
HAL Id: hal-00617644
https://centralesupelec.hal.science/hal-00617644

Submitted on 30 Aug 2011

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Batch Reinforcement Learning for Optimizing
Longitudinal Driving Assistance Strategies

Olivier Pietquin, Fabio Tango, Raghav Aras

To cite this version:
Olivier Pietquin, Fabio Tango, Raghav Aras. Batch Reinforcement Learning for Optimizing
Longitudinal Driving Assistance Strategies. CIVTS 2011, Apr 2011, Paris, France. pp.73-79,
�10.1109/CIVTS.2011.5949533�. �hal-00617644�

https://centralesupelec.hal.science/hal-00617644
https://hal.archives-ouvertes.fr

Batch Reinforcement Learning for Optimizing
Longitudinal Driving Assistance Strategies

Olivier Pietquin
SUPELEC

UMI 2958 (GeorgiaTech - CNRS)
2 rue Édouard Belin
57070 Metz (France)

olivier.pietquin@supelec.fr

Fabio Tango
Centro Ricerche Fiat

Strada Torino, 50
10043 Orbassano (Italy)

fabio.tango@crf.it

Raghav Aras
SUPELEC

IMS Research Group
2 rue Édouard Belin
57070 Metz (France)

raghav.aras@supelec.fr

Abstract—Partially Autonomous Driver’s Assistance
Systems (PADAS) are systems aiming at providing
a safer driving experience to people. Especially, one
application of such systems is to assist the drivers
in reacting optimally so as to prevent collisions with
a leading vehicle. Several means can be used by a
PADAS to reach this goal. For instance, warning signals
can be sent to the driver or the PADAS can actually
modify the speed of the car by braking automatically.
An optimal combination of different warning signals
together with assistive braking is expected to reduce
the probability of collision. How to associate the right
combination of PADAS actions to a given situation so
as to achieve this aim remains an open problem.
In this paper, the use of a statistical machine learning

method, namely the reinforcement learning paradigm,
is proposed to automatically derive an optimal PADAS
action selection strategy from a database of driving
experiments. Experimental results conducted on ac-
tual car simulators with human drivers show that this
method achieves a significant reduction of the risk of
collision.

I. Introduction
A. Context

The work presented in this paper has been realized
inside the co-funded European project ISi-PADAS1. This
project aims at developing and implementing a Partially
Autonomous Driver Assistance System (PADAS in short)
in a static driving simulator, including the interfaces
between the driver and the system (comprising haptic,
visual and audio interfaces). The development of such
a system was based on the in-depth analysis of the
car-accidents, conducted in the project, about causes of
driver’s errors responsible for rear-end crashes [1]. For
this aim, the dataset comprising 4256 accidents from
Braunschweig 2002 has been used [2]. Additionally, a
sample from the German National Accident Database
(Statistisches Bundesamt) from 2002 was used including
185004 accidents [3]. All rear-end crashes take part for
73.3% of analysed accidents and in particular 22.81% of
the severe accidents (with major damage of more than
6000 Euro, injuries or fatalities). Following a vehicle too

1www.isi-padas.eu

Fig. 1. architecture of the LOSS application, showing the two
modalities and the constituting functions

closely represents the most important cause of accident
in 85,61% of all the cases analyzed. Moreover, 75,98%
of the rear-end crashes occur in undisturbed/flow traffic
(where the expectation of an event is probably low). In this
context, many studies have shown the benefits of Forward
Collision Warning (FCW) and of Adaptive Cruise Control
(ACC) in reducing the number and severity of rear-end
collisions [4], especially in conditions where drivers have
to cope with car following tasks in limited traffic flows or
heavy - but not congested - traffic2. In this context, the
PADAS developed in the project was focused in assisting
drivers during their longitudinal driving task and it is
called Longitudinal Support System (or LoSS, in short). In
particular, it can prevent a collision with a leading vehicle
by providing warnings to the driver, up to bringing the
vehicle to a halt independently of driver’s action, through
the support for an assisted braking action. The system
has two mechanisms at its disposal in order to realize this
collision-avoidance capability:
• it can provide warning signals to the driver
• it can decelerate the vehicle.

Fig. 1 illustrates the functional scheme of PADAS applica-
tion: Two types (or modes) of LOSS have been considered:
the Advanced Forward Collision Warning (FCW+, in
short) and the Advanced Adaptive Cruise Control (ACC+,
in short) which are both constituted by 3 functions:
• Forward Collision Warning (FCW) or Adaptive

Cruise Control (ACC), respectively for FCW+ and
for ACC+

2see http://www.prevent-ip.org for several field test performed by
Dutch Ministry of Transport or see [5]

• Assisted Braking (AB), for both
• Emergency Braking (EB), for both

FCW represent the “traditional”forward collision warning
system: if the driver travels too close (too short headway)
or too fast with respect to the vehicle ahead on the same
trajectory, s/he receive a warning of different severities,
depending on the dynamic conditions between the two
vehicles. This is the first function for the FCW+ system.
Alternatively, the first function can be the “traditional”
ACC, in which not only the speed is kept at the specific
value (like in the Cruise Control), but also the distance is
kept within pre-defined threshold of headway. ACC is used
as first function in the ACC+ system. Then, the other two
functions are common to both the systems. In particular,
AB function provides the proper assistance to the driver:
if the driver acts on the brake pedal, thus indicating the
will to brake, but not performing in the most appropriated
way, the system is able to modulate the braking action
automatically. Finally, if the driver ignored warning and
AB did not intervene (i.e. driver did not apply on the
brake) EB function acts, in order to avoid accidents or
at least to minimise the effects, in case it is not avoidable
anymore.

B. Contribution
This paper addresses the problem of finding an op-

timal warning and intervention strategy for a partially
autonomous driver’s assistance system (PADAS). Here, an
optimal strategy is regarded as the one minimizing the
risk (probability) of collision with an obstacle ahead, while
keeping the number of warnings and interventions as low
as possible, in order to support the driver and avoid dis-
traction or annoyance. A novel approach to this problem
is proposed, based on the solution of a sequential decision
making problem solved via the Reinforcement Learning
(RL) [6] paradigm and learning on a fixed dataset.

In the RL paradigm, a learning agent (the controller
or decision maker) learns an optimal control strategy by
either interacting with the system or observing interac-
tions between another controller and the system. To do
so, the system’s dynamic as to be cast into the Markov
Decision Processes (MDP) formalism [7]. The system is
then considered as made up of states (situations to which a
control as to be associated) and the control is considered as
being a sequence of actions applied to the system. In every
situation, the controller has to choose an action to apply to
the system. Once the action has been applied, the system
steps to another state according to its own dynamics and
a reward qualifying the quality of the transition is gener-
ated. The controller has thus to learn a mapping between
situations and actions (named as strategy or policy) that
maximises the long run reward.

The collision avoidance problem is thus seen as a se-
quential decision making problem to optimize given a
set of {vehicle+driver}-PADAS interaction sequences in
which each sequence {s1, a1, s2, a2, . . . , sT , aT } consists of

the vehicle+driver’s states {si} and the PADAS’ reactions
{ai} to it. Each such sequence engenders a probability
of collision, and an optimal strategy is one which gives
rise to a subset of this set of sequences for which the
average or expected probability of collision is the smallest.
In our problem, we do not know the probability of collision
associated with any given sequence. The only data that is
available to us consists only of small subset of the set of
sequences of {vehicle+driver}-system interactions. On the
other hand, we must find a strategy that takes into account
all possible vehicle-system interaction sequences.

Few attempts to use RL in the case of autonomous
driving can be found in the literature and most of them are
related to steering the vehicle [8], [9], [10]. In this paper,
we focus on RL for a continuous longitudinal support
to the driver, which starts from the pre-collision and
collision warnings for the driver and ends to the automatic
emergency braking, through an assisted braking action.
Therefore, we consider specifically the longitudinal driving
task - car-following situation - and in that case, the driver
is completely in the control-loop of the vehicle for the first
two stages of the supporting function, while the system
takes the full control of the vehicle only in the last phase of
the emergency braking. In this context, the decision maker
has to take into account driver’s behavior in the dynamic
of the controlled system which is not case in the steering
task. The fact that the driver stays in the loop makes
the system highly stochastic (and maybe non-stationary)
because of inter- and intra-driver variability, that is to say
that to similar situations from the point of view of the
PADAS, different reactions can occur given that the driver
is different or the perception of the situation is different
even for a same driver.

The rest of this paper is organized as follows. Sec-
tion II presents the theoretical background of Reinforce-
ment Learning and Markov Decision Processes. Section III
presents how the problem of PADAS strategy optimisation
can be cast into the MDP paradigm. In Section IV, exper-
imental results are provided. Finally, Section IV concludes
and provides possible future investigations.

II. Markov Decision Processes
The problem of optimally controlling a stochastic dy-

namic system is often addressed by the machine learning
community in the framework of the Markov Decision
Processes (MDP) [7]. An MDP is a stochastic finite state
machine which is formally described in the next section.

A. Definition
An MDP is defined as a tuple {S,A, P,R, γ} where S

is the set of states (the different configurations of the
system), A is the set of actions (which cause a change
of the system’s state), P : s, a ∈ S ×A→ p(.|s, a) ∈ P(S)
is a set of Markovian transition probabilities (the prob-
ability to transit from one state s to another s′ given
that action a was taken in state s), a reward function

R : s, a, s′ ∈ S×A×S → r = R(s, a, s′) ∈ R associating a
scalar to each transition and a discounting factor γ which
decreases long-term rewards’ influence.

The Markov property means that the probability to step
from one state s to another s′ given an action a depends
only on s and a and not on the previously visited states
and taken actions :

P (si+1|si, ai, si−1, ai−1, . . . , s0, a0) = P (si+1|si, ai) (1)

The way the controller selects actions is modeled by a so-
called policy, π : s ∈ S → π(.|s) ∈ P(A), which associates
to each state a probability distribution over actions. The
quality of such a policy is quantified by a so-called value
function,

V π(s) = E[
∞∑
i=0

γiri|s0 = s, π],

which associates to each state the expected cumulative
discounted reward from starting in the considered state
and then following the given policy. An optimal policy
π∗ is one of those which maximize the associated value
function for each state:

π∗ ∈ argmax
π

V π.

One can also define the state-action value (or Q-) function
which provides an additional degree of freedom on the first
action to be chosen:

Qπ(s, a) = E[
∞∑
i=0

γiri|s0 = s, a0 = a, π]. (2)

An optimal deterministic policy can thus be obtained by
maximizing the optimal Q-function over actions:

π∗ = argmax
a∈A

Q∗(s, a). (3)

The Q-function generalizes the value function in the sense
that V π(s) = Ea|s,π[Qπ(s, a)]. This is why only the Q-
function will be considered in the rest of this paper. Notice
that knowing the Q∗(s, a) function for a given MDP is
enough to derive an optimal policy. So most of algorithms
aim at estimating this Q∗ function.
B. Dynamic Programming

Because of the Markovian property of the transition
probabilities (see eq. (1)), the expression of the Q-function
(eq. (2)) can be rewritten as:

Qπ(s, a) = Es′|s,a[R(s, a, s′) + γQπ(s′, π(s′))]
= TπQπ(s, a) (4)

This is the so-called Bellman evaluation equation and Tπ
is the Bellman evaluation operator.

The optimal Q-function Q∗(s, a) can also be written as a
Bellman equation (the Bellman optimality equation, where
T ∗ is the Bellman optimality operator):

Q∗(s, a) = Es′|s,a[R(s, a, s′) + γmax
b∈A

Q∗(s′, b)]

= T ∗Q∗(s, a) (5)

Dynamic programming (DP) [11] aims at computing the
optimal policy π∗ using Bellman equations if the transition
probabilities and the reward function are known. Two
classes of algorithms can be distinguished.
First, the policy iteration algorithm computes the opti-

mal policy in an iterative way. The initial policy is arbi-
trary set to π0. At iteration k, the policy πk−1 is evaluated,
that is the associated Q-function Qπk−1(s, a) is computed.
To do so, eq. (4) is used. Since Tπ is linear eq. (4) defines
a linear system that can be solved by standard methods or
by an iterative method using the fact that Qπ is the unique
fixed-point of the Bellman evaluation operator (Tπ being
a contraction that is ‖TπV 1−TπV 2‖ ≤ α‖V 1−V 2‖ with
α ∈]0, 1]):

Q̂πi = TπQ̂πi−1, ∀Q̂π0 lim
i→∞

Q̂πi = Qπ.

Roughly, this means any policy π can be evaluated by
starting from an arbitrary initial Q-value Qπ0 and than
iteratively applying eq. (4) to it. Once evaluated, the
policy is improved, that is πk is greedy respectively to
Qπk−1 :

πk(s) = argmax
a∈A

Qπk−1(s, a).

Evaluation and improvement steps are iterated until con-
vergence of πk to π∗ (which can be demonstrated to
happen in a finite number of iterations when πk = πk−1).
In practice, the learning is stopped when two consecutive
policies are identical which happens when πk = π∗ since
the policy which is greedy according to its own Q-function
is the optimal policy by definition (eq. (3)).
The second algorithm is the value iteration algorithm.

It aims at estimating directly the optimal state-action
value function Q∗ which is the solution of eq. (5). The T ∗
operator is not linear (because of the max operator), there-
fore computing Q∗ via standard system-solving methods
is not possible. However, it can be shown that T ∗ is also
a contraction [12]. Therefore, according to Banach fixed-
point theorem, Q∗ can be estimated using the following
iterative way:

Q̂∗i = T ∗Q̂∗i−1, ∀Q̂∗0 lim
i→∞

Q̂∗i = Q∗ (6)

However, the convergence takes an infinite number of iter-
ations. Practically speaking, iterations are stopped when
some criterion is met, classically a small difference between
two iterations: ‖Q̂∗i − Q̂∗i−1‖ < ξ. The estimated optimal
policy (which is what we are ultimately interested in) is
greedy respectively to the estimated optimal Q-function:
π̂∗(s) = argmaxa∈A Q̂∗(s, a).

C. Approximate DP and Reinforcement learning
Dynamic programming makes two very strong assump-

tions. First it assumes that the dynamic of the system is
known and therefore that transition probabilities and the
reward function are available. Second, an exact representa-
tion of the Q-function is supposed to be computable. Both

assumptions are rarely met. Instead of having access to the
dynamics of the system two options are often possible:
either a database of interaction examples is available,
either the system itself can be tested through a trial-and-
error process. In the former case, the class of algorithms
aiming at estimating an optimal policy from a fixed data
set is named Approximate Dynamic Programming (ADP).
It forms a set of batch algorithms (off-line) to solve the
optimal control problem at sight. In the later case, the
learning agent has to improve its strategy online while
interacting with the system. This is the general Reinforce-
ment Learning problem. In any case, if the state-action
space is too large to be enumerated so as to have an
exact (tabular) representation of the Q-function Q(s, a),
then it is common to learn a parametric approximation
Qθ(s, a) where θ is a set of parameters to learn. The
parameterization can be of any form. For example, if
the Q-function is approximated by a neural network like
in [13], the set of parameters θ contains the synaptic
weights of the network. However, a common choice is the
linear parameterization like in [14]:

Qθ(s, a) =
p∑
i=1

φiθi = φT θ (7)

Most renown ADP algorithms are Least Square Temporal
Differences (LSTD) [14], Least Square Policy Iteration
(LSPI) [15] and Fitted Value Iteration (FVI) [16]. LSTD
is an efficient batch algorithm for policy evaluation. LSPI
uses LSTD in a policy iteration framework to learn an
optimal policy from a database of interactions. FVI is
more related to the value iteration algorithm and aims at
directly discovering the optimal Q-function from a dataset.

There are a lot of online reinforcement learning algo-
rithms in the the literature. They are mostly based on the
computation of a temporal difference which can be seen as
the difference between the right and left members of one of
the Bellman equations for one transition. For instance, in
the case of the Bellman evaluation equation, the temporal
difference δEi for a given transition {si, ai, ri, si+1, ai+1} is
given by:

δEi = ri + γQ̂θi−1(si+1, ai+1)− Q̂θi−1(si, ai)

where θi is the evaluation of the Q-function parameter
set at time i. The temporal difference δOi for the Bellman
optimality equation is:

δOi = ri + γmax
b∈A

Q̂θi−1(si+1, b)− Q̂θi−1(si, ai)

Temporal differences algorithms use this quantity δi to
update the parameters estimation after each interaction
using a Widrow-Hoff-like equation:

θi = θi−1 +Kiδi

where Ki is a gain. Algorithms differ by the temporal
difference considered and the gain computed. For instance,
the SARSA algorithm [6] uses the δEi temporal difference

and the gain Ki is a simple learning rate. It is an online
version of policy iteration. The Q-learning algorithm [17]
uses the δOi temporal difference also with a simple learn-
ing rate and is an online version of the value iteration
algorithm. Other methods exist like the Kalman Temporal
Differences framework (KTD) [18] where the gain is com-
puted with a Kalman filter and either temporal difference
can be used, Gaussian Processes Temporal Differences
(GPTD) [19] where the gain is computed with Gaussian
Processes and where only the evaluation temporal differ-
ence can be used etc.

D. On-policy vs Off-policy
According to what has been said in subsections II-B and

II-C, one can distinguish two different categories of algo-
rithms: those based on the Bellman evaluation algorithm
and those based on the Bellman optimality equation. The
former algorithms are called on-policy algorithms because
they evaluate the currently used policy and then improve
it to finally obtain an optimal policy. The later are called
off-policy algorithms since they aim at learning the Q-
function of the optimal policy from observations of an
other policy. These algorithms are generally used when
the system cannot be controlled during learning. It is the
case when learning from a fixed set of data (the agent
cannot generate new transitions than those contained in
the dataset) or when there are constrains on the strategy
that are admissible by the system to be controlled. It is
the case in our application since there is a human driver in
the loop and the learning decision maker cannot try any
random sequence of action for example.

E. Model-based vs Model-free
The algorithms mentioned in subsections II-B and II-C

are called model-free algorithms because they don’t need
a model of the dynamics of the system. That means that
the transition probabilities and the reward function (the
model of the MDP) are not known neither computed by
the algorithm. It is also possible to evaluate these quanti-
ties either from a database or from online interactions.
This gives rise to model-based algorithms. If the state-
action space is small enough to be enumerated, than the
these quantities are discrete values that can be evaluated
by a simple counting (maximum likelihood estimation).
The DYNA-Q algorithm [6] proceeds this way. If not,
these quantities have to be estimated as parametric func-
tions like in the case of the Q-function in the previous
section [20]. For example, the transition probabilities can
be approximated as having a Gaussian distribution and
the parameters (µ, σ) of each transition probability can
be estimated through interactions. A comparison between
both types of method can be found in [21]

III. PADAS as an MDP
To cast the PADAS optimization problem described

in Section I-B into the Markov Decision Process (MDP)

framework [7], one has to define state and action spaces
and a reward function. The optimal policy will be the one
that maximizes the expected discounted reward over the
long run. Let’s remind the problem we want to solve. The
collision avoidance problem described in the introduction
consists of devising a method of using the system’s re-
sources (capability to send warning signals to the driver
and to decelerate the vehicle) such that the probability of
a collision is minimized while introducing the minimum of
disturbance for the driver.

We will consider that at any time t, a collision of the
host vehicle with the leading vehicle occurs if the time
to collision at time t drops below a threshold ε. Time to
collision θ at time t is defined as

θt = dt
vt − v′t

where dt is the distance to the next obstacle, vt is the
velocity of the car and v′t is the velocity of the obstacle.
These variables can be measured with equipment available
on cars with PADAS installed.

The state is thus made of a single continuous real value
which is the estimated time to colision θt. The elementary
actions the PADAS can take are of two kind : (i) apply
braking pressure equal to b times the maximum braking
pressure of the vehicle (b ∈ [0, 1]), (ii) send a warning
signal to the driver (warnings can be of audio,visual
or haptic type). An actual PADAS action will be any
combination of warnings and braking pressure application.
The reward function is defined according to three different
costs : a cost for the time to collision (the higher the time
to collision the lower the cost), a cost for braking (again,
the larger the braking, the larger is the cost) and finally
a cost for sending signal (with each signal is associated
a level of urgency; the more urgent the signal, the larger
is the cost). Of course, a very high cost is associated to a
time to collision of 0 (which means collision). Intempestive
breaking and warnings are also judged to have a negative
impact on the driving experience and negative rewards are
associated.

IV. Experiments and Results

The experiments were divided into three phases: data
collection, optimal strategy learning and testing. The
learning is done in a batch manner, that is from collected
data, and not online (during the driving). This choice is
made so as not to disturb the drivers by changing the
PADAS intervention strategy while they are driving the
car. Indeed, these changes in the warning and braking
strategy, meaning that into a similar situation different
PADAS actions could occur, could induce unusual behav-
iors and stress of the drivers which will not be encountered
in real scenarios.

Fig. 2. Episode example : time to collision vs time

A. Data Collection

A driving experiment has been conducted on a ScanerII3
car simulator, a fixed based system that comprises a mock-
up of a car with real driving controls (i.e. seat, steering
wheel, pedals, gear, handbrake), a digital simulated dash-
board displaying a traditional instrumental panel and a
frontal projection screen where the simulated environment
is displayed to the driver. This type of simulator can
output data at a frequency of 20 Hz (= 0.05 s). Five
subjects participated to the experiments, driving on an
extra-urban and motorways scenarios for more than 1 hour
each, using the ACC+ mode of the PADAS. The PADAS
used an initial strategy π0 which was based on handcrafted
rules (the time to collision was discretized and to each
bin was associated an action) and stochastic noise (that is
random actions could sometimes be selected) was added
to artificially explore the state-action space.

Trials of about 600 minutes involving different human
drivers driving the simulator were conducted. The sim-
ulation trials data is organized in the form of a set of
episodes. Each episode is sequence of state-action pairs
of the MDP model of the collision avoidance problem
described in Section III. Values of θ could be computed
every 300ms which provided a large amount of transition
to learn. An example of particular episode is provided on
Fig. 2

B. Optimal Strategy Learning

As explained in Section II, several approaches can be
envisioned to solve the optimal control problem at sight.
Particularly, model-free or model-based algorithms could
be investigated. In this paper is reported the result of the
learning with a model-based algorithm (see Section II-E),
that is a model that learns the transition probabilities of
the {vehicle+driver} system. The {vehicle+driver} system
is indeed a stochastic system since there are inter- and
intra-driver variabilities inducing different reactions to
similar situations given that the driver is different or even
given that the perception of the situation is different for a

3www.scaner2.com

same driver. Moreover, since we learn from a fixed set of
data, an off policy algorithm (see Section II-D) is chosen.

A state in this MDP is a time to collision. The minimum
value of the time to collision is 0 seconds and the maximum
value can be considered to be 50 seconds (as far as collision
avoidance is concerned, any value above 50 seconds can
be considered equivalent to 50 seconds). So, a state in
the MDP is a number in the interval [0, 50]. This is an
infinite set. A model-based approach would require to
learn transition probabilities between states. Either we
learn parameters of continuous distributions, either we
discretized the state space. In order to render it finite,
we exhaust the interval into disjoint partitions of unequal
sizes. As an example: [0, 0.5[, [0.5, 1[, [1, 1.5[, [1.5, 2[, [2,
3[, [3, 5[, [5, 7[, [7, 10[, [10, 15[, [15, 50]. These partitions
(or bins) represent the states of a (finite) MDP. The
portioning just described gives 10 states and was driven
by expert knowledge. So, if the time to collision is say 0.73
seconds, the MDP is in the 2nd state, if it is 2.15 seconds,
the MDP is in 5th state and so on.
The probabilities P (.|s, a) of stepping from one state

(as defined hereabove) to another given that an action has
been taken are computed for every tuple (s, a, s′) present
in the database. The associated costs are then computed
(a cost is regarded as a negative reward) and the value
iteration algorithm (see Section II-B) is applied to the
learnt MDP.

C. Results
Two optimal strategies were constructed based on two

different partitions of the set of possible time to collisions.
We refer to the two policies as π∗1 and π∗2 . For the sake
of demonstration, one of both learnt strategies (π∗1) is
explained in Table I:

TABLE I
Learnt policy π∗

1

Time to Collision In-
terval

Action to Take

[0, 0.5[send emergency signal, apply maxi-
mum brake

[0.5, 0.5[send danger signal, apply 80% brake
[1, 2[send danger signal, apply 40% brake
[2, 3[send danger signal, apply 20% brake
[3, 10[send collision warning signal, don’t

apply any brake
[10, 50] Send normal signal, don’t apply any

brake

In the testing phase, π∗1 , π∗2 and the hand-coded strategy
π0 that served to generate the database (but without
the stochastic action selection) were tested by using each
of them in turn as the PADAS strategy in simulation
trials involving different human drivers. Note that the
hand-coded policy was based just on common sense. To
assess the quality of the learnt strategies, two variables
were monitored: the time to collision and the distance
between the vehicles. A collision was said to have occurred

if the time to collision dropped to less than 1.5 seconds
or if the distance dropped to less than 1 meter. Table II
gives the results of the learnt policies π∗1,2 and the hand-
crafted policy π0 (this time without random actions). It
is important to notice that the policies π∗1,2 have been
learnt from samples generated with a policy π0 which
was acceptable for drivers (off-policy learning with an ac-
ceptable behavioral policy). Indeed, a completely random
policy could theoretically provide better results since the
whole state-action space could be sampled uniformly, yet it
would have impacted the drivers’ behavior. Table II lists
the percentage of samples in which a collision occurred
according to the two definitions given above. These results
show that the strategies derived using the MDP approach
render the driving experience safer by reducing the number
of collisions and near collisions.

TABLE II
Learnt policy performance (π∗

1,2) vs handcrafted policy (π0)

Time to Collision Distance
π∗

1 2.1% 1.5%
π∗

2 1.5% 2.4%
π0 3.8% 4.3%

V. Conclusions and perspectives
In this paper, an approach for conceiving an optimal

warning and intervention strategy for a PADAS is pre-
sented. The problem is modelled as an unknown Markov
Decision Process, that is the transition probabilities are
unknown because it depends on the drivers reactions to
driving situation and PADAS interventions. Data collected
from simulation trials with real human drivers were used to
learn the unknown parts of this MDP. The optimal control
problem is solved using the value iteration algorithm to
obtain an optimal strategy. Since the approach consists in
learning the model of the MDP, it can be regarded as a
sort of model-based reinforcement learning.

Obtained results indicate that there exists a real benefit
in adopting this approach: the percentage of collisions or
near collisions drops down by a non-negligible amount
while the optimized cost function ensure not to disturb
the drivers with unnecessary warning signals. The other
advantage of our approach is that the optimal strategy
is constructed directly from the data. No hypothesis is
thus made about driver’s behavior. Moreover, the learn-
ing phase doesn’t introduce bias effects on the driver’s
behavior neither. Finally, it shows that learning can be
done from recorded information which can actually be
obtained on real cars, which means that the learning could
be improved and even personalized for each driver.

This work opens up interesting possibilities for con-
ceiving intelligent systems for vehicles but also to model
drivers. Indeed, the MDP approach provides the right
framework to allow, as a by-product, to construct a driver
behaviour model embodied in the state transition prob-
abilities of the MDP. It could therefore be possible to

simulate drivers or to infer some information about the
user’s perception of the situation.

In addition, the entire range of algorithms for solving
MDPs, including those from the domain of reinforcement
learning such as LSPI [15] or FVI [16] (briefly described
in Section II-C) can be used to constructing sequential
decision making strategies for intelligent systems that are
based entirely on observed data, and not on complex
hypothesis. This would particularly be interesting since
they are able to deal with continuous state-action spaces
which is the case in the problem described here. Indeed,
the partitioning of the state and action space described in
Section IV-B introduces an aliasing problem that may lead
to suboptimal strategies. The use of algorithms dealing
with continuous state-action spaces could actually implic-
itly learn the optimal partitioning and thus produce more
accurate policies.

Next steps involve the integration of this MDP model
with the driver’s distraction classifier, in order to improve
the efficacy of the PADAS, also depending on the driver’s
states. In addition, we would like to integrate MDP model
of PADAS with a model for driver’s manoeuvres classifica-
tion and prediction, based on Hidden Markov Models. In
fact, the possibility to “understand” driver’s intention can
make the PADAS able to intervene and to support drivers
in a more acceptable and appropriated way, anticipating
wrong behaviors even before they can be a serious danger
for drivers themselves and for the other road actors. In
addition, we think to extend MDP approaches to other
road traffic actors, so including not only the system “driver
+ vehicle”, but also some specific categories of vulnerable
road users, such as pedestrians, cyclists, etc.

Acknowledgment
The research leading to these results has received fund-

ing from the European Commission Seventh Framework
Programme (FP7/2007-2013) under grant agreement no
FP7 - 218552, Project ISi-PADAS (Integrated Human
Modelling and Simulation to support Human Error Risk
Analysis of Partially Autonomous Driver Assistance Sys-
tems). The authors would like to specially thank the ISi-
PADAS consortium that has supported the development
of this research

References
[1] E. Muhrer and M. Vollrath, “Results from accident analysis,”

ISI-PADAS project deliverable, Tech. Rep. Task 1.22, 2009.
[2] M. Vollrath et al., “Ableitung von anforderungen an ein

fahrerassistenzsystem aus sicht der verkehrssicherheit,” Bunde-
sanstalt für Straßenwesen, Fahrzeugtechnik, Tech. Rep. F 60,
2006.

[3] S. Briest and M. Vollrath, “In welchen situationen machen
fahrer welche fehler? ableitung von anforderungen an fahreras-
sistenzsysteme durch,” in In-Depth- Unfallanalysen. In VDI
(Ed.), Integrierte Sicherheit und Fahrerassistenzsysteme, 2006,
pp. 449 – 463.

[4] R. J. Kiefer, J. Salinger, and J. J. Ference, “Status of nhtsa’s
rear-end crash prevention research program,” National Highway
Traffic and Safety Administration, Tech. Rep. 05-0282, 2005.

[5] J. D. Lee, D. V. McGehee, T. L. Brown, and M. L. Reyes, “Col-
lision Warning Timing, Driver Distraction, and Driver Response
to Imminent Rear-End Collisions in a High-Fidelity Driving
Simulator,” Human Factors: The Journal of the Human Factors
and Ergonomics Society, vol. 44, no. 2, pp. 314–334, Summer
2002.

[6] R. S. Sutton and A. G. Barto, Reinforcement Learning: An
Introduction (Adaptive Computation and Machine Learning),
3rd ed. The MIT Press, March 1998.

[7] R. Bellman, “A markovian decision process,” Journal of Math-
ematics and Mechanics, vol. 6, pp. 679–684, 1957.

[8] K.-D. Kuhnert and M. Krödel, “Autonomous vehicle steering
based on evaluative feedback by reinforcement learning,” in
Machine Learning and Data Mining in Pattern Recognition, ser.
Lecture Notes in Computer Science, P. Perner and A. Imiya,
Eds. Springer Berlin / Heidelberg, 2005, vol. 3587, pp. 405–
414.

[9] T. Martinez-Marin, “A reinforcement learning algorithm for
optimal motion of car-like vehicles,” in Proceedings of the 7th
International IEEE Conference on Intelligent Transportation
Systems, oct. 2004, pp. 47 – 51.

[10] S.-Y. Oh, J.-H. Lee, and D.-H. Choi, “A new reinforcement
learning vehicle control architecture for vision-based road fol-
lowing,” IEEE Transactions on Vehicular Technology, vol. 49,
no. 3, pp. 997 –1005, may. 2000.

[11] R. Bellman, Dynamic Programming, 6th ed. Dover Publica-
tions, 1957.

[12] M. L. Puterman, Markov Decision Processes: Discrete Stochas-
tic Dynamic Programming. Wiley-Interscience, April 1994.

[13] G. Tesauro, “Temporal Difference Learning and TD-Gammon,”
Communications of the ACM, vol. 38, no. 3, March 1995.

[14] S. J. Bradtke and A. G. Barto, “Linear Least-Squares algorithms
for temporal difference learning,”Machine Learning, vol. 22, no.
1-3, pp. 33–57, 1996.

[15] M. G. Lagoudakis and R. Parr, “Least-squares policy iteration,”
Journal of Machine Learning Research, vol. 4, pp. 1107–1149,
2003.

[16] G. Gordon, “Stable Function Approximation in Dynamic Pro-
gramming,” in Proceedings of the International Conference on
Machine Learning (IMCL 95), 1995.

[17] C. Watkins, “Learning from delayed rewards,” Ph.D. disserta-
tion, University of Cambidge, 1989.

[18] M. Geist and O. Pietquin, “Kalman Temporal Differences,”
Journal of Artificial Intelligence Research (JAIR), 2010.

[19] Y. Engel, S. Mannor, and R. Meir, “Reinforcement Learning
with Gaussian Processes,” in Proceedings of the International
Conference on Machine Learning (ICML 05), 2005.

[20] A. L. Strehl and M. L. Littman, “An Analysis of Model-Based
Interval Estimation for Markov Decision Processes,” Journal of
Computer and System Sciences, 2006.

[21] C. Atkeson and J. Santamaria, “A comparison of direct and
model-based reinforcement learning,” in Proceedings of the
IEEE International Conference onRobotics and Automation,
vol. 4, Apr. 1997, pp. 3557 –3564 vol.4.

