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ABSTRACT

Iterative decoding is considered in this paper from an ogtition
point of view. Starting from the optimal maximum likelihoatk-
coding, a (tractable) approximate criterion is derived.e Thobal
maximum of the approximate criterion is analyzed: the maxim
likelihood solution can be retrieved from the approximatiéecion
in some particular cases. The classical equations of tdesoders
can be obtained as an instance of an hybrid Jacobi/Gauds}8at
plementation of the iterative maximization for the tradtatriterion.
The extrinsics are a natural consequence of this implerientan
the simulation part, we show a practical application of ¢hesults.

has been made also in [6] where the turbo-decoding is iratrgr
as a nonlinear block Gauss-Seidel iteration for solvingrestrained
optimization problem. In [7], the turbo-decoding is intexted in a
geometric setting as a dynamical system leading to new lsohin
plete results. The failure to obtain complete results isnigaiue
to the inability to efficiently describe extrinsic infornian passing.
The relation between the optimal maximum likelihood dengdind
iterative decoding is not yet fully understood.

In this paper, we first review the principle of maximum likelod
decoding. An approximate (and tractable) criterion is\atifrom
an equivalent and convenient formulation of the optimatecion.
We prove that, in specific cases, the global maximum of the ap-

Index Terms— Maximum likelihood decoding, iterative turbo- Proximate criterion yields the maximum likelihood optimurive

decoding, BICM

1. INTRODUCTION

Bit-Interleaved Coded Modulation (BICM) was first suggelstsy
Zehavi in [1] to improve the Trellis Coded Modulation perfaance
over Rayleigh-fading channels. In BICM, the diversity ardein-
creased by using bit-interleavers instead of symbol ieéerrs. This

improvement is achieved at the expense of a reduced minimum E

clidean distance leading to a degradation over non-fadiags&an
channels [1], [2]. This drawback can be overcome by usingtite
decoding (BICM-ID) at the receiver. BICM-ID is known to piide
excellent performance for both Gaussian and fading channel

The iterative decoding scheme used in BICM-ID is very simila

to serially concatenated turbo-decoders. Indeed, thalgerbo-

decoder makes use of an exchange of information betweenwzomp

tationally efficient decoders for each of the component soda
BICM-ID, the inner decoder is replaced by demapping whidess
computationally demanding than a decoding step. Evendfiaper

focus on iterative decoding for BICM, the results can be iapbpl

to the large class of iterative decoders including serigpamallel
concatenated turbo-decoders.

The turbo-decoder and more generally iterative decoding mes
originally introduced as the solution to an optimizatiorolgem
rendering the analysis of its convergence and stability déficult.
Among the different attempts to provide an analysis of iteea
decoding, the EXIT chart analysis and density evolutionehaer-
mitted to make significant progress [3] but the results duged
within this setting apply only in the case of large block ldng
Another tool of analysis is the connection of iterative ding to
factor graphs [4] and belief propagation [5]. Convergersaiits for
belief propagation exists but are limited to the case whezecorre-
sponding graph is a tree which does not include turbo-codinkA
between iterative decoding and classical optimizatiororéigms

then consider the iterative maximization and prove thatcthace
of a particular scheduling leads to the classical updated irsthe
iterative (turbo) decoding. In the simulation part, thessuits are
applied to the detection of suspicious solutioaswith a possible
large number of errors.

2. MAXIMUM-LIKELIHOOD DECODING

A conventional BICM system [2] is built from a serial conaate
tion of a convolutional encoder, a bit interleaver and anryliats-
to-symbol mapping (wher@/ = 2™) as shown in Figure 1. The
sequence of information bits of lengthn, is first encoded by a
convolutional encoder to produce the output encoded bitessmpe

of lengthn which is then scrambled by a bit interleaver (as opposed
to the channel symbols in the symbol interleaved coded seg)e
operating on bit indexes. Let = 7(c) denote the interleaved se-
guence. Thenyn consecutive bits ofl are grouped as a symbol. The
complex transmitted signak, 1 < k < n/m, is then chosen from
an M-ary constellationy wherey denotes the mapping scheme. For
simplicity, we consider transmission over the AWGN chanrigie
received signals can be written as:

ye=sk+mn, 1<k< = (1)

3

wheren,, is a complex white Gaussian noise with independent in-
phase and quadrature components having two-sided powetraipe
densitys?. The maximum likelihood sequence detection takes the

b c d s y
) Symbol —

Convolutional »| Interl > ym _0 »| Channel}
Encoder Mapping

Fig. 1. BICM transmission scheme



form:

buLp = arg, max, P p(y | b) 2
wherep(y | b) is the likelihood function which results from con-
catenating the encoder with the channel. Since there is-&0soBe
correspondence between the binary messngad the interleaved
sequencel, eq. (2) is equivalent to searchingzp as:

dyrp =arg max Per(y | d)Ieo(d) (3

de{o,1}n

wherep.,(y | d) is the probability of receiving/ when the se-
guence transmitted through the channel is the mappind afd

where I.,(d) is the indicator function of the code meaning that

I.o(d) = 1if ¢ = 7~ !(d) is a codeword and elsewhere. Another
way to tackle this problem consists in finding the prior PMFdn
which maximizes tha posteriori probability of having receivegt

prvrp(d) = arg gﬂéLgXZIco(d)pch(y | d)p(d) 4)
°d

where€g stands for the set of all possibteparablePMFs ond. A
PMF p(d) is separable ip(d) = [], p:(d:) with p;(d;) the prob-
ability for bit : to be equal tal;. The optimal solutiorpasp(d)
takes the form

1, d=dumwp
0, otherwise

Ppvrp(d) = { (5)
Any other weighting (with the constraidt ; p(d) = 1) produces a
lower likelihood. The formulation in (4) is equivalent tcetloriginal
problem in (3). The practical implementation of this optiropti-
mization problem is dismissed due to the presence of a rarmiom
interleaver and to the (large) numerical valuenofin the next sec-
tion, we present a sub-optimal criterion derived from (4pinon-
structive way and establish some properties.

3. ASUB-OPTIMAL MAXIMUM LIKELIHOOD
DECODING

3.1. Assumptions and approximations

We observed that the optimal maximum likelihood decodinmnis
feasible due to the interleaver and to the computationalptexity
involved by the computation and storage of #fetaps of the PMF.
A solution regarding the interleaver is to consider segdydhe two-
blocks (mapping and coding) in a particular sense to be difater.

The formulation in (6) is then an equivalent form on the oradi
problem since the two solutioris;z»(d) and@arzp(d) both se-
lect the optimal sequence.» of the maximum likelihood de-
coding problem. Le€y/r.p denote the criterion in (6). The direct
maximization ofCas 1. p is still untractable. We need to separate the
coding part from the mapping and channel part, this can dgme-b
placing the bit-marginals of the product of two PMFs by thedurct

of the bit-marginals of the two PMFs taken separately. Thisfi
course an approximation leading to the new critedgrdefined as

é - (z(z Lo (@a() (Z panly [ 1) ) ®

d:dy,
This approximation deserves some comments. First, the bit-
marginals inC, are now computable in practice. For example
>aay Ieo(d)a(d), 1 < k < n, dp € {0,1} is exactly the out-
put given by a BCJR [8]. Next, the criteriafy, is dependant of
k: the quantities involved in the criterion are not the sanmetfi®m
different values ofk (whereasCasr.p is independent ok). This
suggests that criteriafy, should be used for thmaximization over
the k*" bit-marginal. The maximization of the unique criterion
Cmrp has been turned into a distributed optimization of theri-
teriaC,. Last, the criteriaCap andCr, 1 < k < n, are the
same (meaning there is no approximation) if the two PMFslua
I..(d)q(d) andp.,(y | d)1(d)) are separable. We can notice that
for 1(d) = lazn(d) andq(d) = urp(d) (defined in (7)) the
two PMFs are indeed separable. This is also true for all thesabf
“Kronecker” PMFs in which the global optimum is always lying
In the next subsection, we focus on the maximization of the su
optimal criteriaCy, and derive some interesting properties.

3.2. Sub-optimal criterion and global maximum

We prove in the two propositions below that in some speciaésa
the criteriaCy, yields the same global maxima as the optimal criterion
CumLp.

Proposition 1 The maximum of any criterion Cr, 1 < k<mnis
obtained for q = g and 1 = 1 such that

The problem of the computational complexity can be handled b proof: Sinceq andl are in., Cj, reads

working on the bit-marginals rather than on the PMF of the l@ho

sequence. For that purpose we split the varigiiié) into the prod-
uct of the two separable PMF§{) andq(d)) and introduce the
computation of the bit-marginals into the optimal criterias

<i]MLD(d) quLD(d)> =
arg 1 max Z Z Leo(d)pen(y | d)1(d)q(d)

dj, didy,

(6)

The double sum above is exactly the same as the some oveeall th
wordsd. The global maximum is again obtained for the optlmal

choice of the weightd(d)q(d). Sincel(d) andq(d) are PMF,
> ql(d)g(d) < 1, and the optimal weighting strategy is again

1, d=durp
0, otherwise

iJVILD(d) =qmrp(d) { @)

T 1, (d,d)=(@d,d
l(d/)q(d):{ O7 (()ti;erguise( ) ©)
where (&, él’) = arg maxq,a’c{o,1}» Peh (Y | d")I.(d).
=3 S te@pty | O [[o@n)) o)
di “didy d’:dy, P
and>>, > g, 2oara, 11 4 (di)l(d i) = >, L k() qr(di).-
In other words,
—ZZZH% )=1 (1)
Zd (dy.)qk (dx) 0 ddydid,
1 H H A "Ny _
us PPRCATNES] lk<d;)qk(dk)ck is maximum forg(d’)l(d) = 1 for

(d,d’) = (d,d’) andg(d)i(d’) = 0 for the other pairs involved
in (10). All the pairs(d,d’) have the same value for the it
this is true in particular fokd,d’). Then S, 1k (d},)qr(dy,) and

consequently’;, are also maximized bg(d)i(d’).



d Equation (14) characterizes the prodimk. The individual val-
ues ofl, and gy depend on the scheduling of the successive up-
dates. Since we have no prior information, a natural chacé¢he
initialization is I{” (dx) = ¢\ (dy) = 1 for1 < k < n and

Letd., = argmaxaeo1n p(y | d). Let suppose thadl., is a
codeword This is likely to be so at high SNR. Thed.,, d ) =

argmaxg,a‘efo,1}n Pen(y | d)Ieo(d) and alsoden = dmip = g, € {0;1}. Let consider first the update of variabigs Follow-
arg maXae{o,1}n Per(y | d)Ieo(d). Then each criteriod’, has a  jng a Jacobi implementation."" is obtained from (14) by setting
global maximum af(lxrzp(d), @urp(d)). We can also remark ;. (dy) = l,(jt V(dy) for1 < k < n andg(d;) = %(” Y (d,) for

that the others global maximizers of the Indlyldual Cr'ﬂ)eri’fk are i # k. In particular, the update at the first iteration is:

not global maximizers of all the others critetfg with1 < ¢ < n

andi # k. As a conclusion, if the channel probability,(y | d) M (2. I..(d d 15
reaches its maximum for a particular valuedtorresponding to a g (di) o< 3 Leo(d) > peny | d) (19)
codeword then the joint global maximization of crite@iafor 1 <
k < nyields the same solution (given in (7)) than the maximuntlike for 4, € {0;1} and for allk € {1,...,n}. The update of, also

lihood decoding. We can now define a new criteribe= >~7_, Cr caoaN _ qit=1) 5 .
which appears to be a relevant approximation of the optimiziraon comes from (14) by setting(d:) = I; (d:) for i # & and

d:dy d:dy

C. ar(di) = q;(ft)(dk) for 1 < k < n sinceq\"” (dx) has just been
B . computed and is available. This is an hybrid Jacobi/Gaeidet
Proposition 2 Let supposethat C hasaglobal maximumat (15, ). implementation. At the first iteration, the update fpiis:
If (15,4¢) issuch that 1:G5(d) = 1 atd = do and 0 otherwise
= duip = p ()H ()
then do = dyrp = arg maxae (0,137 Pen(y | d)Ieo(d). (1) day, Leo J#k 9
5 d:dy

Proof: C has a global maximum élc,qc) thenC( C,qc) (1,q)
for any PMF1, q. From the definition ofC we have ( a) = The generalization to iteratiofit) reads:
nCumro(l,q). MoreoverC(ls,qs) = nCarp(ls, ds). Thus

Cureo(ig, @e) > Carro (1, q) for any PMFL, q. av (dr) o Sy, Loo(d) Sy, penly | &) T 157 (dy)

(i )
(it) 2d:dy, Leo(@A) [l a5 7 (dj)
= lkz (d ) k >a. e Izo(d)

If we manage to find the global maximum of the sub-optimalkerit 17)
rionC and if the corresponding argument turns out to be a Kroneckefor d € {0; 1} and forallk € {1 - n}. In general, for convolu-
PMF then this is also the argument of a global maximum of the optive codes ., =2 a:d, leo- The iterative updates are then

timal criterionCaszp associated with the maximum likelihood de- obtained through:
coding. The practical usefulness of criteri@rwill be emphasized

in section 4. In the next subsection, we build an iterativatsty of ¢ (dy,) o > aea, Pen(y | A) [T, lyt Y (dy) 18)
maximization. l,(jt)(dk) X D g.a, Leo(d) T n qj(”)(d])
3.3. Iterative maximization This is exactly the equations that are used in the iterateeod-

. . . s ing of BICM wherelx (dx ), gx(dy) are usually calleéxtrinsics and
We observed in section 3.2 that the sub-optimal critedarwas ‘7o (73 (after ngrrrzalizétio)n) is thé\PP (A Posteriori Prob-
derived fromCysp when dealing with thés"™ bit-marginal. We ability) [9]. The extrinsics are a direct consequence of the maxi-
propose here to consider a dl_strlbuted maX|r_n|z_a~t|on Yyatehere mization of a well-defined criterion and of the choice of atigafar
lx(dx) andgs (dy) are chosen in order to maximitg, as scheduling in the computation of the successive updates.algo-
. rithm stops in general when an agreement is reached beteen t
(lIm Qk) = arg, maXka (12)  APP computed at the demapper and the APP computed at the de-
ok coder. This corresponds with our notations to:

whereF is the set of all possible PMFs aeli. The solution of (12)

is given by gt (di) 1 (dy) oc gl (di)S? () (19)
le(d)dr(dr) =1 if for di € {0;1} and for allk € {1,...,n}. This means that the
fa (@, Ico) fay, (L pen(y | d)) > f5, (@, Leo) fa, (L pen(y | ) tentative maximization (via soft estimates)ffor 1 < k < n with
lk(di)de(de) =0 otherwise respect either tf, (d.) or togy (dy) produces exactly the same result
(13)  regarding the product (APR).(dx)gx(dx). The derivation in this
wherefa, (q, Ico) = X g.a, Teo(d) [T 21 05(d;), paper are mainly based on the block structure (code, mappitige
fa, Lper(y | d) = 3. i per(y | d) Hné I;(d;) anddy, = BICM and not on the specificity of each block. The line of argums

1 — di . An iterative process propagating hard estlmat)eer(l) followed in this paper and the conclusions apply to a wideyean
is likely to get stuck in a local minima. A classical solutigto  Of problems including iterative turbo-decoding. For imsta, the
propagate instead soft-estimates [(in1]) and take hard decisions serial turbo-decoder is obtained from BICM by replacing EéF

at the end of the iterative process. For the maximizatioblpro in ~ Per(y | d) With per(y | d)Ico1(d) whereleoi(d) is the indicator
(12), possible soft estimates are : function of the inner coder involved at the transmitter. cginno

assumptions has been mademn(y | d) within this paper, the
(di)dr(dr) o fa, (a,1co) fa, (1, per(y | d)) (14) whole conclusions apply to serial turbo-decoders as welbamny
d

I
U (i) G (di) o< fa, (@, 1eo) f5, (Lpen(y | d)) decoder with a structure similar to BICM.



4. SIMULATIONS

The criterionC = $°7_, Cx is an approximation of the MLD crite
rion C. The solution for the approximate criterichis expected tc
be close to the MLD solution and hence to achieve low bit enaite
(BER). Iterative turbo-decoding is known to provide exestlper-
formance in terms of BER. We can however observe at low St
degradation in the performance mainly due to inaccurateisols of
the iterative decoder for some isolated frames. In theiiotig, we
useC has a detector to separate the acceptable solutions (feve err
expected) from the suspicious ones (many more errors eghect
We used a classical transmitter BICM scheme with,&) convolu-
tional code of ratd /2. The number of information bits is, = 400
(a frame). The code bits were passed through a random iaxerle
and modulated to 16-QAM symbols. The signal to noise ratieis
fined as%, where E, denotes the energy per information bit and
Ny is the noise variance. We consider an environment with xagryi
%L in the range{4dB, 5dB, ..., 11d B, 12dB}. The values are cho-
0
sen randomly from a uniform distribution. The iterative deing is
performed using eq. (18). For each frame, the iterative gg®ds
run until an agreement is reached for all the bits (eq. 19%entax-
imum number of iterations is reached. The solutions areifipebf
acceptable ib"}_, log(Cx) is greater (at the end of the iterative pr
cess) than a certain threshold (to be chosen) and are qdalffais-
picious if ", log(Cr) is under the threshold. We compube R,

o_

resp. BE R, the bit error rates of the acceptable solutions resp. th

BER of suspicious solutions. We expeBt R, to be many more

large thanBE R,,. We also evaluate the proportion of suspicious so-

lutions identified p) and the false alarm proportiop faise) Which
counts the solutions wrongly qualified of suspicious. Wesider
that the solutions with less th@rerrors (among the00 bits) should
not have been qualified of suspicious. The algorithm stopsrmvh
the total number of errors among the acceptable sequengessier
than200. The results are reported in table 1.

Threshold —20 —-10 -5
BER, 8,78.10~% | 4,68.10~% | 2,08.1077
BER, 0, 205 0,13 9,28.107 2
ps % 6,4% 10, 8% 14, 8%
Dfalse,s /0 2,5% 36, 4% 53, 83%

Table 1. Evaluation of Acceptable/Suspicious solutions

The validity of C as a relevant approximation 6fis confirmed
by this simulation. The BER is strongly correlated with treue
of C reached at the end of the iterative process. If the valueiecl
to the global maximum, the solution is also close (or equakhe
optimal MLD solution. At the opposite, a low value @fis often as-
sociated with a large number of errors. This is also obséialfig.
(2) where the distribution of the errors (histograms) awdtptl for
the acceptable solutions and compared to the histograrinebtéor
the suspicious solutions in the case where the threshoel@is We
can conclude from this experiment that the suspicious isoisitare
mainly due to local minima( is often very far from the threshold)
rather than to an inaccuracy 6fas an approximate criterion f@r.
For a practical point of view, the simulation above illustsahow we
can guarantee a given performance (in terms of BER) indepeiyd
of the SNR (at the cost of a rejection/re-emission of the isimys
frames).

Errors distribution ~ Acceptable sequences (reshold=-20) icious sequences (treshold=-20)

500
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300
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100
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10 30 50 70 90 110 130 150 170 190

Fig. 2. Histogram representation of the error distribution foleft}
acceptable solutions - (right) suspicious solutions

5. CONCLUSION

In this paper, we derived the (turbo) iterative decodingrfnmax-

imum likelihood decoding. The approximation needed to iobéa
tractable solution are clearly stated and some proofs hageae bs-
tablished concerning the global maximum of the approxincéte-

rion. It has also be shown that the turbo-decoding followesrfian
hybrid Jacobian/Gauss-Seidel implementation of the miaation

process. The propagation of extrinsics is naturally intcetl and is
a direct consequence of the scheduling. In the simulatidngaos-
sible application of these results has been presented.idméper,
Jve proved that iterative turbo-decoding can be interprated dis-
tributed optimization strategy reminiscent of mixed caagpige/non
cooperative games. The theoretical tools developed witi@rgame
theory framework constitute a new open perspective for detimg

the analysis of turbo-like decoding.
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