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Abstract—Reinforcement learning (RL) is a machine learning
answer to the optimal control problem. It consists of learning
an optimal control policy through interactions with the system
to be controlled, the quality of this policy being quantified by
the so-called value function. An important RL subtopic is to
approximate this function when the system is too large for an
exact representation. This survey reviews and unifies state of
the art methods for parametric value function approximation by
grouping them into three main categories: bootstrapping, residu-
als and projected fixed-point approaches. Related algorithms are
derived by considering one of the associated cost functions and a
specific way to minimize it, almost always a stochastic gradient
descent or a recursive least-squares approach.

Index Terms—Reinforcement learning, value function approx-
imation, survey.

I. INTRODUCTION

Optimal control of stochastic dynamic systems is a trend
of research with a long history. Several points of view can be
adopted according to the information available on the system
such as a model of the physics ruling the system (automation)
or a stochastic model of its dynamic (dynamic programming).
The machine learning response to this recurrent problem is
the Reinforcement Learning (RL) paradigm [1][2][3].

The system to be controlled is usually modeled as a
Markov Decision Process [4] (MDP) {S, A, P,R, γ}. An
MDP is made up of a set S of states (the different config-
urations of the system), a set A of actions (which cause a
change of the system’s state), a set P : s, a ∈ S × A →
p(.|s, a) ∈ P(S) of Markovian transition probabilities (the
probability to transit from one state to another under a given
action), a bounded reward function R : s, a, s′ ∈ S×A×S →
r = R(s, a, s′) ∈ R associating a scalar to each transition and
a discounting factor γ which decreases long-term rewards’
influence. How the agent acts with the system is modeled
by a so-called policy, π : s ∈ S → π(.|s) ∈ P(A), which
associates to each state a probability distribution over actions.
The quality of such a policy is quantified by a so-called value
function, V π(s) = E[

∑∞
i=0 γiri|s0 = s, π], which associates

to each state the expected cumulative discounted reward from
starting in the considered state and then following the given
policy. An optimal policy is one of those which maximize the
associated value function for each state: π∗ ∈ argmaxπ V π.

Thanks to the Markovian property, value functions can
be (more or less simply) computed using so-called Bellman
equations. The value function of a given policy satisfies the
(linear) Bellman evaluation equation and the optimal value
function (which is linked to one of the optimal policies)

satisfies the (nonlinear) Bellman optimality equation. Alter-
natively, these value functions can be seen as being the fixed-
points of associated Bellman operators (see Section II). These
Bellman equations are very important for dynamic program-
ming and reinforcement learning, as they allow computing
the value function.

If the model (that is transition probabilities and the reward
function) is known and if state and action spaces are small
enough, the optimal policy can be computed using dynamic
programming [5]. A first scheme, called policy iteration,
consists in evaluating an initial policy (that is computing the
associated value function using the linear Bellman evalua-
tion equation) and then improving this policy, the new one
being greedy respectively to the computed value function (it
associates to each state the action which maximizes the ex-
pected cumulative reward obtained from starting in this state,
applying this action and then following the initial policy).
Evaluation and improvement are iterated until convergence
(which occurs in a finite number of iterations). A second
scheme, called value iteration, consists in computing directly
the optimal value function (using the nonlinear Bellman
optimality equation and an iterative scheme based on the
fact that the value function is the unique fixed-point of the
associated Bellman operator). The optimal policy is greedy
respectively to the optimal value function. There is a third
scheme, based on linear programming; however, it is not
considered in this article.

RL aims at estimating the optimal policy without knowing
the model and from interactions with the system. Value
functions can no longer be computed exactly, they have to be
estimated, which is the main scope of this paper. RL heavily
relies on dynamic programming, in the sense that most of
approaches are some sort of generalizations of value or policy
iteration. A first problem is that computing a greedy policy
(required for both schemes) from a value function requires
the model to be known. The state-action value function
(also named Q-function) alleviates this problem by providing
an additional degree of freedom on the first action to be
chosen: Qπ(s, a) = E[

∑∞
i=0 γiri|s0 = s, a0 = a, π]. A

greedy policy can thus be obtained by maximizing the Q-
function over actions, for any given state. The state-action
value function generalizes the value function in the sense that
V π(s) = Ea|s,π[Qπ(s, a)]. Therefore, the rest of this paper
focuses uniquely on the Q-function.

There are two main approaches to estimate an optimal
policy. The first one, based on value iteration, consists in
estimating directly the optimal state-action value function
which is then used to derive an estimate of the optimal policy.



The second one, based on policy iteration, consists in mixing
the estimation of the Q-function of the current policy (policy
evaluation) with policy improvement in a generalized policy
iteration scheme (generalized in the sense that evaluation
and improvement processes interact, independently of the
granularity and other details). This scheme presents many
variations. Generally, the Q-function is not perfectly esti-
mated when the improvement step occurs. Each change in
the policy implies a change in the associated Q-function;
therefore, the estimation process can be non-stationary. The
policy can be derived from the estimated state-action value
function (for example, using a Boltzmann distribution or an ε-
greedy policy): this implies an underlying dilemma between
exploration and exploitation. The policy can also have its own
representation, which leads to actor-critic architectures.

All these approaches share a common subproblem: esti-
mating the (state-action) value function (of a given policy
or the optimal one directly). The aim of this paper is to
review the more classic related algorithms by adopting an
unifying view (an extended and more detailed version being
provided in [6]). Before this, the underlying formalism is
shortly presented.

II. PRELIMINARIES

Thanks to the Markovian property of transitions, the state-
action value function Qπ of a given policy π satisfies the
linear Bellman evaluation equation:

Qπ(s, a) = Es′,a′|s,a,π[R(s, a, s′) + γQπ(s′, a′)].

A Bellman evaluation operator related to the Q-function, Tπ :
Q ∈ RS×A → TπQ ∈ RS×A, can be defined: TπQ(s, a) =
Es′,a′|s,π[R(s, a, s′) + γQ(s′, a′)]. This operator is a contrac-
tion and Qπ is its unique fixed-point: Qπ = TπQπ. Using it
is not practical, as it requires knowing the model. Therefore,
a sampled Bellman evaluation is introduced. For a transition
(si, ai, si+1, ai+1), ai+1 being sampled according to π, and
the associated reward ri, it is defined as:

T̂πQ(si, ai) = ri + γQ(si+1, ai+1).

The optimal state-action value function Q∗ satisfies the non-
linear Bellman optimality equation:

Q∗(s, a) = Es′|s,a[R(s, a, s′) + γ max
a′∈A

Q∗(s′, a′)].

The associated Bellman optimality operator, T ∗ : Q ∈
RS×A → T ∗Q ∈ RS×A, is defined as: T ∗Q(s, a) =
Es′|s,a[R(s, a, s′) + γ maxa′∈A Q(s′, a′)]. A more practical
sampled Bellman optimality operator is also defined. Assume
that a transition (si, ai, si+1) and associated reward ri are
observed, it is given by:

T̂ ∗Q(si, ai) = ri + γ max
a∈A

Q(si+1, a).

An important RL subtopic is to estimate the (state-action)
value function of a given policy or directly the Q-function of
the optimal policy from samples, that is observed trajectories
of actual interactions. This article focuses on parametric
approximation: the estimated state-action value function is
of the form Q̂θ, where θ is the parameter vector; this estimate
belongs to an hypothesis space H = {Q̂θ|θ ∈ Rp} which
specifies the architecture of the approximation. For example,
if the state space is sufficiently small an exact tabular repre-
sentation can be chosen for the value function. The estimate
is thus of the form Q̂θ(s, a) = eT

s,aθ with es,a being a unitary

TABLE I
SUMMARY.

bootstrap residual projected fixed-point
direct / iterated

stochastic TD R-SGD (nl)GTD2
gradient SARSA (nl)TDC
descent Q-learning GQ(λ)

(recursive) FPKF GPTD LSTD LSPE
least-squares KTD slLSTD Q-OSP

other fitted-Q

vector which is equal to 1 in the component corresponding to
the state-action couple (s, a) and 0 elsewhere. More complex
hypothesis spaces can be envisioned, such as those generated
by neural networks. Estimating a function from samples is a
common topic of supervised learning. However, estimating
a (state-action) value function is a more difficult problem
because values are never directly observed, but just rewards
which define them. Actually, value function approximation
consists in estimating a fixed-point of the T operator (either
Tπ or T ∗) from sampled trajectories (that is using the sam-
pled T̂ operator): Q̂θ ≈ TQ̂θ. This article reviews state of
the art value function approximators by grouping them into
three categories. We will show that all approaches minimize
the following empirical cost function:

θi = argmin
ω∈Rp

i∑
j=1

(
T̂ Q̂ξ(sj , aj)− Q̂ω(sj , aj)

)2

, (1)

and they differs on how ξ ∈ Rp is instantiated. First,
bootstrapping approaches (ξ = θj−1, see Equation (3) in
Section III) consist in treating value function approximation
as a supervised learning problem. As values are not directly
observable, they are replaced by an estimate computed using
a sampled Bellman operator (bootstrapping refers to replac-
ing an unobserved value by an estimate). Second, residual
approaches (ξ = ω, see Equation (4) in Section IV) consist
in minimizing the square error between the (state-action)
value function and its image through a Bellman operator.
Practically, a sampled operator is used, which leads to biased
estimates. Third, projected fixed-point approaches (ξ = θi or
ξ = θi−1 depending on direct or iterated resolution, see Equa-
tions (5,6) in Section V) minimize the squared error between
the (state-action) value function and the projection of the
image of this function under the (sampled) Bellman operator
onto the hypothesis space (see Figure 1). Therefore, there
are basically three cost function, which can be minimized
either using a stochastic gradient descent or a recursive least-
squares approaches. All algorithms discussed in this survey
enter in this categorization, as summarized in Table I.

Moreover, we will show that most of them can be written
in the form of a Widrow-Hoff update. Generally speaking,
this means that parameters are updated proportionally to the
prediction error made on the last observation. In the case
of value function approximation, this prediction error takes
the specific form of a so-called temporal difference error
δi, which is the difference between right and left sides of a
Bellman equation when the sampled operator is considered:

δi = T̂ Q̂θi−1(si, ai)− Q̂θi−1(si, ai).

Therefore, most of presented algorithms can be written in the



following form:
θi = θi−1 + Kiδi, (2)

where Ki is an algorithm-dependent gain which indicates in
which direction the parameters are corrected (the temporal
difference error quantifying the magnitude of this correction).

Notice that if this paper focuses on how to learn the (state-
action) value function from samples, it is not concerned with
how these samples are generated. Otherwise speaking, the
control problem is not addressed. Nevertheless, this does
not mean that we restrict ourselves to the on-policy learning
setting (consider the Bellman optimality operator). Exten-
sions of the reviewed algorithms to eligibility traces (see
Section VI for a definition) are only mentioned.

III. BOOTSTRAPPING APPROACHES

Bootstrapping approaches cast the (state-action) value
function approximation into a supervised learning problem.
The (state-action) value of interest is assumed to be observed,
and corresponding theoretical cost functions are considered,
given that the (state-action) value function of a given policy
π is evaluated or that the optimal Q-function is directly
estimated. The corresponding theoretical cost function is
written generically as: J(θ) = ‖Q−Q̂θ‖2. The corresponding
empirical optimization problem for i observed state-action
couples (sj , aj) and associated unobserved Q-values qj is:
θi = argminω∈Rp

∑i
j=1(qj − Q̂ω(sj , aj))2. The principle

of bootstrapping algorithms is to derive an online algorithm
which minimizes the above cost function. Generally, such an
algorithm can be written in the form of a Widrow-Hoff update
which corrects the parameter vector in the direction provided
by the algorithm-dependent gain Ki and with a magnitude
proportional to the prediction error: θi = θi−1 + Ki(qi −
Q̂θi−1(si, ai)). However, the Q-value qi is never observed. It
is where the bootstrapping principle applies: the unobserved
qi value is replaced by some estimate. Given that we are
looking for a fixed-point of one of the Bellman operators,
this estimate is provided by T̂ Q̂θi−1(si, ai): θi = θi−1 +
Ki(T̂ Q̂θi−1(si, ai)− Q̂θi−1(si, ai)). Alternatively, this can be
seen as solving the following optimization problem [7]:

θi = argmin
ω∈Rp

i∑
j=1

(
T̂ Q̂θj−1(sj , aj)− Q̂ω(sj , aj)

)2

. (3)

Practical algorithms are then derived given that this cost
function is solved using a stochastic gradient descent or a
recursive least-squares approach, and given what Bellman
operator is considered.

A. Bootstrapped Stochastic Gradient Descent
Stochastic gradient descent consists in adjusting parame-

ters by an amount proportional to an approximation of the
gradient of the cost function, only evaluated on the last
training example. Let αi be a learning rate satisfying the clas-
sical stochastic approximation criterion,

∑∞
i=1 αi = ∞ and∑∞

i=1 α2
i < ∞. Applied to the bootstrapped cost-function (3),

the stochastic gradient descent approach provides the follow-
ing update rule [2] (assuming an initial parameter vector θ0):Ki = αi

(
∇θi−1Q̂θ(si, ai)

)
θi = θi−1 + Ki

(
T̂ Q̂θi−1(si, ai)− Q̂θi−1(si, ai)

) .

Here the gain is the gradient, and the prediction error δi =
T̂ Q̂θi−1(si, ai)−Q̂θi−1(si, ai) is the temporal difference error
announced in Section II.

With the Bellman evaluation operator and if the Q-function
is replaced by the value function, it is the TD algorithm
with function approximation; with the Bellman evaluation
operator, this provides the SARSA algorithm; with the Bell-
man optimality operator, this is the Q-learning algorithm [2].
Under some assumptions, notably a linear parameterization
hypothesis, TD with function approximation can be shown to
be convergent [8]. However, this is no longer the case when
it is combined with a nonlinear function approximator [8].
Despite this, one of the important successes of reinforcement
learning is based on TD with neural network-based function
approximation [9]. Convergence results holding for TD with
function approximation apply rather directly to SARSA with
function approximation. Under some strong assumptions, Q-
learning with function approximation can be shown to be
convergent too [10]. All these algorithms have been extended
to eligibility traces [2]. However, notice that extending the
Q-learning algorithm to eligibility traces should be done
with caution, because of its off-policy aspect. This problem
of combining off-policy learning with eligibility traces is
discussed further later.

B. Bootstrapped Recursive Least-Squares
The fixed-point Kalman Filter (FPKF) [7] also seeks at

minimizing the empirical cost function (3). However, the
parameterization is assumed to be linear and a (recursive)
least-squares approach is adopted instead of the stochastic
gradient descent used for preceding algorithms. The consid-
ered hypothesis space is of the form H = {Q̂θ : (s, a) ∈
S × A → φ(s, a)T θ ∈ R|θ ∈ Rp}, where φ(s, a) is a
feature vector (to be chosen beforehand). For a given state-
action couple (sj , aj), φ(sj , aj) is shortened as φj . Thanks to
linearity in parameters, cost function (3) is convex and has a
unique minimum. This optimization problem can be solved
analytically by zeroing the gradient respectively to ω: this is
the principle of the least-squares method. Moreover, thanks
to the Sherman-Morrison formula1, this estimation process
can be made recursive (therefore recursive least-squares).
This provides the following algorithm (assuming an initial
parameter vector θ0 as well as the associated p × p matrix
P0): 

Ki = Pi−1φi

1+φT
i Pi−1φi

θi = θi−1 + Ki

(
T̂ Q̂θi−1(si, ai)− φT

i θi−1

)
Pi = Pi−1 − Pi−1φiφ

T
i Pi−1

1+φT
i Pi−1φi

.

This update is still in the form of a Widrow-Hoff update,
with the aforementioned temporal difference error and with
a gain Ki depending on the Pi matrix. It can be shown to
be convergent under some assumptions, for both sampled
operators (evaluation and optimality) [7]. As far as we know,
it has not been extended to eligibility traces.

IV. RESIDUAL APPROACHES

Residual approaches aim at finding an approximation of
the fixed-point of one of the Bellman operators by minimiz-
ing the distance between the (state-action) value function
and its image through one of the Bellman operators. The

1It allows inverting a rank-one perturbed matrix efficiently.



associated theoretical cost function is: J(θ) = ‖Q̂θ−TQ̂θ‖2.
Practically, learning is done using samples and the Bellman
operator is replaced by a sampled Bellman operator, the
model (particularly transition probabilities) being unknown.
The associated empirical cost function is therefore:

θi = argmin
ω∈Rp

i∑
j=1

(
T̂ Q̂ω(sj , aj)− Q̂ω(sj , aj)

)2

(4)

A common drawback of all approaches aiming at minimizing
this cost function is that they produce biased estimates of the
(state-action) value function: minimizing the empirical cost
function (4) does not lead to minimize the theoretical cost
function ‖Q̂θ−TQ̂θ‖2 asymptotically. Basically, this is due to
the fact that the expectation of a square is not the square of the
expectation: E[‖Q̂θ − T̂ Q̂θ‖2] = ‖Q̂θ −TQ̂θ‖2 + Var(T̂ Q̂θ).
There is an unwanted variance term acting as a penalty
factor which favorises smooth functions. If such penalties are
commonly used for regularization, this one is harmful as it
cannot be controlled [11]. All methods presented below can
be modified so as to handle the problem; this will be shortly
discussed. However, it is important to note that any algorithm
aiming at minimizing this cost presents this bias problem.

A. Residual Stochastic Gradient Descent
The so-called residual algorithms (R-SGD for residual

stochastic gradient descent) [12] minimize the empirical cost
function (4) using a stochastic gradient descent. The corre-
sponding update rule is therefore (assuming an initial θ0):{

Ki = ∇θi−1

(
Q̂θ(si, ai)− T̂ Q̂θ(si, ai)

)
θi = θi−1 + αiKi(T̂ Q̂θi−1(si, ai)− Q̂θi−1(si, ai))

.

Once again, we obtain a Widrow-Hoff update. A first problem
arises when the sampled Bellman optimality operator is con-
sidered. In this case, the gradient of the max operator must be
computed2:∇θi−1(maxa∈A Q̂θ(si+1, a)). Another problem is
that these algorithms compute biased estimates of the (state-
action) value function, as explained above. In order to handle
this problem, a double sampling scheme can be used [12]. Let
us consider the Bellman evaluation operator. Two transitions
are independently generated from the current state-action
couple. One of them is used to compute the gain Ki and the
other one to compute the TD error δi. These two transitions
being sampled independently, taking the expectation of Kiδi

leads to the use of the true (that is unsampled) Bellman op-
erator, without variance term contrary to the use of the same
transition in both gain and TD error. However, this suggests
that transitions can be sampled on demand (for example using
a simulator), which can be a strong assumption. As far as
we know, this algorithm has not been extended to eligibility
traces.

B. Residual Least-Squares
The Gaussian Process Temporal Differences (GPTD)

framework [13] models the value function as a Gaussian
process [14]. A generative model linking rewards to values
through the sampled Bellman evaluation operator and an
additive noise is set, the Gaussian distribution of a state’s
value conditioned on past observed rewards is computed by

2Actually, maxa∈A Q̂θ(si+1, a) is generally non-differentiable respec-
tively to θ. A solution could be to rely on Fréchet sub-gradients.

performing Bayesian inference, and the value of this state
is estimated as the mean of this Gaussian distribution. The
associated variance quantifies the uncertainty of this estimate.
Notice that the optimality operator cannot be considered in
this framework because of a mandatory linearity assumption
(linearity of the generative model linking). A problem is that
the considered Gaussian process is actually a vector with as
many components as the number of states encountered during
learning. To alleviate this scaling problem, an online sparsifi-
cation scheme is used [15], which actually constructs online
a kernel-based linear parametric representation. If sparsifica-
tion is done in a preprocessing step or if the representation
is considered asymptotically (after an infinite number of
interactions), the GPTD value function representation can be
seen as a parametric one. Moreover, a parametric version of
the GPTD framework exists [16]. It is the view adopted here:
feature selection is an important topic, however this paper
focuses on learning the parameters of a representation, not
on learning the representation itself.

The (parametric) GPTD algorithm assumes a linear pa-
rameterization and the Bellman evaluation operator and min-
imizes cost function (4) using a classical recursive linear
least-squares approach3. Using the same notations as before,
Equation (4) can be rewritten as θi = argminω∈Rp

∑i
j=1(rj+

γφT
j+1ω − φT

j ω)2. Let note ∆φj = φj − γφj+1. The unique
parameter vector minimizing the above convex cost can be
computed analytically and recursively (thanks to Sherman-
Morrison), which provides the GPTD update (assuming ini-
tial θ0 and P0):

Ki = Pi−1∆φi

1+∆φT
i Pi−1∆φi

θi = θi−1 + Ki

(
ri −∆φT

i θi−1

)
Pi = Pi−1 − Pi−1∆φi∆φT

i Pi−1

Pni
+∆φT

i Pi−1∆φi

One can recognize the temporal difference error δi = ri −
∆φT

i θi−1 and a gain Ki, to be linked again to the discussed
Widrow-Hoff update. Notice that Pi is actually a variance
matrix quantifying the uncertainty over current parameters
estimation (it is the variance of the parameter vector condi-
tioned on past i observed rewards). This is not clear from
the proposed least-squares-based derivation, however it is
direct by adopting a Bayesian (or even pure Kalmanian)
perspective: under linear and Gaussian assumptions, recur-
sive least-squares, Kalman filtering and Bayesian filtering
provide all the same solution [17]. As all other residual meth-
ods, GPTD produces biased estimates of the value function
when transitions are stochastic. Using a proper colored noise
model (instead of the classical white noise assumption) leads
to an unbiased estimate [18]. The corresponding algorithm
is named MC-GPTD. However, this noise also induces a
memory effect which prevents from learning in an off-policy
manner, much like eligibility traces does [19]. Notice also
that this leads to minimize another cost function, linking
states’ estimates to Monte Carlo samples of the discounted
return [18].

The so-called Kalman Temporal Differences (KTD) frame-
work [20][21] generalizes the GPTD framework: it han-
dles nonlinear parameterizations (e.g., multilayered percep-
tron [22]), it handles the Bellman optimality operator (which
provide a sort of “Q-learning” extension of GPTD), and it

3This derivation differs from [13], its validity relies strongly on the link
between Bayesian inference, Kalman filtering and recursive least-squares
under Gaussian and linear assumptions [17].



allows learning in non-stationary conditions (the system to be
controlled can be non-stationary, but also generalized policy
iteration induces a non-stationary followed policy [23][24]).
The idea behind the original derivation of KTD is to cast
(state-action) value function approximation into the Kalman
filtering paradigm [25], as developed in [21]. However,
unscented Kalman filtering can be seen as a statistically
linearized recursive least-squares approach [26]. Therefore,
KTD can be seen as a second-order algorithm minimizing
cost function (4) using a derivative-free statistical lineariza-
tion. The full derivation of KTD using this recursive least-
squares point of view follows ideas of [26] and is provided
in [6]. As other residual approaches, KTD suffers from the
bias problem when system transitions are stochastic. In order
to handle this issue, a new colored noise model, based on
the idea of eligibility traces and generalizing the GPTD
colored noise [18], has been introduced [22]. This leads to the
KTD(λ) family of algorithms; as far as we know, it is the only
residual approach which makes use of eligibility traces (there
is a GPTD(λ) algorithm [16], however it should be linked to
projected fixed-point approaches, not to residual ones). Nev-
ertheless, as mentioned before, this induces some memory
effects which prevent from learning in an off-policy manner.
Consequently, the sampled Bellman optimality operator can
no longer be considered in this setting, because of its off-
policy aspect. Using a colored noise also leads to minimize a
slightly different cost function [22]. Notice also that the avail-
able uncertainty information (the Pi matrix) can be useful for
the dilemma between exploration and exploitation [27].

V. PROJECTED FIXED-POINT APPROACHES

Projected fixed-point approaches seek at minimizing the
distance between the estimated state-action value function
Q̂θ and the projection ΠTQ̂θ (the projection being noted Π)
of the image TQ̂θ of this function under a Bellman operator
onto the hypothesis space H: J(θ) = ‖Q̂θ − ΠTQ̂θ‖2 with
Πf = argminf̂∈H ‖f − f̂‖2. This is illustrated in Figure 1.
The state-action value function estimate Q̂θ lies in the hy-
pothesis space H. Its image under a Bellman operator TQ̂θ

does not necessarily lies on this hypothesis space. Residual
approaches of Section IV try to minimize the distance be-
tween these two functions, that is line 1© in Figure 1, with
the drawback that using a sampled Bellman operator leads
to biased estimates, as discussed before. The function TQ̂θ

can be projected onto the hypothesis space, this projection
minimizing the distance between TQ̂θ and the hypothesis
space (line 2© in Figure 1). Projected fixed-point methods
aim at minimizing the distance between this projection and
Q̂θ, represented by line 3© in Figure 1.

Fig. 1. Projected fixed-point principle.

The related empirical cost function is θi =
argminθ∈Rp

∑i
j=1(Q̂θ(sj , aj) − Q̂ωθ

(sj , aj))2, with
ωθ = argminω∈Rp

∑i
j=1(Q̂ω(sj , aj) − T̂ Q̂θ(sj , aj))2.

Obviously, this cost is minimized for θi = ωθi
(admitting

that this equation has a solution), which summarizes the two
nested optimization problems:

θi = argmin
ω∈Rp

i∑
j=1

(
Q̂ω(sj , aj)− T̂ Q̂θi

(sj , aj)
)2

(5)

Notice that as θi appears in both sides of this equation, this is
not a pure quadratic cost function. Least-squares methods are
presented here before stochastic-gradient-based approaches
for historical reasons.

A. Least-Squares-based Approaches
The least-squares temporal differences (LSTD) algo-

rithm [28] assumes a linear parameterization and the (sam-
pled) Bellman evaluation operator in order to solve the above
optimization problem. It has been originally introduced as the
minimization of a residual cost function. Using a sampled
Bellman operator can be interpreted as a correlation between
the noise and inputs in the corresponding observation model
(therefore the noise is not white, which is a mandatory
assumption for least-squares). This correlation can be shown
to cause a bias (in this case, the bias presented in Section IV).
A classic method to cope with this problem are instrumental
variables [29], which were used to provide the first derivation
of the LSTD algorithm. This point of view is historical. Later,
it has been interpreted as a projected fixed-point minimiza-
tion [30], and it is the point of view adopted here.

LSTD assumes a linear parameterization as well as the
sampled Bellman evaluation operator. Using the same nota-
tions as before, optimization problem (5) can be rewritten as:
θi = argminω∈Rp

∑i
j=1(rj + γφT

j+1θi − φT
j ω)2. Thanks to

linearity in ω (linear parameterization assumption), this can
be analytically solved. Moreover, the update can be done
recursively thanks to the Sherman-Morrison formula. This
provides the LSTD algorithm (assuming initial θ0 and p × p
M0 matrix):

Ki = Mi−1φi

1+∆φT
i Mi−1φi

θi = θi−1 + Ki

(
ri − (∆φi)T θi−1

)
Mi = Mi−1 −Ki

(
MT

i−1 (φi − γφi+1)
)T

Once again, Ki is a gain and ri − (∆φi)T θi−1 a temporal
difference error, to be linked to a Widrow-Hoff update. This
algorithm has been extended to eligibility traces [31] and can
be shown to be convergent under general assumptions [32].

The statistically linearized LSTD (slLSTD) algorithm [33]
generalizes LSTD: it does not assume a linear parameter-
ization nor the Bellman evaluation operator. Notably, this
allows using nonlinear parameterization such as multilay-
ered perceptrons and it provides a “Q-learning extension”
of the LSTD algorithm. How slLSTD generalizes LSTD
is very close to how KTD generalizes GPTD: a statistical
linearization is performed, which allows solving the related
optimization problem analytically. See [33][6] for details.

B. Stochastic Gradient Descent-based Approaches
GTD2 and TDC algorithms [34] aim at minimizing cost (5)

while considering the Bellman evaluation operator, and they
differs on the route taken to express the gradient followed



to perform the stochastic gradient descent. Both methods
rely on a linear parameterization, and are based on a re-
worked expression of the cost function. Let δj(θ) = rj +
γφT

j+1θ − φT
j θ be the temporal difference error, Equa-

tion (5) can be rewritten as θi = argminω∈Rp Ji(ω) with
Ji(ω) = (

∑i
j=1 φjδj(ω))T (

∑i
j=1 φjφ

T
j )−1(

∑i
j=1 φjδj(ω)).

This result is far from being direct, see [34][6] for
details. The negative gradient of this cost is given
by: − 1

2∇θJi(θ) = (
∑i

j=1 ∆φjφ
T
j )wi with wi =

(
∑i

j=1 φjφ
T
j )−1(

∑i
j=1 δj(θ)φj). In order to avoid a bias

problem, a second modifiable parameter vector ω ∈ Rp

is used to form a quasi-stationary estimate of the term
wi = (

∑i
j=1 φjφ

T
j )−1(

∑i
j=1 δj(θ)φj), this being called

the weight-doubling trick. Parameter vector θ is updated
according to a stochastic gradient descent: θi = θi−1 +
αi∆φiφ

T
i ωi−1. There remains to find an update rule for ωi.

In order to obtain a O(p) algorithm, it is estimated using a
stochastic gradient descent too [34]. One can remark that ωi

is actually the solution of a linear least-squares optimization
problem: wi = argminω∈Rp

∑i
j=1

(
φT

j ω − δj(θ)
)2. This sug-

gests the following update rule: ωi = ωi−1 + βiφi(δi(θi−1)−
φT

i ωi−1). Learning rates satisfy the classical stochastic ap-
proximation criterion. Moreover, they are chosen such that
βi = ηαi with η > 0. The GTD2 algorithm is thus (assuming
an initial θ0, ω0 being set to zero):{

θi = θi−1 + αi∆φiφ
T
i ωi−1

ωi = ωi−1 + βiφi

(
δi(θi−1)− φT

i ωi−1

)
Contrary to previous algorithms, the GTD update is not in
the form of Equation (2). However, one can recognize from
this update rule that wT φ(s, a) is actually a parametrization
of the advantage function Aπ(s, a) = Qπ(s, a) − V π(s) (the
temporal difference error being a bootstrapped estimate of
the advantage [35]). Under some assumptions, this algorithm
can be shown to be convergent [34].

By expressing the gradient in a slightly different way,
another algorithm called TDC can be derived, the difference
being how the θ parameter vector is updated. The gradi-
ent can be rewritten as: − 1

2∇θJi(θ) = (
∑i

j=1 δj(θ)φj) −
γ(

∑i
j=1 φj+1φ

T
j )wi. This gives rise to the following update

for θ, ω being updated as before: θi = θi−1 + αiφiδi(θi−1)−
αiγφi+1φ

T
i ωi−1. This algorithm is called TD with gradient

correction because the first term, αiφiδi(θi−1), is the same as
for TD with function approximation (see Section III-A), and
the second term, −αiγφi+1φ

T
i ωi−1, acts as a correction. For

TDC, learning rates αi and βi are chosen such as satisfying
the classic stochastic approximation criterion, and such that
limi→∞

αi

βi
= 0. This means that θi is updated on a slower

time-scale. The idea behind this is that ωi should look sta-
tionary from the θi point of view. The TDC algorithm can be
summarized as follows (assuming an initial θ0, ω0 being set
to zero):{

θi = θi−1 + αiφiδi(θi−1)− αiγφi+1φ
T
i ωi−1

ωi = ωi−1 + βiφi(δi(θi−1)− φT
i ωi−1)

As GTD, TDC is not in the form of Equation (2), but ω is still
a parameter vector to be linked to the advantage function.
This algorithm can also be shown to be convergent under
some assumptions, see [34] again.

GTD2 and TDC algorithms have been extended to the
case of a general nonlinear parameterization Q̂θ, as long

as it is differentiable respectively to θ [36]. The underlying
idea is to perform a projection onto the tangent plane of
the hypothesis space. The TDC algorithm has also been
extended to eligibility traces [37]. Moreover, this algorithm,
called GQ(λ), allows off-policy learning, that is learning the
value of one target policy while following another behaviorial
policy. This new algorithm (for which some convergence
guarantees can be provided) still minimizes the empirical
cost function linked to (5). However, instead of the Tπ

Bellman operator considered so far, an eligibility-based Tπ
λ

operator is used (λ being the eligibility factor), this operator
being defined as the expected λ-return. See [37] for more
details. Using eligibility traces induces a memory effect
which prevents from learning in an off-policy manner without
caution, see [19] for example. To cope with this problem,
[37] use ideas from the importance sampling field (as [19]
actually). They present GQ(λ) as an extension of Q-learning,
which can be misleading. Actually, they consider off-policy
learning (with a known, fixed, target policy), but not the
Bellman optimality operator. Nevertheless, the TDC algo-
rithm has also been extended to this operator [38] (this new
algorithm being called Greedy-GQ). To do so, the Bellman
evaluation operator Tπθ for a policy πθ, which depends on
the currently estimated state-action value function (through
parameters θ), is considered. Therefore, the learnt policy is
non-stationary (it evolves with parameters’ estimation). If πθ

is greedy respectively to the learnt value function, then it is
equivalent to considering the Bellman optimality operator.
However, in this case, there are some non-differentiability
problems (due to the max operator), and Fréchet subgradients
are required [38]. They also consider the case where πθ is
a stochastic Gibbs policy built upon the currently estimated
value function. In this case, there are no differentiability
problems. There is a convergence analysis for these algo-
rithms [38].

C. Iterated-Solving-based Approaches

Methods presented so far in Section V aim at minimizing
the distance between the state-action value function and the
projection of the image of this function under a Bellman
operator onto the hypothesis space: J(θ) = ‖Q̂θ − ΠTQ̂θ‖2.
This can be interpreted as trying to find a fixed-point of
the operator ΠT , which is the composition of the projection
operator Π and of one of the Bellman operator T . Assuming
that this operator is a contraction (which is not always the
case, it depends on the projection operator), there exists
a unique fixed-point which can be found by iterating the
application of the ΠT operator: Q̂θi

= ΠTQ̂θi−1 . Methods
presented in this section adopt this point of view to provide
algorithms.

Fitted-Q is a batch algorithm (therefore, it can-
not be linked to the Widrow-Hoff update). It assumes
that a set of N transitions is available beforehand:
{(sj , aj , rj , sj+1, aj+1)}1≤j≤N . An initial Q-function Q̂θ0 is
(more or less arbitrary) initialized, and estimates are refined
by iterating the ΠT operator: Q̂θi = ΠT̂ Q̂θi−1 , ∀i > 0. A
sampled Bellman operator is used, because as usual transition
probabilities are not known. Most of time, fitted-Q suggests
the sampled Bellman optimality operator, but this approach
is of course still valid for the sampled Bellman evalua-
tion operator. The Π operator indeed represents any super-
vised learning algorithm matching inputs (sj , aj) to pseudo-
outputs T̂ Q̂θi−1(sj , aj). Notice that the representation of



the estimated state-action value function is not necessarily
parametric (e.g., if a support vector machine is used as the
supervised learning algorithm). The fitted-Q idea probably
dates back to [39]. Its convergence properties have been
analyzed in [40] through the contraction property of the ΠT
operator. Its performance bounds in Lp norm has been ana-
lyzed in [41]. This is particularly judicious: if performance
bounds of supervised learning algorithms are very often
analyzed in Lp norm, this is not the case for (approximate)
dynamic programming which is most of the time analyzed in
L∞ norm. Fitted-Q has been considered with many different
function approximators: kernel-based regression [42], neural
networks [43], tree-based methods [44], etc.

The least-squares policy evaluation (LSPE) algorithm has
been directly introduced using the concept of eligibility
traces [45], but this aspect is left apart in this article. It can
be roughly seen as a fitted-Q algorithm using a linear param-
eterization, the (sampled) Bellman evaluation operator and
for which a new training sample is added to the training set
at each iteration. Thanks to linearity (linear parameterization
and evaluation operator), an efficient online algorithm can be
obtained.

The LSPE algorithm solves the following optimization
problem:

θi = argmin
ω∈Rp

i∑
j=1

(
T̂ Q̂θi−1(sj , aj)− Q̂ω(sj , aj)

)2

. (6)

Thanks to the linearity (linear parameterization and Bellman
evaluation operator), and using the Sherman-Morrison for-
mula, a recursive estimate can be provided (assuming initial
θ0 and B0, A0 and b0 being set to 0):

B−1
i = B−1

i−1 −
B−1

i−1φiφ
T
i B−1

i−1

1+φT
i B−1

i−1φi

Ai = Ai−1 + φi(∆φi)T

bi = bi−1 + φiri

θi = θi−1 + B−1
i (bi −Aiθi−1)

Actually, the way LSPE is presented here differs from [45]
in the sense that the B−1

i matrix is originally scaled with
a learning rate. The algorithm presented here is the case
where the learning rate is chosen constant and equal to one,
which can be shown to be convergent [46]. This Widrow-Hoff
update is not of the form of Eq. 2, but one can remark that the
term bi − Aiθi−1 =

∑i
j=1 φjδj(θi−1) implies the temporal

differences errors of all transitions encountered so far. Notice
that ideas behind LSPE have other applications [47] and can
also be linked to variational inequalities [48].

The LSPE algorithm has been extended to the Bellman
optimality operator in the case of optimal stopping prob-
lems [49], a restrictrive class of MDPs. Convergence of
the resulting Q-OSP algorithm can still be ensure, however
obtaining a computationally efficient recursive estimate re-
quires some approximations.

VI. CONCLUSION

This article has reviewed a large part of the state of the art
in (state-action) value function approximation. Basically, it
has been shown that all these approaches can be categorized
in three main classes, given the considered cost function
(related to bootstrapping, residual or projected fixed-point).
In each of these groups, they can be categorized given that the
cost function is minimized using a stochastic gradient descent

or a recursive least-squares approach (except fitted-Q, which
can be considered with any supervised learning algorithm).
Projected fixed-point approaches can be divided into two
approaches, given that the cost function is directly minimized
or that the underlying possible fixed-point is searched for
using an iterative scheme. All of this is summarized in
Table I. A link between the Widrow-Hoff update and most of
the reviewed methods has also be drawn through this article.

A point not discussed so far is the computational (and
memory) complexity of the reviewed algorithms. There are
basically two cases. For stochastic gradient descent-based
algorithms, complexity is in O(p), and for recursive least-
squares-based approach, complexity is in O(p2). Notice that
for algorithms handling the Bellman optimality operator,
these complexities have to be scaled by the number of actions
(because of the max computation). Exceptions (to the two
above cases) are fitted-Q (which complexity depends on the
considered supervised learning scheme) and Q-OSP. Consid-
ering the sample efficiency of these algorithms, second order
approaches are usually more efficient.

All algorithms for value function approximation have not
been discussed here. Notably, most of the presented ones
have been extended to eligibility traces. Basically, methods
presented here are based on a one-step prediction (the reward
plus the estimate of the value function in the transition state),
whereas eligibility traces are based on a weighted average
of multiple step predictions [2]. Such an approach as a clear
advantage for methods based on stochastic gradient descent,
as it speeds up the learning. However, for least-squares-based
approaches, this advantage is less clear, notably because
these methods are generally much more sample efficient [31].
Moreover, eligibility traces present a (possibly severe) draw-
back: they induces a memory effect which prevents off-policy
learning without caution. Off-policy learning is actually still
possible, but it implies to add some importance sampling
scheme [19]. By the way, using eligibility traces can be
expressed as using a modified Tλ Bellman operator (see [37]
for example), and the work presented here can globally be
extended to this case.

Other approaches extend algorithms presented here. For
example, LSTD has been kernelized [50] as well as
LSPE [51]. A variation of LSTD has been proposed by [52]
who use the sparsity of used feature vectors to reduce the
computational complexity. The LSTD algorithm has also
been extended to L2 regularization in reproducing kernel
Hilbert spaces [53] as well as to L1 regularization [54]. These
are examples, among other.
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