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Abstract

This paper describes a new method to perform fault detection and isolation for a closed-
loop-controlled autonomous aircraft. This vehicle is equipped with standard sensors and actu-
ators, and its dynamics is nonlinear. It is assumed that a guidance law and a control loop have
been designed to achieve a given mission. The diagnosis method uses the resulting control ob-
jectives to generate residuals indicative of the presence of faults. Two classical guidance laws
are considered, leading to different control constraints and diagnosis signals. A structural sen-
sitivity analysis shows that all sensor and actuator faults can be detected and all sensor faults
isolated, for both laws. The fault diagnosis procedure does not require the costly integration
of the model of the system, and the closed-loop scheme makes it robust to model uncertainty.
Realistic simulation results with strong model and measurement uncertainty demonstrate the
potential of the approach. A theoretical analogy with observer-based fault diagnosis is also
derived.

Keywords: aircraft, closed-loop system, fault detection and isolation, fault diagnosis, guidance
and control

1 Introduction
To check the ability of an aircraft to complete its mission, there is an absolute necessity to iden-
tify early unexpected changes in the system (referred to as faults) before they lead to a complete
breakdown. Procedures of fault detection and isolation (FDI) address such a problem. The appli-
cation considered here is an autonomous aircraft equipped with a fixed set of sensors and actuators,
controlled by classical guidance, navigation and control (GNC) algorithms. Faults affecting propul-
sion, flight control surfaces or sensors of this type of vehicle should be carefully addressed, as they
cause 80% of flight incidents according to a reliability study from the Office of the U.S. Secretary
of Defense [1]. A classical way to tackle the problem is hardware redundancy, i.e., several devices
performing the same function with a voting scheme to detect and isolate faults. However, this
approach implies higher costs, lower autonomy and reduced payload, because of the additional
weight, volume and power required. The large majority of modern FDI methods thus rely on ana-
lytical redundancy, which exploits the relations between measured or estimated variables to detect
possible system dysfunctions [2–4]. These methods most often generate residuals to quantify the
distance between the measured and expected behaviors. These signals should remain small as long
as there is no fault, and become sufficiently large to be noticeable whenever a fault occurs [5, 6].
Such an analytical redundancy strategy should be defined to tackle the difficult problem of detec-
tion and isolation of faults that can occur on any sensor or actuator of the aircraft, with a reduced
computational cost to respect embedding constraints.

Numerous FDI strategies have been applied to aeronautical systems. The main model-based
methods, such as parity space, parameter estimation or observer-based FDI, have been developed
initially for linear systems [7]. In aerospace, though, nonlinear models provide a more accurate
representation of the vehicle complex behavior. Most of the methods have thus been extended
via linearization [8]. There is also a emerging trend toward fully-nonlinear FDI methods [9, 10].
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Using these methods, some authors have considered sensor faults only [7, 11–15], actuator faults
only [9, 10,16–20], or non-simultaneous sensor and actuator faults [8, 21,22].

The applicability of these methods rely heavily on the modeled dynamics of the system to
design dynamical filters. This involves a very significant computational cost, given the limited
resources available on-board. In most of these studies, the closed-loop control of the aircraft is
ignored when building the FDI procedure. This seems unfortunate, as control information may
provide additional insight on the system behavior and thus help detect and isolate faults.

An interesting idea in this context is active fault diagnosis, which injects an auxiliary input into
the system in an attempt to facilitate distinction between faulty and normal behaviors [23]. This
technique has been applied in two recent studies concerning small UAVs [16,17], with the addition
of a small sinusoidal component to the control signal of actuators suspected of faults. Even if
this strategy may accelerate decision, there is no systematic approach to designing such signals
and guaranteeing that the additional input will not deteriorate performance in normal operating
condition or even destabilize the system [24]. A different route is pursued here, and FDI methods
that use control information without interfering with the control loop are considered.

The effect of feedback on fault diagnosis methods has been analyzed in [25] and more recently
in [26]. They show that model uncertainty or multiplicative faults make the residuals depend
on the control signal. More generally, the control input holds relevant information concerning
faults in a feedback-controlled system. As there is a trade-off to achieve between fault detection
and performance of the closed-loop system, the simultaneous design of the control law and the
observation filter has been addressed (see, e.g, [18,27]). Multi-objective optimization methods are
used to maximize the effect of faults on the diagnosis filter while still achieving control objectives.
All these studies have made a first step towards taking into account the closed-loop behavior in
the diagnosis procedure. However, it should be noted that the diagnosis filter does not use control
information directly: its structure is still designed for the open-looped system.

To complete the description of the context of this study, closed-loop performance monitoring
should also be mentioned. Even if this topic is weakly related to fault diagnosis in general, it is
of some interest here as it focuses on detecting changes in control performances. The objective
is to assess whether the controller performs suitably by comparing the observed variance of the
feedback signal with its expected value, using statistical tools [28,29].

The new method proposed in the present paper considers fault diagnosis from a point of view
that is similar in spirit to performance monitoring. The main assumption is that guidance and
control have been designed to comply at each instant of time with the mission requirements in fault-
free conditions. Thus, the closed-loop system is seen as a single entity designed with instantaneous
control objectives that can be translated into residuals. Although local variations of these residuals
around zero are of course unavoidable, large enough variations may be indicative of faults that
affect the controlled aircraft. This paper shows that it is indeed possible to detect sensor and
actuator faults and to isolate sensor faults by analyzing the adequacy of the system response. The
properties of feedback control ensure high robustness of this strategy toward model uncertainty.
The computational cost is low, because control objectives are generally expressed by simple static
functions and there is therefore no need to integrate the differential equations of a dynamical model
of the system.

This paper is organized as follows. The explicit nonlinear mathematical model of a representa-
tive aeronautical case study is given in Section 2, along with its GNC scheme and models of faults
and uncertainty. The new FDI approach is then detailed in Section 3. It is shown how residuals
could be generated from the knowledge of the control objectives of guidance laws, and how to
assess their qualitative sensitivity to sensor and actuator faults. Corresponding simulation results
on a collection of faulty scenarios with strong, realistic measurement and model uncertainty are
given in Section 4. Quantitative indices are computed to assess the performance of the method.
Section 5 presents an analogy of this method with classical observer-based FDI. Conclusions and
perspectives are discussed in Section 6.
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2 Mathematical model of the aircraft
The vehicle considered is a surface-to-air missile on an interception mission. Actuation is performed
via four classical tail flight control surfaces acting on roll, pitch and yaw, and propulsion along
the main axis of the vehicle. An Inertial Measurement Unit (IMU), comprising three gyros and
three accelerometers, is coupled with an Inertial Navigation System (INS) that integrates these
measurements to estimate the whole state vector of the missile. These standard components are
preset and there is no hardware redundancy. These features are not specific to the case study and
are shared by other applications, such as an UAV on an exploratory mission. The aircraft geometry
in body frame is displayed in Figure 1. The dynamics of the aircraft is modeled by a nonlinear
state-space model, detailed in Section 2.1. The interception is achieved by a standard GNC scheme
(see Section 2.2), including a guidance loop and a fast control loop. Two classical guidance laws
are considered, namely pure pursuit (PP) and proportional navigation guidance (PNG).

Sensor faults may affect independently the measurement of any gyro or accelerometer. Concern-
ing actuators, the loss-of-effectiveness of the thruster, the locking-in-place of the fins or their un-
wanted oscillation will be investigated. Mathematical models of faults are presented in Section 2.3.
The meaning of all the variables and parameters involved is explained in the nomenclature.

Figure 1: Missile scheme in body frame

2.1 Dynamics and state-space model
The force equation is 

v̇bx

v̇by

v̇bz

 =
1

m

(
faero + fg

)
−


p

q

r

×

vbx

vby

vbz

 (2.1)

where

faero = Qsref


− (cx0 + cxαα+ cxδlδl + cxδmδm + cxδnδn)

cy0 + cyββ + cyδlδl + cyδnδn

− (cz0 + czαα+ czδmδm)

+


fmin + (fmax − fmin) η

0

0

 (2.2)
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fg =


− sin(θ)

cos(θ) sin(ϕ)

cos(θ) cos(ϕ)

mg (2.3)

Due to the geometry of the aircraft (cylindrical and symmetric), the inertia matrix is

I =


a 0 0

0 b 0

0 0 b

 (2.4)

The momentum equation is then
ṗ = QsrefL

a

q̇ = 1
b [QsrefM − (a− b)pr]

ṙ = 1
b [QsrefN − (b− a)pq]

(2.5)

where 
L = cl0 + clββ + clδlδl + clδnδn + lref√

v2bx+v
2
by+v

2
bz

clpp

M = cm0 + cmαα+ cmδmδm + lref√
v2bx+v

2
by+v

2
bz

cmqq

N = cn0 + cnββ + cnδlδl + cnδnδn + lref√
v2bx+v

2
by+v

2
bz

cnrr

(2.6)

Note that the aerodynamic coefficients c(·) involved in equations (2.2) and (2.6) are non-
constant, piecewise continuous nonlinear functions of (α, β), obtained from wind-tunnel data.

The angular dynamics is
ϕ̇

θ̇

ψ̇

 =


1 sinϕ tan θ cosϕ tan θ

0 cosϕ − sinϕ

0 sinϕ
cos θ

cosϕ
cos θ



p

q

r

 (2.7)

The model description should be completed with the coordinate transformation from the body
frame to the inertial frame,
ẋ

ẏ

ż

 =


cosψ cos θ − sinψ cosϕ+ cosψ sin θ sinϕ sinψ sinϕ+ cosψ sin θ cosϕ

sinψ cos θ cosψ cosϕ+ sinψ sin θ sinϕ − cosψ sinϕ+ sinψ sin θ cosϕ

− sin θ cos θ sinϕ cos θ cosϕ



vbx

vby

vbz


(2.8)

The state vector is x = [x , y , z , vbx, vby, vbz, p, q , r , ϕ, θ, ψ]
T and the input vector is u =

[δl, δm, δn, η, ]
T, where δl, δm, δn are the equivalent deflection angles corresponding to the three axes

and η is the propulsion rate. The control-affine nonlinear model obtained by gathering (2.1)-(2.8)
has twelve state variables, which is typical of state-space models for rigid aircraft. Some details are
now given about the devices that are embedded on the aircraft. These model and choice of sen-
sors and actuators are representative of a large panel of autonomous aerospace vehicles, including
missiles, rockets and UAVs (see, e.g., [17, 30,31]).

2.1.1 Model of actuators

The dynamics of the propulsion rate is described by a first-order linear model. The missile is
maneuvered using classical tail control. The four flight control surfaces (see Figure 2) are two
elevators with deflection angles δ2 and δ4, and two rudders with deflection angles δ1 and δ3. Their
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servomotors are modeled as second-order systems with saturations in angular position and velocity.
The equivalent deflection angles are then computed as

δl = (δ1 + δ2 + δ3 + δ4)/4

δm = (δ2 − δ4)/2

δn = (δ3 − δ1)/2

(2.9)

Figure 2: Tail fins (rear view)

Although there are four actuators for three actions, this is not hardware redundancy as defined
in the introduction, since these devices are independent and do not achieve the same actions.
The system has nevertheless one supplementary degree of actuation, but this cannot be used
straightforwardly to achieve diagnosis.

2.1.2 Model of sensors

The IMU measures non-gravitational acceleration via three accelerometers, and angular velocity
via three gyros. The INS integrates these elements to estimate the position, velocity and orientation
of the vehicle. The resulting output vector is y = [abx, aby, abz, p, q , r , vbx, vby, vbz, x , y , z , ϕ, θ, ψ]

T.
Errors affecting the measurements are usually modeled as biases, scale factors and noise. For
example, the measurement r̃ of the yaw rate r is expressed as

r̃ = (1 + kr)r + br + wr (2.10)

where kr is the scale factor, br the bias and wr is a zero-mean Gaussian white noise, with standard
deviation σr. The parameters, ki, bi and σi (for each sensor i independently) are characteristic of
the IMU and set in the simulated test case at typical values (see Table 3).

2.2 Guidance and control (GNC)
The GNC scheme is described in Figure 3. Exogenous information about the target is provided
by a tracking device, which is either embedded (e.g., a seeker) or ground-based (e.g., a radar). In
the present study, a ground radar is assumed to measure the position xt = [xt, yt, zt]

T and speed
vt = [ẋt, ẏt, żt]

T of the target, both in the inertial frame. These measurements are assumed to
suffer zero-mean additive Gaussian white noise on each variable independently [32].

In order to reduce the distance between the missile and the target to zero, a classical GNC
architecture with decoupled guidance and dynamic control is implemented. The main loop imple-
ments a guidance law that provides the desired trajectory and orientation of the missile, based on
the geometric and kinematic constraints of the problem. This makes it possible to compute ap-
propriate thrust, while the fast inner control loop acts on the fins to meet the guidance commands
and stabilizes the aircraft in flight [32]. The GNC laws considered here are well-known to handle
low-maneuvering targets.

5



Figure 3: GNC scheme

Figure 4: Interception geometry

2.2.1 Guidance laws

The geometry of the interception problem on which most guidance laws are based is now briefly
recalled and illustrated in Figure 4. The following definitions are a prerequisite to describing these
guidance laws [33].

• The difference between the missile and target positions is the line of sight (LOS), r = xt−xm.

• The opposite of the first derivative of the LOS with respect to time is the closing velocity,
vc = −ṙ = vm − vt.

• The orientation of the LOS is given by the LOS angles, which form the vector λ, and the
LOS rate is λ̇ = (r × ṙ) / ‖r‖2.

Two potential guidance laws are considered in this study, namely Pure Pursuit (PP) and Pro-
portional Navigation Guidance (PNG). These laws are built on the following geometrical rules.

• Pure Pursuit: PP makes the velocity of the pursuer vm coincide with the LOS r. This is the
first guidance law that has been developed, inspired by how predators catch their prey [33].
The simplest guidance consign is then to have the acceleration input proportional to the
angle between the aircraft velocity and the LOS. This is known as velocity pursuit. Another
version aims at aligning the main axis of the vehicle on the LOS: this is attitude pursuit. In
this study, velocity pursuit will be used.

• Proportional navigation guidance: PNG achieves parallel navigation. The geometrical rule
is to keep the direction of the LOS constant relative to inertial space, i.e., the LOS is kept
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parallel to its initial value. This is also called constant bearing and the rule could be very
concisely stated as the LOS rate being driven to zero [34]. The guidance consign is taken
proportional to the LOS rate.

Figure 5 shows a successful target interception by the missile described in Section 2.1 with either
of these two guidance laws (initial conditions of the simulation are given in Section 4).

Figure 5: Interception trajectories with PP and PNG

2.2.2 Control

The control loop is designed so as to have a response time significantly lower than that of the
guidance loop. Provided that the thruster is still operating, a proportional controller computes
the propulsion rate to regulate speed at a desired reference level. The autopilot consists of three
independent linear phase-lead controllers (one per axis in roll, pitch and yaw) that translate the
guidance commands and angular stabilization requirements (using gyro measurements) into equiv-
alent fin deflection angles. This control objective could be stated as the roll, pitch and yaw rates
[p, q, r]T being driven to zero. The equivalent fin deflection angles are transformed into actual
deflection angles (see Figure 2) as 

δ1 = δl − δn
δ2 = δl + δm

δ3 = δl + δn

δ4 = δl − δm

(2.11)

2.3 Faults and model uncertainty
A mathematical model of actuator and sensor faults is needed to complete the modeling of the
problem. Two types of control inputs are distinguished: the (known) control input, as computed by
the GNC module is uc, and the (unknown) actual control input as achieved by the corresponding
actuator is ua. An actuator fault results in a discrepancy between uc and ua, which expresses the
fact that the control input sent by the GNC module is not correctly implemented by the actuator.
The actuator faults considered are the locking-in-place or unwanted oscillation of a fin and the
loss-of-effectiveness of the thruster. They will be modeled as

ua = σf · kf · uc + (1− σf) · uf (2.12)
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Depending on the type of fault occurring at time tfault, one has
σf = 1, kf = 1 (no fault)

σf = 1, 0 < kf < 1 (loss of effectiveness)

σf = 0, kf = 1, uf = uc(tfault) (locking in place)

σf = 0, kf = 1, uf periodic function (Oscillatory failure)

The locking-in-place of flight control surfaces may be due, e.g., to freezing or power failure.
Oscillatory failure cases (OFC) are implied by electronic components generating low-frequency
periodical disturbances in the control signal of the actuators [35]. Similar modeling for actuator
faults can be found in [30,36].

Sensor faults are modeled as abrupt unexpected jumps in one or more of the uncertainty
parameters of the IMU (bias, scale factors and standard deviation of the Gaussian noise, see (2.10)).

To take into account the strong uncertainty on the value of the aerodynamic coefficients, each
nominal function c(·) is randomly multiplied by either 0.75 or 1.25 with probability 0.5 before each
simulation, while keeping a control designed on the nominal values.

3 Closed-loop fault diagnosis approach
Detection and isolation of faults affecting sensors and actuators for the benchmark defined in
Section 2 is a challenging issue, as the state equations are intertwined due to the changes of
coordinates between inertial and body frames and to the coupling between longitudinal and lateral
variables. Moreover, there is strong uncertainty on the aerodynamic coefficients of the nonlinear
dynamical model, which makes it even more difficult to design a reliable estimation filter. To
overcome these issues, diagnosis is considered from the point of view of the success of the mission,
and thus to analyze the guidance and control objectives to generate residuals.

3.1 Principles
The new fault diagnosis approach exploits the control objectives of the closed-loop-controlled air-
craft. The main assumption is that the guidance law and the control loop have been adequately
tuned to achieve these objectives, based on the knowledge of the aircraft dynamics. These objec-
tives require the aircraft to respect some geometric and kinematic constraints. The idea of the
method is to use these constraints to build residuals indicative of the presence of faults. Indeed,
control may fail when faults affect the aircraft [26,28].

As they are (possibly multivariate) functions of known variables (outputs, estimated state,
known references), these residuals can be computed at each instant of time, without requiring the
costly integration of the nonlinear state-space model of the aircraft. Nevertheless, the knowledge
of this model provides information on the sensitivity to faults of the variables involved in this
computation.

In summary, control objectives portray the desired global behavior of the closed-loop system
without the need to investigate the dynamics deeply. Monitoring the distance between the expected
and actual values of control objectives is similar in spirit to classical FDI methods based on
parameter or state estimation, which test whether the estimated values of monitored variables are
consistent with their expected values. The approach proposed here is presumably totally new, as
no other study seems to have reported the use of control objectives to generate residuals indicating
the presence of faults. The control error has only been used in the performance-monitoring context
to assess the efficiency of the controller [29] but not to detect faults affecting the process.

Section 3.2 explains the generation of the residuals from the guidance laws and Section 3.3
shows how to assess their sensitivity to faults.

3.2 Residuals
The control objective of a guidance law is most often to make the missile respect a geometrical
rule based on the definitions of Section 2.2.1. This constraint provides an immediate collection of
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residuals, under the assumption that the guidance and control laws have been tuned adequately,
and that the control loop is fast compared to the guidance loop.

3.2.1 Residuals with PP law

In velocity-pursuit guidance, the angle between the velocity vector vm of the missile and the line
of sight r to the target is driven to zero. Four scalar residuals are thus generated. The first
three express that the cross product of these two vectors should be close to zero and the last one
expresses the fact that the scalar product should be equal to the product of their norms.

r1→3
pp = vm × r (3.1)

r4pp = vTmr − ‖vm‖ ‖r‖ (3.2)

To facilitate visual interpretation, the three scalar residuals r1→3
pp could be transformed into angular

variations in degrees, by applying the transformation (180/π) · arcsin
(
r1→3
pp /

∥∥r1→3
pp

∥∥), where the
arcsine function is considered componentwise [37]. The informational content of the residuals would
remain the same.

Moreover, the fast control loop has been designed to achieve stabilization and thus to drive the
angular rates to zero. Therefore, the missile angular velocity ω provides three additional scalar
residuals.

r5→7
pp = ω = [p, q, r]T (3.3)

3.2.2 Residuals with PNG law

The objective of the proportional navigation guidance law is to nullify the LOS rate λ̇. Since the
computational form of the LOS rate is λ̇ = (r × ṙ) / ‖r‖2, this is equivalent to aligning r with ṙ.
Thus, as with the PP law, three residuals are obtained from the cross product of these two vectors,
and the scalar product can be used to generate a fourth scalar residual. Their expressions are

r1→3
png = r × ṙ (3.4)

r4png = rTṙ − ‖r‖ ‖ṙ‖ (3.5)

Since the fast control loop is independent from the guidance law, the three additional residuals
derived from the nullity of the angular velocity ω could also be used here.

r5→7
png = ω = [p, q, r]T (3.6)

Note that the residuals defined in (3.2) and (3.5) present the unusual characteristic of being non-
negative, making bilateral tests inappropriate.

3.2.3 Propulsion residual

The guidance residuals previously described will be used to monitor the behavior of the sensors and
tail fins. However, all of these residuals are insensitive (or only momentarily sensitive) to faults
occurring in the propulsion, as propulsion regulation is decoupled from the rest of the control
and since the guidance constraints may still be satisfied. Another control objective should thus
be investigated to monitor the behavior of the thruster. A classical indicator of the fate of the
interception mission is the time-to-go, tgo, defined as the time remaining before the missile reaches
the target. The most frequently used estimator of tgo is the quotient of the norms of LOS and
closing velocity [38],

t̂go =
‖r‖
‖vc‖

(3.7)

Simulations with no fault on the propulsion and with a 50% loss of effectiveness, in the condi-
tions of Figure 5, give the results displayed in Figure 6 for the PP law. Similar results are obtained
when using PNG. These results illustrate the fact that, in normal operation, the time-to-go es-
timate is regularly decreasing and follows an almost linear slope. When a propulsion loss takes
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Figure 6: Estimation of tgo in different fault conditions

Figure 7: Error signal without (left) and with (right) a 50% propulsion loss at t=20s

place, the slope changes while it remains approximately the same with faults affecting the rudders.

Basically, the aircraft is slowed down by this propulsion loss and, if at all possible, the interception
should take place later than expected. This propulsion fault has a strong effect on velocity regula-
tion, leading to an abrupt change of the slope. To identify this change, an adaptive slope tracker
algorithm has been proposed in [37]. The idea is to estimate (by least-squares) the parameters
of the linear slope on a time interval, and use them to predict the expected values of tgo on the
next interval. The mean squared error between the prediction and the value estimated by (3.7) is
computed on this next interval. One error value per interval is thus obtained, except for the first
one. This error signal eprop is expected to be small in normal operating conditions and large for
the interval where the slope change occurs, indicating the time of the propulsion fault. Results on
the evolution of this error signal with and without a 50% loss of effectiveness of the propulsion at
time are displayed in Figure 7. This shows that such a fault may be detected with a delay equal
to the size of the time sliding window (here 1 second).

3.3 Qualitative sensitivity analysis
Seven residuals have been designed for each guidance law, with an additional one dedicated to
the analysis of the propulsion behavior. As this last signal is dedicated to one fault while being
insensitive to the others, the study will focus on the analysis of the guidance residuals.

So far, the objectives of the guidance laws have led to the definition of residuals as explicit
functions of the available measurements. However, no information is available yet about the
sensitivity of these residuals to sensor and actuator faults. The first step to achieve this analysis is
to identify the variables that are affected by the faults considered. The presence of these variables
in the residuals will then reveal sensitivity to the corresponding faults.
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For the PP law, (3.1) and (3.2) yield

r1→3
pp =


ẋ

ẏ

ż

×

xt − x

yt − y

zt − z

 =


ẏ (zt − z)− ż (yt − y)

ż (xt − x)− ẋ (zt − z)

ẋ (yt − y)− ẏ (xt − x)

 (3.8)

r4pp = ẋ (xt − x) + ẏ (yt − y) + ż (zt − z)− ‖vm‖ ‖r‖ (3.9)

For the PNG law, (3.4) and (3.5) give similarly

r1→3
png =


xt − x

yt − y

zt − z

×

ẋt − ẋ

ẏt − ẏ

żt − ż

 =


(yt − y) (żt − ż)− (zt − z) (ẏt − ẏ)

(zt − z) (ẋt − ẋ)− (xt − x) (żt − ż)

(xt − x) (ẏt − ẏ)− (yt − y) (ẋt − ẋ)

 (3.10)

r4png = (xt − x) (ẋt − ẋ) + (yt − y) (ẏt − ẏ) + (zt − z) (żt − ż)− ‖r‖ ‖ṙ‖ (3.11)

Note that the residuals (3.3) and (3.6) are already under explicit forms.

r5→7
pp = r5→7

png =


p

q

r

 (3.12)

Residuals generated with the PP and PNG laws differ, but a close look at equations (3.8)
to (3.12) shows that the same variables are involved, implying that sensitivity to faults will be
qualitatively the same for the two guidance laws.

3.3.1 Sensor faults

Consider the faults affecting the accelerometers (axes x, y and z). An additive fault on a acceler-
ation measurement will induce a fault fx on the corresponding velocity measurement ẋ and also a
fault fix on the position measurement x via double integration. Note that this additive model is
generic, as the fault can take any value. To analyze the sensitivity of the residuals to these faults,
ẋ is replaced by its fault model (ẋ+ fx) and so on for the other variables in (3.8) and (3.9), which
now become

r1→3
pp =


(ẏ + fy) (zt − z − fiz)− (ż + fz) (yt − y − fiy)

(ż + fz) (xt − x− fix)− (ẋ+ fx) (zt − z − fiz)

(ẋ+ fx) (yt − y − fiy)− (ẏ + fy) (xt − x− fix)

 (3.13)

r4pp = (ẋ+ fx) (xt − x− fix) + (ẏ + fy) (yt − y − fiy) + (ż + fz) (zt − z − fiz)− ‖vm‖ ‖r‖ (3.14)

The way residuals (3.12) are built makes them insensitive to these accelerometer faults. The
same computation can be made for the PNG residuals (3.10) and (3.11), leading to very similar
expressions. The sensitivity of each residual to the accelerometer faults is given by the presence of
these faults in the above expressions. Thus, r2pp, r3pp and r4pp are sensitive to faults affecting the
x accelerometer axis, while r1pp, r3pp and r4pp are sensitive to faults affecting the y accelerometer
axis, and r1pp, r2pp and r4pp are sensitive to faults affecting the z accelerometer axis. This makes it
possible to fill in the first three columns of Table 1.

Consider now faults affecting the gyro axes, i.e., the measurements of p, q, r. The residuals
r5pp and r5png are sensitive to faults on p, and the 6th and 7th residuals of each guidance law are
respectively sensitive to faults affecting q and r. This makes it possible to fill in the last three rows
of Table 1.

Due to the fast attitude stabilization loop, gyro faults have also an effect on the first four
residuals, because the control loop involves the difference between the past and present gyro mea-
surements. This was not the case for accelerometer faults, since acceleration measurements are
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used only in the guidance loop and therefore do not influence the faster stabilization loop. The
study of the influence of gyro faults on the first four residuals via this loop can be carried out
analytically by investigating the dynamics of the force equation (2.1). This equation contains a
cross product which can be developed as

p

q

r

×

vbx

vby

vbz

 =


qvbz − rvby
rvbx − pvbz
pvby − qvbx

 (3.15)

This explicit form provides the following information,

• faults on measurements of q or r affect the measurement of acceleration on the x axis;

• faults on measurements of p or r affect the measurement of acceleration on the y axis;

• faults on measurements of p or q affect the measurement of acceleration on the z axis.

Residuals from (3.8) to (3.11) are made of products between at least two variables obtained from
accelerometer measurements (y and z for r1pp; x and z for r2pp; x and y for r3pp; x, y and z for r4pp).
From the above analysis, the four residuals are sensitive to faults on the three gyro measurements,
which completes the sensitivity analysis for sensor faults.

The fault signature table for sensor faults is now complete (Table 1). This classical tool in
fault diagnosis is used to summarize the potential detection and isolation of a collection of possible
faults with a given set of residuals. The "X" symbol indicates that the fault is detectable with the
residual considered while the "-" symbol means that the residual is structurally insensitive to the
fault.

Table 1: Signature of sensor faults

Acc x Acc y Acc z Gyr p Gyr q Gyr r

r1pp or r1png - X X X X X

r2pp or r2png X - X X X X

r3pp or r3png X X - X X X

r4pp or r4png X X X X X X

r5pp or r5png - - - X - -

r6pp or r6png - - - - X -

r7pp or r7png - - - - - X

The analysis of this table reveals that all faults affecting either accelerometers or gyros are
detectable and isolable, since the rank of the signature table is full (in other words, the signature
of each fault is unique).

3.3.2 Actuator faults

A similar analytical sensitivity analysis is now performed for faults that may affect the rudders
and elevators of the aircraft.

Consider first the force equation (2.1), and the influence of the equivalent actuator deflec-
tions δl, δm, δn which is detailed in (2.2). Since the faults affect the actual rudders and elevators
δ1, δ2, δ3, δ4, the equivalent angles should be replaced by the actual ones using (2.9). The aerody-
namic forces from (2.2) can thus be rewritten
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
−
(
cx0 + cxαα+ (0.25cxδl − 0.5cxδm )δ1 + (0.25cxδl + 0.5cxδn )δ2 + (0.25cxδl + 0.5cxδm )δ3 + (0.25cxδl − 0.5cxδn )δ4

)
cy0 + cyββ + (0.25cyδl )δ1 + (0.25cyδl + 0.5cyδn )δ2 + (0.25cyδl )δ3 + (0.25cyδl − 0.5cyδn )δ4

− (cz0 + czαα+ (−0.5czδm )δ1 + (0.5czδm )δ3)


(3.16)

The analysis of these new equations reveals that

• accelerometer measurement on the x axis is affected by faults on δ1, δ2, δ3, δ4;

• accelerometer measurement on the y axis is affected by faults on δ1, δ2, δ3, δ4;

• accelerometer measurement on the z axis is affected by faults on δ1, δ3.

Guidance residuals r1→4
pp and r1→4

png consist of products between variables obtained from those
accelerometer measurements. Therefore, the four residuals are structurally sensitive to faults
affecting any of the four actuators δ1, δ2, δ3, δ4.

Consider now the momentum equation (2.5), and the influence of the actuators given by (2.6).
The torques can be rewritten as functions of the actual deflection angles as

cl0 + clββ + (0.25clδl)δ1 + (0.25clδl + 0.5clδn)δ2 + (0.25clδl)δ3 + (0.25clδl − 0.5clδn)δ4 +
lref√

v2
bx

+v2
by

+v2
bz

clpp

cm0 + cmαα+ (−0.5cmδm)δ1 + (0.5cmδm)δ3 +
lref√

v2
bx

+v2
by

+v2
bz

cmqq

cn0 + cnββ + (0.25cnδl)δ1 + (0.25cnδl + 0.5cnδn)δ2 + (0.25cnδl)δ3 + (0.25cnδl − 0.5cnδn)δ4 +
lref√

v2
bx

+v2
by

+v2
bz

cnrr


(3.17)

A first analysis of the above torque equations indicates that measurements of p and r are sensitive
to faults affecting any rudder or elevator, while the measurement of q should only be sensitive to
faults on the elevators δ1 and δ3. However, the dynamics of the roll, pitch and yaw rates expressed
in (2.5) should be considered. The geometry of the vehicle reveals that the product pr acts on
the dynamics of q, and that the product pq acts on the dynamics of r. Therefore, if a fault on
δ2 or δ4 occurs, both measurements of p and r will be affected. This implies that the product pr
would not be close to zero anymore, and thus the measurement of q will be affected by these faults
through (2.5). The three residuals r5→7

pp (and respectively r5→7
png ) then turn out to be structurally

sensitive to faults on any of the actuators δ1, δ2, δ3, δ4.
Finally, all of the residuals r1→7

pp and r1→7
png are structurally sensitive to faults on any of the

four actuators. Detection of such faults is thus possible but not isolation, due to the high level of
coupling in the aircraft dynamics. These findings are summarized in Table 2.

Table 2: Signature of actuator faults

δ1 δ2 δ3 δ4

r1pp or r1png X X X X

r2pp or r2png X X X X

r3pp or r3png X X X X

r4pp or r4png X X X X

r5pp or r5png X X X X

r6pp or r6png X X X X

r7pp or r7png X X X X
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3.3.3 Remarks

The dynamical model is not used to generate the residuals, which are derived directly from the
control law and true whatever the controlled aircraft. The only step depending on the aircraft
model is the structural sensitivity analysis, which does not require a deep knowledge of the value
of uncertain parameters such as aerodynamic coefficients.

It is well-known that the design of a closed-loop control law does not require an extreme
precision of the description of the dynamics of the system. As the test case presented in Section 4
will confirm, a high level of robustness toward model uncertainty can thus be expected. The
proposed diagnosis method can be said to be as robust as the control law can be.

Although isolation of actuator faults cannot be performed through this method, their detection
can still be achieved. Moreover, it is possible to distinguish between actuator and sensor faults,
since the signatures of actuator faults differ from those of sensor faults. This information is
thus very useful, as it is obtained at a very low computational cost (remember that the residuals
are readily obtained from the guidance module). If isolation of actuator faults is required –e.g.,
to reconfigure the control law– then a complementary dedicated actuator fault isolation method
(such as those described in [10, 17]) may be called upon to lift suspicion, once detection has been
confirmed using the guidance and control residuals. However, the link between the two strategies
and the detection delay induced by this new scheme remain to be addressed.

It is, however, well known that the control law may be naturally tolerant to some actuator
faults [25, 26]. This may particularly arise in the present case, because the control actuators have
one degree of redundancy. The method that has been described is thus well suited to detect critical
faults that impact the entire dynamics of the aircraft and thus endanger the mission. Also note
that if the system partly tolerates an actuator fault, this would lead to an unknown fault signature
that is a priori different from the one of sensor faults. When such a signature is observed, a
complementary isolation method could also be employed to investigate the matter further.

4 Simulation results
This section shows the results of the method presented in Section 3 on the nonlinear aircraft model
detailed in Section 2, for several types of sensor and actuator faults. For the sake of brevity, results
are shown only for one of the guidance laws (alternatively PP or PNG) for each scenario. The only
exception is Scenario 1 for which PP and PNG results are both displayed, since this non-faulty
case serves as a reference.

4.1 Setting
The simulation time step is 0.01s. Flight conditions are given in Table 3, comprising nominal speed,
initial position, and uncertainty parameters for the missile and target. As detailed in Section 2.3,
all aerodynamic coefficients suffer a modeling error of ±25%.

A collection of fault scenarios are designed, considering the fault-free case, sensor faults and
actuator faults (see summary in Table 4). The seven residuals for the two guidance laws and for
each of the fault scenarios of Table 4 are displayed in Figures 9 to 18 and commented.

4.2 Scenario 1: Fault-free case (Figures 9 and 10)
This case is given as a reference. After about 5 seconds for the PP law, and at most 10 seconds
for the PNG law, the seven residuals remain very small, validating the simplifying assumption of
a weak influence of the transients.

4.3 Sensor faults
Sensor faults affecting either accelerometers (scenarios 2 and 3) or gyros (scenarios 4 and 5) are
considered.
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Table 3: Flight conditions

Missile Target

Nominal speed 270 m·s−1 200 m·s−1

Initial position

x = 0 m

y = 0 m

z = 0 m

x = 15000 m

y = 1000 m

z = 3000 m

Accelerometer (i ∈ [x, y, z])

bi ∼ N (0, 5 · 10−4)

ki ∼ N (0, 2 · 10−3)

σi = 2 · 10−3

-

Gyro (i ∈ [p, q, r])

bi ∼ N (0, 1 · 10−5)

ki ∼ N (0, 5 · 10−5)

σi = 3 · 10−4

-

Radar noise standard deviations -

position : 2 m

angular : 2 · 10−3 rad

velocity : 2 m · s−1

Initial position measurement error 50 m 50 m

Initial speed measurement error 2 m·s−1 5 m·s−1

Table 4: Fault scenarios

Scenario Faults see Figures

1 No fault 9, 10

2 Bias of magnitude 1 m·s−2 on accelerometer axis x at 31s 11

3 Scale factor of 1.5 on accelerometer axis z at 42s 12

4 Bias of magnitude 0.5 rad·s−1 on gyro axis p at 38s 13

5

{
Bias of magnitude 0.2 rad · s−1 on gyro axis q at 33s

Bias of magnitude 0.25 rad · s−1 on gyro axis r at 51s
14

6 OFC (sine of magnitude 0.3 and period 1s) on actuator δ2 at 45s 15

7 Locking-in-place of actuator δ3 at 32s 16

8 "Evading" target with speed 600 m·s−1 17

4.3.1 Scenario 2 (Figure 11)

The fault on the x axis of the accelerometer is quickly detected by the second, third and fourth
residuals, while the other ones are not affected. This is in adequation with Table 1.
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4.3.2 Scenario 3 (Figure 12)

The fault on the z axis of the accelerometer makes the first, second and fourth residuals react.
Note that a small transient effect is observed on the sixth residual, but the signal immediately
returns to its initial mean and this would not lead to high false alarms with a statistical decision
test (see performances indices in Table 5).

4.3.3 Scenario 4 (Figure 13)

The fault on the gyro measuring p causes a change in the mean of the first, second, third, fourth
and fifth residuals. This last one even allows an identification of the fault, as it corresponds to the
discrepancy between the required and measured value of the roll rate.

4.3.4 Scenario 5 (Figure 14)

This scenario demonstrates the possibility to detect and isolate two successive faults affecting
gyros, according to their fault signatures (see Table 1). The fault on the gyro measuring q is first
detected as in Scenario 5, making the first, second, third, fourth and sixth residuals react. The
second fault affecting the gyro measuring r then occurs and causes a change in the mean in the
seventh residual, which also allows its identification. Note that a transient effect is observed on
the fifth residual, which returns quickly to its initial small mean value.

4.4 Actuator faults
Two types of faults affecting the rudders or elevators are considered, namely oscillatory failure case
and locking-in-place.

4.4.1 Scenario 6: oscillatory failure (Figure 15)

The oscillatory failure considered is a critical fault, as it makes all the residuals react according to
Table 2. In this case, the entire dynamics of the aircraft is affected by the fault. Decision on fault
detection is obtained quickly, however no isolation can be made. A complementary fault isolation
method should be used to identify the faulty actuator once the decision has been confirmed.

4.4.2 Scenario 7: locking-in-place (Figure 16)

The locking-in-place of an actuator (here, rudder δ3) is probably one of the most difficult fault to
detect with the proposed method. Indeed, as there is one degree of redundancy in actuation, this
fault may be tolerated. This strongly depends on the conditions of excitation of the actuators. For
the PNG law, the seven residuals react to the fault (even if some react weakly), which leads to a
correct detection of an actuator fault. So, the effect of faults may be spotted even with redundant
actuators.

4.4.3 Scenario 8: target evasion (Figure 17)

An important concern during interception is the ability of the pursuer to reach the target. It is
thus interesting to detect whether the target performs evasive maneuvers or if its speed is too
high compared to that of the pursuer, which will ultimately make the interception fail. Such a
problem has a direct impact on the guidance constraints that are used as residuals. Scenario 8
considers a target escaping with a speed twice that of the pursuer, which is a very simple case of
impossible interception. The first four guidance residuals react, or are even unable to decrease to
a small value. The control residuals monitoring the roll, pitch and yaw rates are less impacted, as
the stabilization of the aircraft is still effective. Therefore, unknown fault signatures are observed,
which may lead to the use of a complementary actuator fault isolation strategy (if applicable),
revealing that no actuator is faulty and that the problem comes from the target that is out of the
reach of the missile. Such an occurrence may also be identified by the exogenous tracking device.
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4.5 Comments and quantitative performance evaluation

Table 5: Performance indices

Detection delays False alarm rates

Scenario PP PNG PP PNG

1 - - 0 0

2 1.99 (std: 0.05) 1.63 (std: 0.02) 0 (std: 0) 0 (std: 0)

3 1.2 (std: 0.03) 1.13 (std: 0.04) 0 (std: 0) 0 (std: 0)

4 0.4 (std: 10−6) 0.4 (std: 10−6) 0 (std: 0) 0 (std: 0)

5 - fault 1 0.4 (std: 10−6) 0.4 (std: 10−6) 0 (std: 0) 0 (std: 0)

5 - fault 2 0.4 (std: 10−6) 0.4 (std: 10−6) 2 · 10−3 (std: 10−4) 0 (std: 0)

6 0.6 (std: 10−3) 0.8 (std: 10−5) 0 (std: 0) 0 (std: 0)

7 1.12 (std: 0.01) 1.07 (std: 0.03) 0.09 (std: 0.001) 0.02 (std: 10−4)

These results show that, at a small computational cost and on difficult problems, it is possible to
detect and isolate single and possibly successive faults affecting sensors, and that actuator faults or
target evasion maneuvers are detectable. The diagnosis method remains effective in the presence of
strong measurement and model uncertainty, since this approach is based on the closed-loop control
law, which is naturally robust to such phenomena.

The method is used to generate residuals that react to the faults considered. The next step
of the diagnosis procedure requires the use of a change-detection method that will analyze the
residuals to decide whether these signals are close to their mean. This step provides a Boolean
decision for each residual, and the complete signatures can be compared to Table 1 to make a
decision on the faults that have occurred.

The chosen test can also be used to compute quantitative indices showing the performance of
the method regarding, e.g., false alarm rates and detection delays. The statistical test that has
been chosen here is the bilateral CUSUM test [39, 40]. The performance indices are computed as
indicated in [36]. The nominal mean and variance of each residual are estimated from the first 100
values after convergence. The signal is then normalized to zero mean and unit variance, to be able
to apply the same statistical test despite the initial differences of magnitude of the residuals. The
parameters of the CUSUM test have been fixed at a change in the mean of size 1 associated with
a threshold equal to 10, following the comparison study from [41]. The resulting false alarm rates
and detection delays, obtained by applying this decision test on the residuals, for all of the fault
scenarios (except target evasion) and the two guidance laws are detailed in Table 5. 100 simulations
were performed with random values drawn for uncertainty parameters reported in Table 3. The
mean value of the performance indices along with the corresponding standard deviation for this
collection of tests are reported.

The false alarm rates and detection delays are quite small, with almost zero false alarm, and
average detection delays of 1 to 2 seconds (comparable to those reported in other studies [14,16,17]).
Performances are similar for PP and PNG guidance laws.

4.6 Remark on robustness to wind turbulence
To assess the robustness of the method to external disturbances, a Dryden wind model is included
in the simulation, similarly to other studies [17,42]. The corresponding wind speeds are displayed
in Figure 8. The residuals for the fault-free case in those conditions, for the PNG law, are shown
in Figure 18. The main difference that can be observed with the nominal fault-free scenario is
that the residuals are noisier. However, their zero-mean character is preserved due to the inherent
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Figure 8: Wind speed in m·s−1

robustness of the guidance feedback laws, even when wind gusts occur (e.g., around 60 seconds
of the simulation). Therefore, detection of faults would still be possible in those wind conditions.
Stronger wind gusts may however cause transient effects that may lead to false alarms, but this
would be the case with about any FDI method.

5 Analogy with observer-based FDI
The new FDI approach has been successfully applied to diagnose faults on sensors and actuators
of a representative nonlinear aircraft. With the objective of establishing an analogy with classical
observer-based FDI [4,5] in mind, this section investigates the application of the method to linear
systems controlled by state feedback. Consider a non-faulty deterministic linear state-space model,
which may for instance correspond to a linearization of the aircraft model, ẋ = Ax+ Bu

y = Cx
(5.1)

and the observer  ˙̂x = Ax̂+ Bu+ L(y −Cx̂)

ŷ = Cx̂
(5.2)

The state-estimation error ex = x− x̂ satisfies

ėx = (A− LC)ex (5.3)

and ex asymptotically goes to zero if L is chosen in such a way that (A− LC) is Hurwitz, which
is always possible if the pair (C,A) is observable.

Consider now a time-varying fault vector f affecting the state as ẋ = Ax+ Bu+ f

y = Cx
(5.4)

This model encompasses actuator, sensor and even structural faults, as f can take any value (this
can be easily shown by substitution and change of variable). Equation (5.3) becomes

ėx = (A− LC)ex + f (5.5)

The estimation error is thus sensitive to faults, and the output estimation error ey = y − ŷ can
be used as a residual. This could also be expressed as ey(s) = C(sIn − A + LC)−1f(s) in the
frequency domain. If the Laplace transform of f , f(s) /∈ ker{C(sIn −A + LC)−1}, which is very
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likely, then the residual is sensitive to f . This fault diagnosis scheme is equally used either for
open-looped or closed-looped systems and corresponds to classical observer-based FDI.

The new closed-loop-control approach corresponds to a slight change of viewpoint. Assume
that the pair (A,B) is controllable, and the pair (C,A) observable. A state feedback can then be
designed to bring the state x of the system (or its estimate x̂ if an observer is needed) to a desired
reference value xref , which can be taken equal to 0 without loss of generality. The main assumption
of the new FDI method advocated in this paper is that a suitable state feedback u = −Kx has
been designed to achieve the control objective x = 0 (at least approximately). The dynamical
error of the closed-loop system in the absence of fault is given by

ẋ = (A−BK)x (5.6)

A classical result in control theory is that x asymptotically goes to 0 if K is chosen to have
(A−BK) Hurwitz. Even though this shows a strong analogy with observer-based fault diagnosis
(BK in (5.6) playing the same role as LC in (5.3)), using the distance between the measured
state and the desired reference as a residual, has never been used in the fault diagnosis literature
to address the diagnosis of closed-loop systems. This could be partly explained by the usual
approach that considers systems as open-looped and solely checks the consistency between inputs
and outputs to achieve FDI.

With the same faulty model (5.4) as earlier, (5.6) becomes

ẋ = (A−BK)x+ f (5.7)

and the same arguments as those stated for (5.5) stand true to use the distance between x and
the desired reference –here 0– as a residual. In particular, in the frequency domain, (5.7) yields
x(s) = (sIn −A + BK)−1f(s).

This confirms the possibility to use control objectives to build residuals for FDI of a process,
with similar arguments to those that have popularized observer-based strategies. The method can
be extended to deal with nonlinear systems, even if this is beyond the scope of this paper. Consider
the model describing the normal operating condition of a nonlinear system ẋ = g(x, u)

y = h(x)
(5.8)

Assume an appropriate control law u = gu(y) has been designed to fulfill the control objective
x = 0. The model (5.8) then translates into

ẋ = g̃(x), where g̃(x) = g(x, gu (h(x)) (5.9)

If x = 0 is an equilibrium point of the closed-loop model (5.9), the following relation stands true
locally,

ẋ ≈ Ãx, where Ã =
∂g̃(x)

∂x

∣∣∣∣
x=0

is Hurwitz (5.10)

If a fault vector f affects the system as

ẋ = g(x, u) + f (5.11)

then (5.10) becomes
ẋ ≈ Ãx+ f (5.12)

As observer-based fault detection can be straightforwardly extended by linearization, this result is
very similar to (5.7) and shows that the distance between the reference and the observed regulated
state or output is a residual indicative of the presence of faults affecting the process.
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6 Conclusions and perspectives
A new strategy to address fault diagnosis for closed-loop controlled systems has been described in
this paper. The fault residuals are built from the knowledge of control objectives that should be
achieved by the system. The structural sensitivity of these residuals to faults is then determined
through an analytical study. The method has a very low computational cost, as the dynamical
model of the system is not used to generate the residuals. The fact that the residuals are linked to
the design of the control law is another interesting point, since the same residuals can be used to
detect faults on several processes controlled with the same control law. The closed-loop character
of the approach also makes it robust to model uncertainty, which is a critical point in classical
model-based FDI methods.

The potential of the approach has been successfully demonstrated on a representative nonlin-
ear aircraft model, equipped with non-redundant sensors and classical actuators, suffering strong
measurement and model uncertainty. Based on the control objectives of two common guidance
laws (PP or PNG), residuals have been generated according to the new FDI approach. It has been
shown that faults affecting sensors are detectable and isolable in this framework, and that actuator
faults can be detected. The computation of quantitative indices have assessed the performance of
the method. The impact of evasive target behavior and wind turbulence have also been addressed.

A first step to formalize the method in the more global framework of linear and nonlinear
control theory has been accomplished by showing the analogy of the proposed method with the
classical observer-based FDI scheme for linear(ized) models. The complete nonlinear extension
of the approach remains to be addressed. This strategy may be compared with other promising
FDI methods on the basis of the test case, a comparison strategy is therefore needed to provide
recommendations for aircraft securement. The results of the candidate approaches should be
evaluated with respect to performance indices such as those used in this study. All the FDI
strategies considered have some internal parameters that need to be chosen. To compare these
strategies as objectively as possible, these inner parameters should be systematically tuned to
achieve optimality in terms of the performance indices. The design of such a procedure is at the
heart of current work.
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Nomenclature
Aircraft model

• [abx, aby, abz]
T : non-gravitational acceleration in body frame, m · s−2

• c(.) : aerodynamic coefficient

• faero and fg : aerodynamic and gravitational forces, N

• fmin and fmax : lower and upper bounds of propulsion thrust, N

• I : inertia matrix, kg ·m2

• a, b : inertia coefficients, kg ·m2

• L,M,N : aerodynamic moments, N·m

• m : mass, kg

• Q = 1
2ρ(v2bx + v2by + v2bz) : dynamic pressure, N ·m−2

• sref and lref : reference surface, m2, and length, m,

• vm = [ẋ, ẏ, ż]T : velocity in inertial frame, m·s−1

• vbm = [vbx, vby, vbz]
T : velocity in body frame, m·s−1

• xm = [x, y, z]T : position in inertial frame, m

• α = arctan(vbz/vbx) : angle of attack, rad

• β = arctan(vby/vbx) : sideslip angle, rad

• δl, δm, δn : deflection angles of equivalent flight control surfaces, rad

• δ1, δ2, δ3, δ4 : deflection angles of actual flight control surfaces, rad

• η : propulsion rate

• ω = [p, q, r]T : angular velocity, rad·s−1

• [ϕ, θ, ψ]T : orientation, rad

Target and guidance model

• r : missile-target line-of-sight (LOS), m

• vc : closing velocity, m·s−1

• vt = [ẋt, ẏt, żt]
T : target velocity in inertial frame, m·s−1

• xt = [xt, yt, zt]
T : target position in inertial frame, m

• λ : LOS orientation, rad

• λ̇ : LOS rate, rad·s−1

Measurement uncertainty and fault model

• ki, bi and σi with i ∈ {x, y, z, p, q, r} : parameters of the measurement uncertainty model

• ua : achieved control input

• uc : computed control input

• tfault : time of occurrence of the fault under consideration, s
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• σf and kf : parameters of the fault model

Residual generation

• fi, i ∈ {x, y, z} : fault affecting the accelerometer axis i

• ripp : i-th residual generated with pure pursuit

• ripng : i-th residual generated with proportional navigation guidance

• tgo : time-to-go

• t̂go : estimate of tgo

Linear and nonlinear models

• A,B,C : state, input and output matrices of a linear model

• f : fault vector

• g(·) and h(·) : state and output mappings of a nonlinear model

• In : n× n identity matrix

• K : state feedback gain

• L : Luenberger observer gain

• u : input vector

• x : state vector

• y : output vector
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Figure 9: Scenario 1 - residuals for the PP law

Figure 10: Scenario 1 - residuals for the PNG law
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Figure 11: Scenario 2 - residuals for the PP law

Figure 12: Scenario 3 - residuals for the PNG law
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Figure 13: Scenario 4 - residuals for the PP law

Figure 14: Scenario 5 - residuals for the PNG law
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Figure 15: Scenario 6 - residuals for the PP law

Figure 16: Scenario 7 - residuals for the PNG law
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Figure 17: Scenario 8 - residuals for the PP law

Figure 18: Wind and no fault - residuals for the PNG law
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