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ABSTRACT

Iterative decoding is considered in this paper from an optimization
point of view. Starting from the optimal maximum likelihoodde-
coding, a (tractable) approximate criterion is derived. The global
maximum of the approximate criterion is analyzed: the maximum
likelihood solution can be retrieved from the approximate criterion
in some particular cases. The classical equations of turbo-decoders
can be obtained as an instance of an hybrid Jacobi/Gauss-Seidel im-
plementation of the iterative maximization for the tractable criterion.
The extrinsics are a natural consequence of this implementation. In
the simulation part, we show a practical application of these results.

Index Terms— Maximum likelihood decoding, iterative turbo-
decoding, BICM

1. INTRODUCTION

Bit-Interleaved Coded Modulation (BICM) was first suggested by
Zehavi in [1] to improve the Trellis Coded Modulation performance
over Rayleigh-fading channels. In BICM, the diversity order is in-
creased by using bit-interleavers instead of symbol interleavers. This
improvement is achieved at the expense of a reduced minimum Eu-
clidean distance leading to a degradation over non-fading Gaussian
channels [1], [2]. This drawback can be overcome by using iterative
decoding (BICM-ID) at the receiver. BICM-ID is known to provide
excellent performance for both Gaussian and fading channels.
The iterative decoding scheme used in BICM-ID is very similar
to serially concatenated turbo-decoders. Indeed, the serial turbo-
decoder makes use of an exchange of information between compu-
tationally efficient decoders for each of the component codes. In
BICM-ID, the inner decoder is replaced by demapping which isless
computationally demanding than a decoding step. Even if this paper
focus on iterative decoding for BICM, the results can be applied
to the large class of iterative decoders including serial orparallel
concatenated turbo-decoders.
The turbo-decoder and more generally iterative decoding was not
originally introduced as the solution to an optimization problem
rendering the analysis of its convergence and stability very difficult.
Among the different attempts to provide an analysis of iterative
decoding, the EXIT chart analysis and density evolution have per-
mitted to make significant progress [3] but the results developed
within this setting apply only in the case of large block length.
Another tool of analysis is the connection of iterative decoding to
factor graphs [4] and belief propagation [5]. Convergence results for
belief propagation exists but are limited to the case where the corre-
sponding graph is a tree which does not include turbo-code. Alink
between iterative decoding and classical optimization algorithms

has been made also in [6] where the turbo-decoding is interpreted
as a nonlinear block Gauss-Seidel iteration for solving a constrained
optimization problem. In [7], the turbo-decoding is interpreted in a
geometric setting as a dynamical system leading to new but incom-
plete results. The failure to obtain complete results is mainly due
to the inability to efficiently describe extrinsic information passing.
The relation between the optimal maximum likelihood decoding and
iterative decoding is not yet fully understood.
In this paper, we first review the principle of maximum likelihood
decoding. An approximate (and tractable) criterion is derived from
an equivalent and convenient formulation of the optimal criterion.
We prove that, in specific cases, the global maximum of the ap-
proximate criterion yields the maximum likelihood optimum. We
then consider the iterative maximization and prove that thechoice
of a particular scheduling leads to the classical updates used in the
iterative (turbo) decoding. In the simulation part, these results are
applied to the detection of suspicious solutionsie with a possible
large number of errors.

2. MAXIMUM-LIKELIHOOD DECODING

A conventional BICM system [2] is built from a serial concatena-
tion of a convolutional encoder, a bit interleaver and an M-ary bits-
to-symbol mapping (whereM = 2m) as shown in Figure 1. The
sequence of information bitsb of lengthnb is first encoded by a
convolutional encoder to produce the output encoded bit sequencec
of lengthn which is then scrambled by a bit interleaver (as opposed
to the channel symbols in the symbol interleaved coded sequence)
operating on bit indexes. Letd = π(c) denote the interleaved se-
quence. Then,m consecutive bits ofd are grouped as a symbol. The
complex transmitted signalsk, 1 ≤ k ≤ n/m, is then chosen from
an M-ary constellationψ whereψ denotes the mapping scheme. For
simplicity, we consider transmission over the AWGN channel. The
received signals can be written as:

yk = sk + nk 1 ≤ k ≤
n

m
(1)

wherenk is a complex white Gaussian noise with independent in-
phase and quadrature components having two-sided power spectral
densityσ2

c . The maximum likelihood sequence detection takes the

Fig. 1. BICM transmission scheme



form:
b̂MLD = arg max

b∈{0,1}nb
p(y | b) (2)

wherep(y | b) is the likelihood function which results from con-
catenating the encoder with the channel. Since there is a one-to-one
correspondence between the binary messageb and the interleaved
sequenced, eq. (2) is equivalent to searchinĝdMLD as:

d̂MLD = arg max
d∈{0,1}n

pch(y | d)Ico(d) (3)

wherepch(y | d) is the probability of receivingy when the se-
quence transmitted through the channel is the mapping ofd and
where Ico(d) is the indicator function of the code meaning that
Ico(d) = 1 if c = π−1(d) is a codeword and0 elsewhere. Another
way to tackle this problem consists in finding the prior PMF ond
which maximizes thea posteriori probability of having receivedy

p̂MLD(d) = arg max
p∈Es

X

d

Ico(d)pch(y | d)p(d) (4)

whereES stands for the set of all possibleseparablePMFs ond. A
PMF p(d) is separable ifp(d) =

Q

i
pi(di) with pi(di) the prob-

ability for bit i to be equal todi. The optimal solution̂pMLD(d)
takes the form

p̂MLD(d) =



1, d = d̂MLD

0, otherwise
(5)

Any other weighting (with the constraint
P

d
p(d) = 1) produces a

lower likelihood. The formulation in (4) is equivalent to the original
problem in (3). The practical implementation of this optimal opti-
mization problem is dismissed due to the presence of a randombit
interleaver and to the (large) numerical value ofn. In the next sec-
tion, we present a sub-optimal criterion derived from (4) ina con-
structive way and establish some properties.

3. A SUB-OPTIMAL MAXIMUM LIKELIHOOD
DECODING

3.1. Assumptions and approximations

We observed that the optimal maximum likelihood decoding isin-
feasible due to the interleaver and to the computational complexity
involved by the computation and storage of the2n taps of the PMF.
A solution regarding the interleaver is to consider separately the two-
blocks (mapping and coding) in a particular sense to be defined later.
The problem of the computational complexity can be handled by
working on the bit-marginals rather than on the PMF of the whole
sequence. For that purpose we split the variablep(d) into the prod-
uct of the two separable PMFs (l(d) andq(d)) and introduce the
computation of the bit-marginals into the optimal criterion as

„

l̂MLD(d), q̂MLD(d)

«

=

arg max
l,q∈Es

X

dk

X

d:dk

Ico(d)pch(y | d)l(d)q(d)
(6)

The double sum above is exactly the same as the some over all the
words d. The global maximum is again obtained for the optimal
choice of the weightsl(d)q(d). Sincel(d) and q(d) are PMF,
P

d
l(d)q(d) ≤ 1, and the optimal weighting strategy is again

l̂MLD(d) = q̂MLD(d)



1, d = d̂MLD

0, otherwise
(7)

The formulation in (6) is then an equivalent form on the original
problem since the two solutionŝlMLD(d) and q̂MLD(d) both se-
lect the optimal sequencêdMLD of the maximum likelihood de-
coding problem. LetCMLD denote the criterion in (6). The direct
maximization ofCMLD is still untractable. We need to separate the
coding part from the mapping and channel part, this can done by re-
placing the bit-marginals of the product of two PMFs by the product
of the bit-marginals of the two PMFs taken separately. This is of
course an approximation leading to the new criterionC̃k defined as

C̃k =

„

X

dk

„

X

d:dk

Ico(d)q(d)

«„

X

d:dk

pch(y | d)l(d)

««

(8)

This approximation deserves some comments. First, the bit-
marginals in C̃k are now computable in practice. For example
P

d:dk
Ico(d)q(d), 1 ≤ k ≤ n, dk ∈ {0, 1} is exactly the out-

put given by a BCJR [8]. Next, the criterioñCk is dependant of
k: the quantities involved in the criterion are not the same for two
different values ofk (whereasCMLD is independent ofk). This
suggests that criterioñCk should be used for themaximization over
the kth bit-marginal . The maximization of the unique criterion
CMLD has been turned into a distributed optimization of then cri-
teria C̃k. Last, the criteriaCMLD and C̃k, 1 ≤ k ≤ n, are the
same (meaning there is no approximation) if the two PMFs involved
Ico(d)q(d) andpch(y | d)l(d)) are separable. We can notice that
for l(d) = l̂MLD(d) andq(d) = q̂MLD(d) (defined in (7)) the
two PMFs are indeed separable. This is also true for all the class of
“Kronecker” PMFs in which the global optimum is always lying.
In the next subsection, we focus on the maximization of the sub-
optimal criteriaC̃k and derive some interesting properties.

3.2. Sub-optimal criterion and global maximum

We prove in the two propositions below that in some special cases,
the criteriaC̃k yields the same global maxima as the optimal criterion
CMLD.

Proposition 1 The maximum of any criterion C̃k, 1 ≤ k ≤ n is
obtained for q = q̂ and l = l̂ such that

l̂(d′)q̂(d) =



1, (d,d′) = (d̂, d̂′)
0, otherwise

(9)

where (d̂, d̂′) = arg maxd,d′∈{0,1}n pch(y | d′)Ico(d).

Proof: Sinceq andl are inEs, C̃k reads

C̃k =
X

dk

„

X

d:dk

X

d′:dk

Ico(d)p(y | d′)
Y

j

qj(dj)lj(d
′
j)

«

(10)

and
P

dk

P

d:dk

P

d′:dk

Q

j
qj(dj)lj(d

′
j) =

P

dk
lk(d′k)qk(dk).

In other words,

1
P

dk
lk(d′k)qk(dk)

X

dk

X

d:dk

X

d′:dk

Y

j

qj(dj)lj(d
′
j) = 1 (11)

Thus 1
P

dk
lk(d′

k
)qk(dk)

Ck is maximum for q̂(d′ )̂l(d) = 1 for

(d,d′) = (d̂, d̂′) and q̂(d)̂l(d′) = 0 for the other pairs involved
in (10). All the pairs(d,d′) have the same value for the bitk,
this is true in particular for(d̂, d̂′). Then

P

dk
lk(d′k)qk(dk) and

consequentlỹCk are also maximized bŷq(d)̂l(d′).



�

Let d̂ch = arg maxd∈{0,1}n p(y | d). Let suppose that̂dch is a
codeword. This is likely to be so at high SNR. Then(d̂ch, d̂ch) =

arg maxd,d′∈{0,1}n pch(y | d′)Ico(d) and alsod̂ch = d̂MLD =

arg maxd∈{0,1}n pch(y | d)Ico(d). Then each criterioñCk has a
global maximum at(̂lMLD(d), q̂MLD(d)). We can also remark
that the others global maximizers of the individual criterion C̃k are
not global maximizers of all the others criteriãCi, with 1 ≤ i ≤ n
andi 6= k. As a conclusion, if the channel probabilitypch(y | d)
reaches its maximum for a particular value ofd corresponding to a
codeword then the joint global maximization of criteriaCk for 1 ≤
k ≤ n yields the same solution (given in (7)) than the maximum like-
lihood decoding. We can now define a new criterionC̃ =

Pn

k=1 C̃k

which appears to be a relevant approximation of the optimal criterion
C.

Proposition 2 Let suppose that C̃ has a global maximum at (̂lC̃, q̂C̃).
If (̂lC̃, q̂C̃) is such that l̂C̃q̂C̃(d) = 1 at d = d0 and 0 otherwise
then d0 = d̂MLD = arg maxd∈{0,1}n pch(y | d)Ico(d).

Proof: C̃ has a global maximum at(̂lC̃, q̂C̃) thenC̃(̂lC̃, q̂C̃) ≥ C̃(l,q)

for any PMF l, q. From the definition ofC̃ we haveC̃(l,q) ≥

nCMLD(l,q). Moreover C̃(̂lC̃, q̂C̃) = nCMLD (̂lC̃, q̂C̃). Thus
CMLD (̂lC̃, q̂C̃) ≥ CMLD(l,q) for any PMFl, q.

�

If we manage to find the global maximum of the sub-optimal crite-
rion C̃ and if the corresponding argument turns out to be a Kronecker
PMF then this is also the argument of a global maximum of the op-
timal criterionCMLD associated with the maximum likelihood de-
coding. The practical usefulness of criterionC̃ will be emphasized
in section 4. In the next subsection, we build an iterative strategy of
maximization.

3.3. Iterative maximization

We observed in section 3.2 that the sub-optimal criterionC̃k was
derived fromCMLD when dealing with thekth bit-marginal. We
propose here to consider a distributed maximization strategy where
lk(dk) andqk(dk) are chosen in order to maximizẽCk as

„

l̂k, q̂k

«

= arg max
lk,qk∈F

C̃k (12)

whereF is the set of all possible PMFs ondk. The solution of (12)
is given by

l̂k(dk)q̂k(dk) = 1 if
fdk

(q, Ico)fdk
(l, pch(y | d)) > fdk

(q, Ico)fdk
(l, pch(y | d))

l̂k(dk)q̂k(dk) = 0 otherwise
(13)

wherefdk
(q, Ico) =

P

d:dk
Ico(d)

Q

j 6=k qj(dj),

fdk
(l, pch(y | d)) =

P

d:dk
pch(y | d)

Q

j 6=k
lj(dj) anddk =

1 − dk . An iterative process propagating hard estimates (0 or 1)
is likely to get stuck in a local minima. A classical solutionis to
propagate instead soft-estimates (in[0; 1]) and take hard decisions
at the end of the iterative process. For the maximization problem in
(12), possible soft estimates are :

l̂k(dk)q̂k(dk) ∝ fdk
(q, Ico)fdk

(l, pch(y | d))

l̂k(dk)q̂k(dk) ∝ fdk
(q, Ico)fdk

(l, pch(y | d))
(14)

Equation (14) characterizes the productl̂kq̂k. The individual val-
ues of l̂k and q̂k depend on the scheduling of the successive up-
dates. Since we have no prior information, a natural choice for the
initialization is l(0)k (dk) = q

(0)
k (dk) = 1

2
for 1 ≤ k ≤ n and

dk ∈ {0; 1}. Let consider first the update of variablesqk. Follow-
ing a Jacobi implementation,q(it)k is obtained from (14) by setting

lk(dk) = l
(it−1)
k (dk) for 1 ≤ k ≤ n andqi(di) = q

(it−1)
i (di) for

i 6= k. In particular, the update at the first iteration is:

q
(1)
k (dk) ∝

X

d:dk

Ico(d)
X

d:dk

pch(y | d) (15)

for dk ∈ {0; 1} and for allk ∈ {1, ..., n}. The update oflk also
comes from (14) by settingli(di) = l

(it−1)
i (di) for i 6= k and

qk(dk) = q
(it)
k (dk) for 1 ≤ k ≤ n sinceq(it)k (dk) has just been

computed and is available. This is an hybrid Jacobi/Gauss-Seidel
implementation. At the first iteration, the update forlk is:

l
(1)
k (dk) ∝

P

d:dk
Ico(d)

Q

j 6=k
q
(1)
j (dj)

P

d:dk
Ico(d)

(16)

The generalization to iteration(it) reads:

q
(it)
k (dk) ∝

P

d:dk
Ico(d)

P

d:dk
pch(y | d)

Q

j 6=k
l
(it−1)
j (dj)

l
(it)
k (dk) ∝

P

d:dk
Ico(d)

Q

j 6=k q
(it)
j

(dj)
P

d:dk
Ico(d)

(17)
for dk ∈ {0; 1} and for allk ∈ {1, ..., n}. In general, for convolu-
tive codes,

P

d:dk
Ico =

P

d:dk
Ico. The iterative updates are then

obtained through:

q
(it)
k (dk) ∝

P

d:dk
pch(y | d)

Q

j 6=k
l
(it−1)
j (dj)

l
(it)
k (dk) ∝

P

d:dk
Ico(d)

Q

j 6=k
q
(it)
j (dj)

(18)

This is exactly the equations that are used in the iterative decod-
ing of BICM wherelk(dk), qk(dk) are usually calledextrinsics and
lk(dk)qk(dk) (after normalization) is theAPP (A Posteriori Prob-
ability) [9]. The extrinsics are a direct consequence of the maxi-
mization of a well-defined criterion and of the choice of a particular
scheduling in the computation of the successive updates. The algo-
rithm stops in general when an agreement is reached between the
APP computed at the demapper and the APP computed at the de-
coder. This corresponds with our notations to:

q
(it)
k (dk)l

(it−1)
k (dk) ∝ q

(it)
k (dk)l

(it)
k (dk) (19)

for dk ∈ {0; 1} and for allk ∈ {1, ..., n}. This means that the
tentative maximization (via soft estimates) ofC̃k for 1 ≤ k ≤ nwith
respect either tolk(dk) or toqk(dk) produces exactly the same result
regarding the product (APP)lk(dk)qk(dk). The derivation in this
paper are mainly based on the block structure (code, mapping) of the
BICM and not on the specificity of each block. The line of arguments
followed in this paper and the conclusions apply to a wide range
of problems including iterative turbo-decoding. For instance, the
serial turbo-decoder is obtained from BICM by replacing thePMF
pch(y | d) with pch(y | d)Ico1(d) whereIco1(d) is the indicator
function of the inner coder involved at the transmitter. Since, no
assumptions has been made onpch(y | d) within this paper, the
whole conclusions apply to serial turbo-decoders as well asto any
decoder with a structure similar to BICM.



4. SIMULATIONS

The criterionC̃ =
Pn

k=1 C̃k is an approximation of the MLD crite-
rion C. The solution for the approximate criterioñC is expected to
be close to the MLD solution and hence to achieve low bit errorrate
(BER). Iterative turbo-decoding is known to provide excellent per-
formance in terms of BER. We can however observe at low SNR a
degradation in the performance mainly due to inaccurate solutions of
the iterative decoder for some isolated frames. In the following, we
useC̃ has a detector to separate the acceptable solutions (few errors
expected) from the suspicious ones (many more errors expected).
We used a classical transmitter BICM scheme with a(5, 7) convolu-
tional code of rate1/2. The number of information bits isnb = 400
(a frame). The code bits were passed through a random interleaver
and modulated to 16-QAM symbols. The signal to noise ratio isde-
fined asEb

N0
, whereEb denotes the energy per information bit and

N0 is the noise variance. We consider an environment with varying
Eb

N0
in the range{4dB, 5dB, ..., 11dB, 12dB}. The values are cho-

sen randomly from a uniform distribution. The iterative decoding is
performed using eq. (18). For each frame, the iterative process is
run until an agreement is reached for all the bits (eq. 19) or the max-
imum number of iterations is reached. The solutions are qualified of
acceptable if

Pn

k=1 log(C̃k) is greater (at the end of the iterative pro-
cess) than a certain threshold (to be chosen) and are qualified of sus-
picious if

Pn

k=1 log(C̃k) is under the threshold. We computeBERa

resp.BERs the bit error rates of the acceptable solutions resp. the
BER of suspicious solutions. We expectBERs to be many more
large thanBERa. We also evaluate the proportion of suspicious so-
lutions identified (ps) and the false alarm proportion (ps,false) which
counts the solutions wrongly qualified of suspicious. We consider
that the solutions with less than6 errors (among the400 bits) should
not have been qualified of suspicious. The algorithm stops when
the total number of errors among the acceptable sequences isgreater
than200. The results are reported in table 1.

Threshold −20 −10 −5
BERa 8, 78.10−4 4, 68.10−4 2, 08.10−4

BERs 0, 205 0, 13 9, 28.10−2

ps % 6, 4% 10, 8% 14, 8%
pfalse,s % 2, 5% 36, 4% 53, 83%

Table 1. Evaluation of Acceptable/Suspicious solutions

The validity of C̃ as a relevant approximation ofC is confirmed
by this simulation. The BER is strongly correlated with the value
of C̃ reached at the end of the iterative process. If the value is close
to the global maximum, the solution is also close (or equal) to the
optimal MLD solution. At the opposite, a low value of̃C is often as-
sociated with a large number of errors. This is also observable in fig.
(2) where the distribution of the errors (histograms) are plotted for
the acceptable solutions and compared to the histogram obtained for
the suspicious solutions in the case where the threshold is−20. We
can conclude from this experiment that the suspicious solutions are
mainly due to local minima (̃C is often very far from the threshold)
rather than to an inaccuracy of̃C as an approximate criterion forC.
For a practical point of view, the simulation above illustrates how we
can guarantee a given performance (in terms of BER) independently
of the SNR (at the cost of a rejection/re-emission of the suspicious
frames).
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Fig. 2. Histogram representation of the error distribution for : (left)
acceptable solutions - (right) suspicious solutions

5. CONCLUSION

In this paper, we derived the (turbo) iterative decoding from max-
imum likelihood decoding. The approximation needed to obtain a
tractable solution are clearly stated and some proofs have been es-
tablished concerning the global maximum of the approximatecrite-
rion. It has also be shown that the turbo-decoding follows from an
hybrid Jacobian/Gauss-Seidel implementation of the maximization
process. The propagation of extrinsics is naturally introduced and is
a direct consequence of the scheduling. In the simulation part, a pos-
sible application of these results has been presented. In this paper,
we proved that iterative turbo-decoding can be interpretedas a dis-
tributed optimization strategy reminiscent of mixed cooperative/non
cooperative games. The theoretical tools developed withinthe game
theory framework constitute a new open perspective for completing
the analysis of turbo-like decoding.
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