectively; the performance increases as 

the developing trajectories approach the end of their lives, reaching a value of 86% at 90%T ; at this 

time, the classification performance can be considered satisfactory, e.g. in comparison with the 

results of other methodologies applied on the same literature case study [Zio et al., 2009c]. 
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Figure 11 FM identification performance evaluated at times T10%, T50% and T90% over the 128 test trajectories 
 

The accuracy of the RT prediction at any time t is expressed through the relative error (RE) 

between the estimate � ( )RT t  and its true value ( )RT t . To globally quantify the performance of the 

procedure over the batch of trajectories, the mean RE at time t has been evaluated: 

 ( )
� ( ) ( )

( )1

1 P p p

p p

RT t RT t
RE t

P RT t=

−
= ∑  (11) 

where ( )pRT t  is the actual available recovery time at time t of test pattern p, and � ( )pRT t  its 

estimate, 1,2,...,p P= . 

Figure 12 shows the empirical probability density function of the RT mean relative error. 

The distribution is skewed towards small error values with mean and median equal to 0.09 and 0.04, 

thus proving that the procedure most frequently makes small relative estimation errors. 
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Figure 12 Empirical probability density function of the RE for the 128 test trajectories 

Figure 13 and Figure 14 offer further insights on the RT relative error behavior and its 

decrease along the test trajectory life time: the former one shows the ( )RE t in correspondence of 

three different prediction time instants 10%T , 50%T  and 90%T , i.e., after 10%, 50% and 90% of the 

evolution of the test trajectory patterns, respectively; the latter one reports the associated boxplots 

for the same three representative times. The accuracy of the RT estimation is seen to increase along 

the test trajectory patterns evolution: halfway (50%T ), 75% of the relative errors are smaller than 0.1; 

towards the end (90%T ), 98% of the relative errors are smaller than 0.1, 75% are smaller than 0.05 

and the value of the median of the distribution narrows down to that of the empirical probability 

density function of Figure 12. 
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Figure 13 RT mean relative error evaluated at times T10%, 

T50% and T90% over the 128 test trajectories 

 
Figure 14 Boxplots of the relative errors evaluated at times 

T10%, T50% and T90% over the 128 test trajectories 

 

Finally, the computational time required by the procedure for one complete test trajectory of 

3000 s is approximately 150 s on an Intel® Core2 Duo of 1.83 GHz, resulting in a 0.05 s time 

requested for prognosing on 1 s of trajectory evolution. 

 

5. Conclusions 

A data-driven similarity-based approach for identifying the Failure Mode (FM) of a system 

and predicting the available Recovery Time (RT) has been presented. The computational tool 

developed could be embedded in an operator support system for emergency accident management 

for timely and correct decisions on how to prevent an event from developing into a severe accident 

or mitigate its undesired consequences. 

The approach considers the information carried out by multiple signals of multidimensional 

trajectories. Data from different transient failure scenarios are used to create a library of reference 

patterns of evolution. For identifying the FM towards which the system evolution is heading and 

predicting the available RT of a test pattern, its evolution data are matched to the reference patterns 

in the library within a multidimensional fuzzy pointwise similarity setting; the information from the 



24 
 

reference patterns, i.e. their failure modes and residual life times, is combined based on the assessed 

similarity to provide the FM identification and RT prediction. 

A number of fault scenarios in the Lead Bismuth Eutectic eXperimental Accelerator Driven 

System (LBE-XADS) have been analyzed by the proposed approach, with satisfactory results in 

terms of both accuracy and speed of computing. 
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