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ABSTRACT

A data-driven approach is presented for the on-ldentification of the system Failure Mode (FM)
and the prediction of the available Recovery TiRR&)(during a failure scenario, i.e., the time
remaining until the system can no longer perforsnfitnction in an irreversible manner. The FM
identification and RT prediction modules are linkeda general framework that recognizes the
patterns of dynamic evolution of the process vdesin the different system failure modes. When a
new failure scenario develops, its evolution paitexy compared by fuzzy similarity analysis to a
library of reference multidimensional trajectorytpens of process variables evolution; the failure
mode of the developing scenario is identified bylgioing the modes of failure of the reference
patterns, weighed by their similarity to the deyehgy pattern; the similarity weights are then fed t
the RT prediction module that estimates the timneaieing before the developing trajectory pattern
hits a failure threshold.

The approach is illustrated on failure scenarios tbe Lead Bismuth Eutectic eXperimental
Accelerator Driven System (LBE-XADS). The accideenarios are classified in three different
system failure modes, depending on the value relablyethe diathermic oil secondary coolant
temperature with respect to maximum and minimuratgdhreshold values set to avoid primary

coolant thermal shocks and degradation of the bygical and chemical properties.

Key Words: Failure Scenarios, Failure Mode IdentificationecBvery Time Prediction, Data-driven
Approach, Fuzzy Similarity Analysis, Nuclear Pow®&ant, Lead-Bismuth Eutectic eXperimental

Accelerator Driven System (LBE-XADS).



1. Introduction

The primary purpose of prognostics is to indicateetier the equipment of interest can
perform its function throughout its lifetime; in s& it cannot, it is a desirable feature of the
prognostic methodology to identify the system HailMode (FM), i.e., the physical manner in
which the failure occurs as defined by a safetyabde crossing a pre-established threshold, and
estimate the available Recovery Time (RT) durirfgilure scenario, i.e., the time remaining until
the system can no longer perform its function inreeversible manner.

The attractiveness of prognostics for Nuclear PoRknt (NPP) accident management
comes from the fact that by predicting the evoluixd the equipment dynamic state, it is possible to
provide advanced warning for managing the accidadtpreparing the necessary corrective actions
to maintain the equipment in productive operatidnilevavoiding any undesired impact on safety
[IAEA, 2003].

In case of an accident, or an initiating event tinaly develop into an accident, the plant
personnel must perform various tasks before takoumteracting actions:

» Identification of the plant state: this diagnostask aims at identifying the cause of the
problem and the states of a number of parameticatfor the plant operation and safety;
» Prediction of the future development of the accigtns task consists in:
- the identification of the system FM, to recognihe torrective actions necessary to
avoid the failure;
- the prediction of the available RT, which is thendi remaining for taking the
corrective actions.
* Planning of accident mitigation strategies, to lsévated if safe control of the accident
evolution was not successful.
NPP personnel have the capability to effectivelynage a broad range of accidents; their

successful management of complex accident behaxegrsres that they detect the occurrence of



the accident, determine the extent of challengpldat safety, monitor the performance of active,
passive, automatic and digital systems, selectesgfies to prevent or mitigate the safety challenge,
implement the action strategies, and monitor te#ectiveness. The capability to effectively carry
out these tasks during an accident is influencedhleyavailability of timely and accurate plant
status information, the awareness of the futurédaot progression towards the system FM and of
the RT available for reaction. Poor decisions maydken because of a misjudgment on the type of
occurred accident and system progression towarsgand/or because of an assumed short time
available for sorting out the information relevamtthe plant status [Glasstone et al., 1998]; @n th
contrary, timely and correct decisions can prewanevent from developing into a severe accident
or mitigate its undesired consequences.

Nowadays, operators are assisted by computer-bmsadent management support tools,
since the complicated phenomena that take plageNi#®P during an accident situation are more
accessible to computerized handling than to humereré evaluation [@wre, 2001]. Yet, the
problem of what kind of decision support to provtdenuclear power plant operators, in particular
during transients leading up to accidents, is famftrivial [NEA, 1992; EC, 1999; USNRC, 1999;
IAEA, 2003].

Accident management support tools usually combraeking and predictive simulators
[IAEA, 2003]. The former ones monitor the planttstaand provide calculated values also of those
parameters that are not directly observable byrbritoring systems; predictive simulators deliver
the FM and available RT for accident management.

Concerning the FM identification for a developingci@ental scenario, it has been shown
that the order and timing of the fault events odogr along an accident sequence, and the
magnitude of the process variables at the timevehieoccurrence can be critical in determining the
evolution of the accident and the FM the systeineiading to [Aldemir et al., 2008]. The problem

of inferring the system state from the measuredarpaters can be tackled by two general



approaches: the model-based techniques [Willsky6lLl&nd the model-free methods or data-driven
approaches [Reifman, 1997; Marseguerra et al., ;2006 et al., 2009c]. Approaches to RT
prediction can also be categorized broadly into ehbbdsed and data-driven [Chiang et al., 2001].

Model-based approaches attempt to incorporate gdilysnodels of the system into the
estimations. However, the requirement of high cotaaenal speed for on line response necessarily
leads to limited detail in the phenomena modeledh wonsequent limited accuracy in the
representation of the actual plant behavior [Berdlet al., 1995; Serrano et al.,, 1999]. On the
contrary, data-driven techniques utilize monitoogerational data related to system health. These
techniques can typically be deployed quickly andagdty, still providing wide coverage of system
behavior; one should, however, be aware of thetditoins of the data-driven approaches, which
cannot be guaranteed to function properly in sibmatthat are not included in the database used to
train them. In this work, we will resort to a dataven technique for the FM identification and RT
prediction.

In general, data-driven approaches can be dividedtwo categories: statistical techniques
(regression methods, ARMA models, etc.) and Artficntelligence (Al) techniques (neural
networks, fuzzy logic systems, etc.).

With respect to Al techniques, Neural Networks (Ndad Fuzzy Logic (FL) techniques
have gained considerable attention in the past fears, due to their ability to deal with the
uncertainties and non-linearities of the real psses, especially in abnormal conditions [@wre,
2001]. Successful prediction models have been nmtetd based on Neural Networks [Barlett et
al., 1992; Campolucci et al., 1999; Peel et alQ&®io et al., 2008; Santosh et al., 2009] and
Neuro-Fuzzy (NF) systems [Wang et al., 2004]. Iniespf the recognized power of neural network
modeling techniques, skepticism on their use ietgadritical applications relates to their blackxbo
character which limits intuition with respect teethnderstanding of their performance [Wang et al.,

2008].



An opportunity for increased transparency and opssiof data-driven models is offered by
fuzzy logic methods, which are increasingly progbse@ modern control and diagnostic
technologies. Based on the principles of Zadehzzyuset theory, fuzzy logic provides a formal
mathematical framework for dealing with the vagussnef everyday reasoning [Zadeh, 1965]. As
opposed to binary reasoning based on ordinary resiry, within the fuzzy logic framework
measurement uncertainty and estimation imprecisanbe properly accommodated [Yuan et al.,
1997; Zio et al., 2005].

The present work has the goal of enhancing the-dfatan framework of RT prediction
proposed in [Zio et al., 2009b], by including a mlelof system FM identification; the extension
provides real-time information that is helpful faetting adequate corrective actions. The
computational tool considers a set of multidimenalatrajectory patterns arising from different
system accident scenarios (hereafter called referémajectory patterns) and uses a fuzzy-based,
data-driven similarity analysis for identifying tfé/ and predicting the RT of a newly developing
failure trajectory (hereafter called test trajegtpattern). The pattern matching process is based o
a fuzzy evaluation of the distance between theassgaf the multidimensional test pattern and the
patterns of reference [Angstenberger, 2001]; tkeyuistances between the reference patterns and
the test one are combined to transform the muledisional data into a one-dimensional similarity
indicator, which is used for the identificationtbe FM and prediction of the available RT. To keep
the focus, the analysis does not cover the ideatibn of the type of faults occurred during the
developing accidental scenario nor the distincicmmtification of the effects of control
actions/maneuvers or faults, which also determmaations in the process variables. Future work
will be directed towards the implementation of alfadetection and classification module for
further improving the overall capabilities of thecelent management support tool.

Dynamic failure scenarios of the Lead Bismuth EtiteeXperimental Accelerator Driven

System (LBE-XADS) with digital Instrumentation ar@bntrol (1&C) [Cammi et al., 2006] are



considered for the purpose of showing the feagyhdf identifying the system FM and predicting
the available RT. The analysis does not cover thdysof the software and its possible failure
modes, the benefits of fault tolerant features,iberactions of the software with the hardware and
human components; eventually, these aspects walll he be addressed and included for the final
implementation of the method in a qualified toobotident management.

The paper is structured as follows. Section 2 mlesia detailed description of the
computational algorithm for the FM identificatiomdh RT prediction. Section 3 presents the
mechanistic model of the LBE-XADS, with the destiap of the monitored signals. In Section 4,
the results of the application of the approachB&+XADS failure scenarios are presented. Finally,

some conclusions are drawn in Section 5.

2. Methodology

It is assumed thall trajectories (reference trajectory patterns) aalable, representative
of the evolution of relevant process signals duragdomly selected reference failure scenarios,
ending in anyone of the possible system end stata@sh can be of failure or not. These trajectories
last all the way to system failure, i.e., to thedgiwhen anyone of the signals reaches the threshold
value defining the system FM beyond which the syskeses its functionality, or to a fixed time
horizon of observation of the failure process,

At any time, a developing multidimensional signedjectory (test trajectory pattern) is
compared for similarity with th&l multidimensional reference trajectory patterngestoin the
database: the failure modes of these are usedetttifiyl the FM towards which the evolving
transient is heading whereas their residual lifesused to estimate the RT available.

Figure 1 shows a schematics of the computatioreahdéwork in the general case of

multidimensional trajectories @ monitored signalsf (xl, Xyes Xy ,t) at timet.



Database

' Stop )

- ~.
I’ ‘\
i
i
i
1
i
i
i
i
i
i . Reference Reference FMs
H signals patterns
1
i Riacz] FM{we) St ep 3: )
i Computation of
. frajectory
hS | ,’I pointwise similarity
¥ and corresponding
- ¥ ~
e = _ AN l distance score
n Riwixz)and f (X,,%,,....X,,1) normalization N
K, : \ Fe 1 Y
20 521,
? ‘ Membership value (i, j) = e
’ ] N Row index i of 7[,»w1] equalto 1,i=1 | l
e ="sae! NO i
i _ i Faultat/? ! . P
! RT (1)=MTTF (1) H Distance scored (i, j) =1—s(i. j)
1
: . E— . : ,
H YES H Column index j of Rwz] equalto 1, j =1 I
: | Y
1 - H - . v
i Test pattern £ (x,, %y ooy X0 1) = f (3, %y Xyl —n+ Lt —n+2,0) | | 1 | d; =min_, . (d(i,])) |
1
\ 7 L1~
N - Pointwise difference &(i, j) = z‘f(x:,t)—r(i: ],:)‘ | l
Step 1: =
Fault detection o 5
Weight calculation w, :(l—d, )»e L
T
‘Weight normalization w, = w; / Z W,
s =i /
‘N 4"
, Step 4:
. Step 2: Weight
Pointwise difference i ° i
computation of definition
multidimensional
trajectory patterns
K
/
"
g
~ S,
H \\| Step 5:
E Single RT evaluation jaaaliciehisculuation ey ! 1M(?) identification
V| RE()=, 7n-max(arg(¢5(i,j):d:)) . :'mz(",qu se=1,2,..C i RT(1), RT(1) prediction
1 . J H
i
i ‘ |
: ) _ !
NO ~ 1 RTs aggregation FM (t) prediction !
RT(t)=0? i 5 o . ; 1
() {\ RI(1)=Y w,RI; FM@O=K K |W, =max{Il,} ;
. ’
YES i ’

Figure 1 The flowchart of the fuzzy based data-drivie approach

For illustration, the procedure is here followeepsty step: the key modifications for FM
identification with respect to the previous proceddior RT prediction [Zio et al., 2009a] are

highlighted, together with the motivations behitd i
- Step 1. fault detection. The Z-dimensional trajectory of signalsf(xl,xz,...,xZ ,t) is
continuously monitored throughout the time horizoh observationT, starting from

(discrete) timet =1; at each discrete timg, its values are recorded and appended to the

matrix of the values collected at the previous tsteps.



For reasons which will become clear in the follogyinthe database containing the

information related to the reference trajectorytgrass is organized in a failure mode matrix

FM[n+g and in a 3-D structure of process signals patt&Rs«z . The failure mode matrix

W[NXZ] contains the reference trajectories failure modeM, =c, c¢=12,..C,

1=12,...N, whereC is the maximum number of possible system FdN is the number

of the reference trajectories. The 3-D processatgypatterns structurﬁ[kaxz] contains the
partitions of the reference trajectories, wh&re— and its generic elememt(l ) ,z) is the
n

projection on the-th signal axis ofr (i ,j) which is thej-th segment of lengtim of values

of thei-th reference trajectory,=1,2,...N, j=12,..k, z=12,...,Z, normalized in the
range [0.2,0.8]. For clarity’s sake, in FiguresritleB a 2-D reference trajectory and its
partition into 15 elements are shown, respectijiety, Z=2 andk=15).

As long as no abnormal signal deviation is detedieel system is qualified as working in

nominal conditions, i.e., the Failure Mo@(t) is identified with the label corresponding
to safe system, and the estimaRg (t) of the available recovery time evaluated at the
generic timet is taken equal to the system Mean Time to FaiM?éTF(t), obtained from

the available recovery timR'Ii'(t) of all the failure trajectories in the referendeary:

RT(1) = MTTF(ﬁ:m ;(; -) :m > Ri() (1)

wheret; is the time of system failure along thth reference trajectory (i.e., the time when
the signal value exceeds the threshold beyond wtiiehsystem loses its functionality),

(|i |tfi >t) is the cardinality of the set of reference trajeiels whose failure time is larger



thant and R‘Ii'(t) is their residual life starting fromh. At the following time steps, the
algorithm continues to update the estimatesﬂﬁf(t)= MTTF( 9, with the system in

I?I\W(t) ='safée, until a fault is detected upon a deviation of fiignal outside its range of

allowed variability (which is a priori gauged wittespect to the range of possible
fluctuations in the signals); at this time, thecalthm for the identification of the FM and
prediction of the available RT starts matching thmilarity of the developing signal
trajectory evolution to those in the referencedryr combining their failure modes and

failure times to provide an estimate of the syskvhand available RT, respectively.
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Figure 2 The two monitored signals of a safe Figure 3 The two monitored signals of Figure 2
bidimensional reference trajectory on a time horizo partitioned into k=15 segments of length=3000/15=200 s,
T=3000 s ji=1,2,...,15

Step 2: pointwise difference computation of multidimensional trajectory patterns. At the

current timet, the latestn-long segment of values of the test trajectory quatt
f (X0 %% 08 = (%, %,..,% &= Lt= n+ 2,...} is normalized within an arbitrary
chose range (a common choice is [0.2,0.8] whichidsvaumerical problems, e.g. arising

from the zero value in a range centered at theimrig’he pointwise difference5(-)
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between then-Z values of patternf(xl,><2,...,xZ ) and those of the generic reference

trajectory segment(i,j,z), is computed:

50,1)= 3T, )11, 1.2 1 212N J=L2,k, 221.2,..2 @

z=1

The matrixg[ka] contains the difference measurééi,j) between alh-long segments of

the Z-dimensional reference trajectories and the tegedtory pattern of the monitored
signals.

Step 3: computation of trajectory pointwise similarity and corresponding distance score.

To allow for a gradual transition in the similarityeasure [Binaghi et al., 1993; Joentgen et
al., 1999], the pointwise difference between twajeirtories is evaluated with reference to

an “approximately zero” fuzzy set (FS) specified dyunction which maps the elements
d(i,j) of the difference matrixz[ka] into their valuesy(i,j) of membership to the

condition of “approximately zero”. The distance m:aj(i,j) between two trajectory

segments is then computed as:
di,j)=1-p(i,j), i=12,..N, j=12,.Kk (3)

In the application illustrated in this work, thdléaving bell-shaped function is used [Dubois

et al., 1988]:

AR @

The arbitrary parametersr and [ can be set by the analyst to shape the desired

, , L —In(a
interpretation of similarity into the fuzzy setetharger the value of the ratre%, the
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narrower the fuzzy set and the stronger the defmiof similarity [Zio et al., 2009a]. Other

common membership functions can be used, e.ggtrianand trapezoidal.
Step 4: weight definition.

All failure trajectories in the reference librargrcbring useful information for determining
the available RT and predicting the system FM eftthajectory currently developing; on the
other hand, those segments of the reference toajestwhich are most similar to the most

recent segment of length of the currently developing failure trajectory skbbe more

informative in the extrapolation of the occurrimgjéctory to failure to identify:/I\W (t) and
estimateF/ﬁ'(t). To account for thisFM (t) is identified as:
FM (t) =K , with K |W, = ma{W} , c=1,2,..C (5)

where W, = z w, i=1,2,.N, ¢c=12,...C, is the sum of the weights; of those

iIFM; =c
reference trajectories who$eM, =c and fﬁ'(t) is estimated as a similarity-weighted sum
of the RT (1):

RT()=> wiRT(),i=12,.N (6)
it >t

To assign the weightv , the minimum distancel’ along thei-th row of the matrix

of Eq. (3) is first identified:
d =min,_, , d(i,j),i=12,...N (7)
The weightw is then computed as:

j ,i=12,..N (8)

NG
o

W =(1—q*)£_ ;
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and normalized:

w=w/ D W (9)

Note that the smaller the minimum distance thedathje weight given to theth trajectory

[Zio et al., 2009].

Step 5: FM(t) identification; RT;(t), RT(t) prediction. Thei-th reference trajectory of the

library, i =1,2,...N , partakes in the FM identification by voting fbietclass it belongs to
(Eq. (5), c=1,2,...C; depending on its similarity to the developingdcory, its vote is
weighed by the valuav defined in Eq. (9). The most voted class corredpdn theK-th
class that Iabel?l\i(t) , providing the identification of the FM for thestdrajectory at time
t.

With respect to the generiigh trajectory in the library for which, >t, the vaIueR'Ii'(t) is

determined as:

RT()=t -t ,i=12..N (10)

wheret; = nmjnax( arg(é'(i ,j) :di*)) is the final time index of the latest-in-life segm of

the i-th trajectory among those with minimum distande from the developing test

trajectory ( is the test trajectory pattern length am;hx( argid(i ,j):di* )) gives the
J

largest column indek of r (i) whose element is equal ). Thus, RT, (1) is the time

available before reaching the failure thresholdtloa reference trajectory starting from the
end time of the latest-in-life segment of minimumstance from the developing trajectory

(Figure 4).
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Figure 4 TheRT;(t) for the i-th bidimensional reference trajectory starts fromthe end time of the latest-in-life segment of
minimum distance from the occurring trajectory

This allows a conservative RT estimation, biasedatds “pessimistic” predictions of the

available RT, because in the case that more thansegment along thieth reference

trajectory is closest to the developing test triajgc the latest one is taken, i.e., the one

closest to failure.

Then, the estimaté?l’(t) of the remaining useful life along the developingjectory is

simply computed as in Eq. (6), with weights evaluated by Eq. (9).

3. The LBE-XADS

The case study considered is the same as in [Zial.et2009a], concerning failure

trajectories in the Lead-Bismuth Eutectic eXperitaéAccelerator Driven System (LBE-XADS), a

sub-critical, fast reactor in which the fission gess for providing thermal powé(t) is sustained

13



by an external neutron source through spallatiactien by a proton bear@(t) accelerated by a

synchrotron on a lead-bismuth eutectic target [Bawrat al., 1992Carminati et al., 1993; Rubbia
et al., 1995; Van Tuyle et al., 1993; Venneri ef 89093]. For completeness of the information in
the paper, the physical description of the LBE-XARBd of the failures considered are here
repeated, with reference to the simplified scherhéhe plant of Figure 5. The primary cooling
system is of pool-type with Lead-Bismuth EutectiBE) liquid metal coolant leaving the top of
the core, at full power nominal conditions, at temgture equal to 400 °C and then re-entering the
core from the bottom through the down-comer atraperature of 300 °C. The average in-core
temperature of the LBE%C is taken as the mean of the entrance and exitemnhpes. The
secondary cooling system is a flow of an organ@thdirmic oil at 290-320 °C, at full power

conditions. Cooling of the diathermic oil in eadbop is obtained through an air flow, (t)

provided by three air coolers connected in series.

f —— ’.e Feedback E

:_Control Block !
o Feedforward

Figure 5 LBE-XADS simplified schematics. A = Accelertor; C = core; P = primary heat exchanger; S = secwlary heat
exchanger

14



A dedicated, dynamic simulation model has beenemginted in SIMULINK for providing
a simplified, lumped and zero-dimensional desaiptof the coupled neutronic and thermo-
hydraulic evolution of the system [Cammi et al.08D The model allows the simulation of the
system controlled dynamics as well as of the fngsachics when the control module is deactivated
and the air cooler flow is kept constant.

Both feedforward and feedback digital control scherhave been adopted for the operation
of the system. The control is set to keep a ststate value of approximately 300 °C of the average
temperature of the diathermic of|*®: this value represents the optimal working poihtthe
diathermic oil at the steady state, full nominalveo of 80 MWth.

On the contrary, an oil temperature beyond the ughpesholdT™" =340 °C would lead to
degradation of its physical and chemical propertiwhereas a temperature below the lower
thresholdT"'=280 °C could result in thermal shocks for the priynfluid and, eventually, for the
structural components [Cammi et al., 2006]. Coretrgly, no dependence on the duration of
exposition to temperatures beyond the thresholdegahas been assumed: in other words, the
system is considered to fail at such temperatwegardless of the time during which it exceeds the
thresholds.

Multiple component failures can occur during theteyn life. To simulate this, the model
has been embedded within a Monte Carlo (MC) sammiocedure for injecting faults at random
times and of random magnitudes. Samples of compdaiures are drawn within a time horizon of
3000 s. The set of faults considered are:

* The PID controller fails stuck at tinte with a random flow rate output valug sampled

from a uniform distribution in [0,797] Kg/s.
* The air coolers fail stuck at tinmtg in a random position that provides a correspondaiing

flow massm, uniformly distributed in [0,1000] Kg/s.

15



» The feedforward controller fails stuck at tikewith a corresponding flow rate valug,

uniformly distributed in [0,797] Kg/s.

* The communication between air coolers actuatorsRibdcontroller fails at timé, so that

the PID is provided with the same input value @ pinevious time step.

The first three faults are applicable to both agadod digital systems, whereas the last one is
typical of digital systems. Furthermore, the fanlignitude probability distributions are assumed to
be uniform, even if the components may more likially in a certain mode than in others. This
includes also rare multiple events in the set dtifa scenarios and further tests the robustness of
the FM identification and RT prediction.

The sequence of multiple failures is generated dyding the first failure time from the
uniform distribution [0,3000] s and the succesdaiture times from the conditional distributions,
uniform from the last sampled time to 3000 s. Téssumption is conservative, favoring larger
numbers of failures in the sequence.

The evolution of the failure scenarios may leadhee different Failure Modes (FMs),
within the mission time of 3000 s, labeled with rhers from 1 to 3:

FM =1. Low-temperature failure mod&f s<T"')
FM = 2. Safe mode "' <T*°<T,™)
FM = 3. High-temperature failure mod&i{°>T"")

The following three signals are taken for the idferation of the system FM and the prediction of

the available RT:

* Mean in-core LBE temperaturgz:©
» Mean oil temperature of the secondary heat exchamgeside ,T°

+ Mean air flow rate at the secondary heat exchacgerside,r, (t)

16



Notice that the sampling of the fault events hardentaken is not intended to reproduce the
actual stochastic failure behavior of the systemmonents; rather, the choices and hypotheses for
modeling the faults (i.e., the time horizon of @ealysis, the number and typology of faults, the
distributions of failure times and magnitudes) haeen arbitrarily made with the aim of favoring
multiple failures. Further, the components cong®desubjected to fault and the fault mechanisms
are not intended to provide a comprehensive ddgmmipf the system fault behavior but are only
taken as exemplary and used for generating thenaigntilure scenarios to be used as reference

and test patterns.
4. Results

4.1 Application of the procedure for FM(t) identification and RT(t) prediction

A total of N =6400 reference failure scenarios have been siedjlaiffering in faulty
components, times of faults occurrence and faulgmtudes. For each scenards2 evolution

trajectories of the process variabl@§'® and T° are considered. The database of reference
. . : . . = T :
trajectories is organized in the signals pattetnsciire Rinxk«z , where k =—=60; the generic
n

elementr (i ] ,z) of the reference structure is compared for sintylavith the z-th signal of the test
trajectory pattern containing the values of the@dats0 time steps of the trajectory. The matrix
WM contains the N =6400 reference trajectories failure moddaM, =c, c=1,2,3,
i=1,2,...,640(

For each of the test trajectories, the procedueglss1-5 of Section 2 are performed.

As an example, for the 2-D test pattern trajectoné Table 1, theFM (t) identifications

based on trajectory segmentsrof 50 s are plotted in the upper subplots of Figure®6tar all

the trajectories,FM (t) is defined assafe’ (FM =2) until the first fault occurs and the pattern
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similarity matching starts. In the Figures, thedoweértical line indicates the time of diathermit oi

temperature threshold exceedance, i.e., the timeybtem fails if effective recovery actions aré no

successfully completed before then.

ti[s] | mi[Kgls] | ta[s] | mp[Kgls] | tz[s] | mg[Kg/s] | t4[s]
Trajectory belonging to the low-
temperature failure mode (Fig. 6) 245 426 / / / / 388
Trajectory belonging to the low- | 1510 |  gg7 1290 962 2732 240 2845
temperature failure mode (Fig. 7) T
Trajectory belonging to the high- | o933 | 49 2731 358 2988 713 2136
temperature failure mode (Fig. 8) )
Trajectory belonging to the high- | 1547 | 5g0 1382 551 1611 339 158
temperature failure mode (Fig. 9)
Trajectory which does not exceed il
any safety threshold value (Fig.10) 2828 224 2722 2 208% 87 2066

Table 1 Times and magnitudes of faults occurring durig the accidental scenarios considered in Figuresi®

The estimates of thMTTF(t) are plotted in the lower subplots of Figures 6-bOthin

continuous lines with the bars of one standardat®n of the sampleétfi —tt, >t), wheret, is

the time at which the diathermic oil temperaturefipe of thei-th reference trajectory exceeds

either thresholdsT™ or T™', with corresponding system loss of functionalifyhe F/ﬁ'(t)

estimates, also obtained based on trajectory segmén =50 s, are plotted in bold circles; at the

beginning of the test trajectories, the predictiomstch the MTTF(t); then, once a component

failure is detected, thRT (t) estimates move away from tH\ﬂTTF(t) values towards the real

RT(t) (dashed thick line). Notice that none of tﬁ?i'(t) estimates exceeds the actual failure time.
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exceed any safety threshold value, although a seaque of faults has occurred (FM=2)

4.2 Performance of the FM(t) identification and RT(t) prediction procedure

The performance of the method for identifying thé &nd predicting the available RT has
been verified on a batch &=128 multidimensional test trajectories, differémm the reference
ones.

Concerning the performance of the FM identificatithe fraction of correct identifications
over the total numbd? of test trajectories tested is shown in Figureidorrespondence of three

different prediction timesT,,,, T.,, and Ty, corresponding to the time instants after 10%, 50%

and 90% of the evolution of the test trajectorytgrais, respectively; the performance increases as

the developing trajectories approach the end of tives, reaching a value of 86% &, ; at this

time, the classification performance can be comstiesatisfactory, e.g. in comparison with the

results of other methodologies applied on the d#erature case study [Zio et al., 2009c].
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The accuracy of the RT prediction at any time expressed through the relative error (RE)
between the estimaﬁ'(t) and its true vaIueRT(t). To globally quantify the performance of the

procedure over the batch of trajectories, the nitfarat timet has been evaluated:

ZRATp(t)-RI(b\

RE(t):%; RT, (9

(11)
where RT, ( t) is the actual available recovery time at tinteé test pattermp, and fﬁ'p ( t) its
estimate,p=1,2,...,P.
Figure 12 shows the empirical probability densiindtion of the RT mean relative error.

The distribution is skewed towards small error ealwith mean and median equal to 0.09 and 0.04,

thus proving that the procedure most frequentlyesadmall relative estimation errors.
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Figure 12 Empirical probability density function of the RE for the 128 test trajectories
Figure 13 and Figure 14 offer further insights de RT relative error behavior and its

decrease along the test trajectory life time: tvenkr one shows théz_E( t) in correspondence of

three different prediction time instants,,,, T, and Ty,, i.e., after 10%, 50% and 90% of the

evolution of the test trajectory patterns, respetyi the latter one reports the associated bogplot
for the same three representative times. The acgwfahe RT estimation is seen to increase along

the test trajectory patterns evolution: halfwdy,f ), 75% of the relative errors are smaller than 0.1,
towards the endT,,), 98% of the relative errors are smaller than @36 are smaller than 0.05

and the value of the median of the distributionrovs down to that of the empirical probability

density function of Figure 12.
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Finally, the computational time required by theqadure for one complete test trajectory of
3000 s is approximately 150 s on an [fit€lore2 Duo of 1.83 GHz, resulting in a 0.05 s time

requested for prognosing on 1 s of trajectory eiatu

5. Conclusions

A data-driven similarity-based approach for ideyti§ the Failure Mode (FM) of a system
and predicting the available Recovery Time (RT) bagn presented. The computational tool
developed could be embedded in an operator suppsteém for emergency accident management
for timely and correct decisions on how to prevamtevent from developing into a severe accident
or mitigate its undesired consequences.

The approach considers the information carriedogunultiple signals of multidimensional
trajectories. Data from different transient faille@enarios are used to create a library of referenc
patterns of evolution. For identifying the FM towarwhich the system evolution is heading and
predicting the available RT of a test patterneitslution data are matched to the reference pattern

in the library within a multidimensional fuzzy ptmise similarity setting; the information from the
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reference patterns, i.e. their failure modes andiual life times, is combined based on the asdesse
similarity to provide the FM identification and Rofediction.

A number of fault scenarios in the Lead Bismuthegtic eXperimental Accelerator Driven
System (LBE-XADS) have been analyzed by the proppagsproach, with satisfactory results in

terms of both accuracy and speed of computing.

Acknowledgments

The authors are thankful to the anonymous refefeesthe critical contribution, which has

stimulated a significant improvement of the paper.

References

[Aldemir et al., 2008] T. Aldemir, S. Guarro, J.r&thenbaum, D. Mandelli, L.A. Mangan, P.
Bucci, M. Yau, B. Johnson, C. Elks, E. Ekici, MRovsky, D.W. Miller, X. Sun, S.A. Arndt, Q.
Nguyen, J, Dion, A Benchmark Implementation of TWynamic Methodologies for the
Reliability Modeling of Digital Instrumentation ar@ontrol Systems (NUREG/CR-6985).

[Angstenberger, 2001] Angstenberger, L., DynamizZyuPattern Recognition, International Series
in Intelligent Technologies, 17, Kluwer Academichitshers, 2001.

[Barlett et al., 1992] Barlett, E.B., Uhrig, R.Buclear Power Plant Status Diagnostics Using an
Artificial Neural Network, Nuclear Technology, 97992.

[Binaghi et al., 1993] Binaghi, E., Della Venturd,, Rampini, A., Schettini, R. (1993) Fuzzy
Reasoning Approach to Similarity Evaluation in Ireagnalysis. International Journal of
Intelligent Systems, Vol. 8, 1993, p. 749-769, 1993

[Berglund et al., 1995] Berglund et.al, The useC&MS during a safety exercise at the Swedish
Nuclear Inspectorate, HWR-423. OECD Halden Regutgject —July 1995

[Bowman et al., 1992] Bowman, C.D., Arthur, E.Disdwski, P.W., Lawrence, G.P., Jensen, R.J.,
Anderson, J.L., Blind, B., Cappiello, M., DavidsahW., England, T.R., Engel, L.N., Haight,
R.C., Hughes, H.G., Ireland, J.R., Krakowski, RlfaBauve, R.J., Letellier, B.C., Perry, R.T.,
Russell, G.J., Staudhammer, K.P., Versamis, G.sMWjlW.B., Nuclear energy generation and
waste transmutation using an accelerator-driveans# thermal neutron source. Nucl. Instr.
Meth. Phys. Res. A 320, 336, 1992.

[Cammi et al., 2006] Cammi, A., Luzzi, L., Porta, A and Ricotti, M. E., Modelling and control
strategy of the Italian LBE-XADS, Progress in Nul&nergy, Volume 48, Issue 6, Pages 578-
589, 2006.

[Campolucci et al., 1999] Campolucci, P., Uncini, Riazza, F. and Rao, B.D., On-Line Learning
Algorithms of Locally Recurrent Neural Networks HE Trans. Neural Networks, 10, pp. 253-
271, 1999.

[Carminati et al., 1993] Carminati, F., Klapisch, Revol, J.P., Roche, Ch., Rubio, J.A., Rubbia,
C., An Energy Amplifier for Cleaner and Inexhaukdibluclear Energy Production Driven by a
Particle Beam Accelerator. CERN Report CERN-AT-J8ET), 1993.

24



[Chiang et al., 2001] Chiang L. H., Russel, E.,&zaR., Fault detection and diagnosis in industrial
systems, Springer-Verlag, London, 2001.

[Dubois et al., 1988] Dubois, D., Prade, H., Testen C., Weighted Fuzzy Pattern Matching.
Fuzzy Sets and Systems, 28, 1988, p. 313-331, 1988.

[EC, 1999] EC, EU research in Reactor safety: Aagteents of the 4th and prospects for the 5Th
Euratom framework programme. Eurocourse 1999. GRfy, 1999.

[Glasstone et al., 1998] Glasstone, S, Sesonskeé\utlear reactor engineering. New Delhi: CBS
Publishers and Distributors; 1998.

[IAEA, 2003] IAEA, Application of simulation techques for accident management training in
nuclear power plants, ISBN: 9201039034, 2003

[Joentgen et al., 1999] Joentgen, A., MikeninaVileber, R., Zimmermann, H.-J., Dynamic Fuzzy
Data Analysis based on Similarity between Functiéiugzy Sets and Systems, 105 (1), 1999, p.
81-90, 1999.

[Marseguerra et al., 2006] M. Marseguerra, E. HoBaraldi, I. C. Popescu, and P. Ulmeanu, A
Fuzzy Logic — based Model for the ClassificationFaiults in the Pump Seals of the Primary
Heat Transport System of a Candu 6 Reactor, Nu8egnce and Engineering, vol. 153, no. 2,
pp. 157-171, 2006.

[NEA, 1992] NEA, Severe Accident Management — Pnée@ and Mitigation., Paris, 1992

[@Dwre, 2001] Dwre, F., Role of the man—machinerfate in accident management strategies,
Nuclear Engineering and Design 209, 201-210, 2001

[Peel et al., 2008] Peel, L., Data Driven Progrusstising a Kalman Filter Ensemble of Neural
Network Models, International Conference on Progjnesand Health Management, 2008.

[Reifman, 1997] J. Reifman, Survey of Artificial télligence Methods for Detection and
Identification of Component Faults in Nuclear Powdaints, Nuclear Technology., vol. 119, no.
1, pp. 76-97, 1997.

[Rubbia et al., 1995] Rubbia, C., Rubio, J.A., Bop8., Carminati, F., Fitier, N., Galvez, J., Gels,
C., Kadi, Y., Klapisch, R., Mandrillon, P., RevdlP., Roche, Ch., Conceptual Design of a Fast
Neutron Operated High Power Energy Amplifier. CERBport CERN-AT-95-44(ET), 1995.

[Santosh et al., 2009] Santosh, T.V., Srivastavaanyasi Rao, V.V.S., Gosh, A. K., Kushwaha,
H.S., Diagnostic System for Identification of Aceit Scenarios in Nuclear Power Plants using
Artificial Neural Networks, Reliability Engineeringnd System Safety, 94, 759-762, 20009.

[Serrano et al., 1999] Serrano et al., Developnoérain extension of the CAMS system to severe
accident management, HWR-580. OECD Halden Reaotgeqi —May 1999

[USNRC, 1999] USNRC 1999, NUREG-0700, Rev.1 - HurBgstem Interface Design Review
Guideline, USNRC, Washington, June 1996

[Van Tuyle et al., 1993] Van Tuyle, G.J., TodosdM:, Geiger, M.J., Aronson, A.L., Takahashi,
H., Accelerator-driven subcritical target concept fransmutation of nuclear wastes. Nucl.
Technol. 101, 1, 1993.

[Venneri et al., 1993] Venneri, F., Bowman, C.Caméson R., Accelerator-driven Transmutation
of Waste (ATW) - A New Method for Reducing the Letegm Radioactivity of Commercial
Nuclear Waste. Los Alamos Report LA-UR-93-752, 1993

[Wang et al., 2008] Wang T., Yu, J., Siegel, D.eL&., A similarity based prognostic approach for
Remaining Useful life estimation of Engineered 8ys, International Conference on
Prognostics and Heath Management, 2008.

[Wang et al., 2004] Wang, W.Q., Goldnaraghi, M.Bmail, F., Prognosis of Machine Health
Condition using Neuro-Fuzzy Systems, Mechanicalteé3ys and Signal Processing, 18, 813-
831, 2004.

[Willsky, 1976] A. S. Willsky, A Survey of Design &thods for Failure Detection in Dynamic
Systems, Automatica, vol. 12, pp. 601-611, 1976.

25



[Yuan et al., 1997] Yuan, B., Klir, G., Data drivesentification of key variables, In: Ruan, D.
(Ed.), Intelligent Hybrid Systems Fuzzy Logic, NalulNetwork, and Genetic Algorithms.
Kluver Academic Publishers, pp.161-187, 1997.

[Zadeh, 1965] Zadeh, L., Fuzzy sets, Inform. Cdr@r®838-353, 1965.

[Zio et al., 2005] Zio, E., Baraldi, P., Identifitan of nuclear transients via optimized fuzzy
clustering, Annals of Nuclear Energy, 32, 1068—128D5.

[Zio et al., 2008] Zio, E., Pedroni, N., Broggi, M5olea, L., Locally recurrent neural networks for
nuclear dynamics modeling, FLINS - The 8th Inteiov@l FLINS Conference
on Computational Intelligence in Decision and Coht21-24 September 2008, Madrid, Spain,
2008.

[Zio et al., 2009a] Zio, E., Di Maio, F., A Data iben Fuzzy Approach for predicting the
Remaining recovery Time in a Dynamic Fault Scersammd a Nuclear System, Reliability
Engineering and System Safety, RESS, 10.1016/j2@33.08.001, 2009.

[Zio et al., 2009b] Zio, E., Di Maio, F., Data-Dem on-line prediction of the Available Recovery
Time in Nuclear Power Plant Failure Scenarios, stibthto Journal of Risk Analysis, under
review process.

[Zio et al., 2009c] Zio, E., Di Maio, F., ProcesgiDynamic Scenarios from a Reliability Analysis
of a Nuclear Power Plant Digital Instrumentationd a@ontrol System, Annals of Nuclear
Energy, doi:10.1016/j.anucene.2009.06.012, 2009.

26



