
HAL Id: hal-00618252
https://centralesupelec.hal.science/hal-00618252

Submitted on 1 Sep 2011

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Sample Efficient On-line Learning of Optimal Dialogue
Policies with Kalman Temporal Differences

Olivier Pietquin, Matthieu Geist, Senthilkumar Chandramohan

To cite this version:
Olivier Pietquin, Matthieu Geist, Senthilkumar Chandramohan. Sample Efficient On-line Learning
of Optimal Dialogue Policies with Kalman Temporal Differences. IJCAI 2011, Jul 2011, Barcelona,
Spain. pp.1878-1883. �hal-00618252�

https://centralesupelec.hal.science/hal-00618252
https://hal.archives-ouvertes.fr

Sample Efficient On-line Learning of Optimal Dialogue Policies
with Kalman Temporal Differences

Olivier Pietquin†,‡ and Matthieu Geist† and Senthilkumar Chandramohan†
†SUPELEC - IMS Research Group
‡UMI 2958 (GeorgiaTech - CNRS)

2 rue Edouard Belin, 57070 Metz - France
email : firstname.lastname@supelec.fr∗

Abstract
Designing dialog policies for voice-enabled inter-
faces is a tailoring job that is most often left to
natural language processing experts. This job is
generally redone for every new dialog task because
cross-domain transfer is not possible. For this rea-
son, machine learning methods for dialog policy
optimization have been investigated during the last
15 years. Especially, reinforcement learning (RL)
is now part of the state of the art in this domain.
Standard RL methods require to test more or less
random changes in the policy on users to assess
them as improvements or degradations. This is
called on policy learning. Nevertheless, it can re-
sult in system behaviors that are not acceptable
by users. Learning algorithms should ideally in-
fer an optimal strategy by observing interactions
generated by a non-optimal but acceptable strat-
egy, that is learning off-policy. In this contribution,
a sample-efficient, online and off-policy reinforce-
ment learning algorithm is proposed to learn an op-
timal policy from few hundreds of dialogues gener-
ated with a very simple handcrafted policy.

1 Introduction
After 60 years of research, speech and language processing
techniques have come to such a level of maturity that voice-
enabled interfaces are now industrialized and have the poten-
tial of creating billions of profits. Yet, the design of such in-
terfaces is far from being simple and requires expert skills in
speech and language technologies, ergonomics, low level pro-
gramming, etc. Indeed, it is not enough to put speech recog-
nition and synthesis systems together to build a natural inter-
face but the management of the interaction is responsible for
its efficiency and naturalness. Dialog management is highly
task dependent and it has to be designed again for each new
application. Hiring or training personals with all the required
skills is very difficult as well as expensive and this probably
slows down the development of speech-based interfaces for
the general public.

∗The work presented here has been done during the CLASSiC
project (Grant No. 216594, www.classic-project.org) funded by the
European Commission’s 7th Framework Programme (FP7).

Because of this, research in the domain of Spoken Dia-
logue Systems (SDS) have experienced an increasing growth
during the last decade. Machine learning, and especially
Reinforcement Learning (RL) [Sutton and Barto, 1998], for
optimal dialog management policy learning is now part of
the state of the art [Singh et al., 1999; Levin et al., 2000;
Pietquin and Dutoit, 2006; Williams and Young, 2007]. RL
is a machine learning method for optimizing sequential deci-
sion making by maximizing a cumulative of local rewards
obtained through actual interactions as described in Sec-
tion 2. Dialogue management can indeed be seen as a se-
quential decision making problem where a dialog manager
has to select which information to ask or transmit to a hu-
man user according to the context of the dialogue. Yet,
standard RL algorithms are very data demanding and dialog
corpora are very hard to collect and annotate. To alleviate
this data sparsity problem, dialogue simulation based on user
modeling is most often used to artificially expand training
datasets [Schatzmann et al., 2006; Pietquin and Dutoit, 2006;
Levin et al., 2000]. However, the learnt strategies are sensi-
ble to the quality of the user model which is very difficult to
assess [Schatzmann et al., 2005].

An alternative to this bootstrapping method would be to
use generalization frameworks adapted to RL such as approx-
imate dynamic programming [Gordon, 1995; Lagoudakis and
Parr, 2003] or online value function approximation [Sutton
and Barto, 1998]. Very few attempts to do so in the frame-
work of dialogue management can be found in the literature.
In [Henderson et al., 2008], the authors use the SARSA(λ) al-
gorithm [Sutton and Barto, 1998] with linear function approx-
imation which is known to be sample inefficient. In [Li et al.,
2009], LSPI [Lagoudakis and Parr, 2003] is used with feature
selection and linear function approximation. Recently, Fit-
ted Value Iteration (FVI) [Gordon, 1995] have also been ap-
plied to dialogue management [Chandramohan et al., 2010;
Pietquin et al., 2011]. All these studies report batch learn-
ing of dialog policies from fixed sets of data and thus learn in
an off-policy manner, meaning that they learn an optimal pol-
icy from observations generated with another policy (which is
mandatory for learning from fixed sets of data). Online learn-
ing using Gaussian Processes [Gasic et al., 2010] or Natural
Actor Critic [Jurcicek et al., 2010] has also been proposed.
These works report the use of online and on-policy algorithms
which requires permanently changing the policy to be learnt

(an issue known as the dilemma between exploration and ex-
ploitation). These changes to the policy made during learning
are visible to the user which may cause problems in real ap-
plications at the early stage of learning where the changes
in the policy can lead to very bad behaviors of the dialogue
manager. Thus, user simulation is still required.

This contribution proposes a sample-efficient, online and
off-policy learning algorithm for dialogue management pol-
icy optimization, namely the Kalman Temporal Differences
(KTD) algorithm [Geist and Pietquin, 2010a]1.This algorithm
meets many requirements of this specific task. First, off-
policy learning is mandatory because collecting data requires
real interactions with users which needs a fairly good initial
dialogue policy. So the optimal policy has to be learnt from
observations generated by another policy producing an ac-
ceptable behavior (even if suboptimal) by the users. Second,
sample-efficient online learning can react rapidly to changes
in the average behavior of users. Such changes can occur be-
cause of the users getting used to interacting with the system.
It should of course use as few samples as possible because of
the cost of data collections. KTD is compared to other off-
line (FVI and LSPI) and online (Q-learning) off-policy meth-
ods. Experimental results show that KTD learns a policy that
compares positively to those learnt by other algorithms with
only few tens of dialogue samples while several thousands of
dialogues are required by the others to reach convergence.

2 Dialogue Management and Reinforcement
Learning

In the general RL paradigm [Sutton and Barto, 1998], an
agent learns to control optimally a dynamic system through
actual interactions with this system. At each time step i, the
system is in a given state si and the agent chooses an action
ai according to its current strategy (or policy) π and to the
current state si. Following its own dynamics, the system is
then driven (stochastically) to a new state si+1, and the agent
receives a reward ri which is a local hint on the quality of
the strategy. The goal of RL is to learn a policy maximizing
the expected cumulative reward on the long run (and not the
immediate rewards).

2.1 Markov Decision Process
Formally, the problem can be cast into the Markov Decision
Processes (MDP) paradigm [Bellman, 1957]. An MDP is a
tuple {S,A, P,R, γ} where S is the state space, A is the ac-
tion space, P ∈ P(S)S×A is the set of Markovian transition
probabilities2, R ∈ RS×A×S is the reward function and γ is
a discount factor weighting long-term rewards. A policy is a
mapping from states to actions: π ∈ AS . The quality of a
policy π is quantified thanks to the so-called value function
V π ∈ RS which associates to each state the expected dis-
counted cumulative reward (expectation being done accord-
ing to trajectories) obtained by starting in this state and then

1The previous work by the authors focused on theoretical aspects
of KTD and artificial benchmarks.

2Notation f ∈ AB is equivalent to f : B → A.

following the policy π:

V π(s) = E[

∞∑
i=0

γiri|s0 = s, π] (1)

The state-action value (or Q-) function (Qπ : RS×A) adds a
degree of freedom for the choice of the first performed action:

Qπ(s, a) = E[

∞∑
k=0

γkrk|s0 = s, a0 = aπ] (2)

An optimal policy π∗ maximizes the value of each state:

π∗ ∈ argmax
π

V π(or ∈ argmax
π

Qπ) (3)

The optimal policy is greedy respectively to the optimal Q-
function Q∗: π∗(s) = argmaxa∈AQ

∗(s, a). Finding the
optimal policy therefore reduces to finding the optimal Q-
function. Because of the Markov property of transition prob-
abilities, the optimalQ-function can be expressed by the Bell-
man optimality equation :

Q∗(s, a) = Es′|s,a[R(s, a, s
′) + γmax

b∈A
Q∗(s′, b)] (4)

Most often, the state-action space is too large to obtain an
exact representation of the Q∗ function. In such a case, it is
convenient to adopt a parametric representation. Let θ ∈ Rp
represent the parameter vector and Q̂θ the approximate Q-
function belonging to the hypothesis space H (the functional
space spanned by parameters). The goal is therefore to com-
pute a good approximation Q̂θ of Q∗. For example, consid-
ering a linear parameterization:

H =

Q̂θ : Q̂θ(s) =
p∑
j=0

θjφj(s)

 (5)

where φj(s) are features or basis functions, for instance
Gaussian functions. In this case, the Q-function is approx-
imated by a weighted sum of such basis functions, the pa-
rameter vector to be found being the weights θ.

2.2 Dialogue Management as an MDP
Dialogue management can be seen as a sequential decision
making problem where a dialogue manager has to select
which information should be asked or provided to the user
when in a given dialogue context. It can thus be cast into
the MDP framework. The set A of actions a dialog manager
can select is defined by the so called dialog acts it can per-
form. There can be different types of dialog acts such as:
greeting the user, asking for a piece of information, provid-
ing a piece of information, asking for confirmation about a
piece of information, closing the dialog etc. The state of a
dialog is usually represented efficiently by the Information
State paradigm [Larsson and Traum, 2000]. In this paradigm,
the dialogue state contains a compact representation of the
history of the dialogue in terms of dialog acts and its user re-
sponses. It summarizes the information exchanged between
the user and the system until the considered state is reached.
It is a representation of the context. A dialogue management

strategy or policy π is therefore a mapping between dialogue
states and dialogue acts. According to the MDP framework,
a reward function has to be defined. The immediate reward is
often modeled as the contribution of each action to the user’s
satisfaction [Singh et al., 1999]. This is a subjective reward
which is usually approximated by a linear combination of ob-
jective measures (dialogue duration, number of ASR errors,
task completion etc.). Weights of this linear combination can
be computed from empirical data [Walker et al., 1997].

3 Kalman Temporal Differences
There exists many RL algorithms in the literature [Sutton and
Barto, 1998] aiming at estimating the optimal Q-function for
a given MDP (see eq. (1)). The Kalman Temporal Differ-
ences (KTD) framework [Geist and Pietquin, 2010a] has been
recently introduced as an alternative way to estimate this Q-
function. The basic idea behind this work is to cast value
function approximation as a filtering problem, and to solve it
using Kalman filtering [Kalman, 1960] (as well as variations).
Like Kalman filtering extensions, it allows handling nonlin-
earities (nonlinear parameterizations but also the max opera-
tor of eq. (4)), handling non-stationarity which can be helpful
to adapt to changes in the average behavior of users but also
active sampling of the state-action space [Geist and Pietquin,
2010b]. This approach is also very sample efficient and there-
fore allows learning good policies from very few samples.
Moreover, it can be used in an off-policy setting, making the
algorithm able to learn optimal policies while simply observ-
ing sub-optimal policies. That is the aspect investigated here.
The KTD-Q algorithm is the KTD’s specialization devoted
to learning the optimal state-action value function, and it is
briefly presented here.

3.1 Q-function approximation as a filtering
problem

A filtering problem consists in estimating hidden quantities
X from related observations Y . For instance, estimating the
position of an object from noisy observations (case of the
radar). In [Kalman, 1960], the author proposes the well-
know Kalman filter solution which is a statistical sequential
solution. The quantities X and Y are modeled as random
variables, the searched solution is the conditional expectation
X̂i|i = E[X|Y1, . . . , Yi] and the algorithm is based on a so-
called state-space formulation (not to be confounded with the
state space of the MDP). This formulation specifies (via 2
equations) how the hidden quantities evolve (see eq. (6)), and
how they are linked to observations (see eq. (7)).

Xi+1 = fi(Xi, vi), (6)
Yi = gi(Xi, wi). (7)

Given these equations, the Kalman filter proposes a linear up-
date rule providing the best linear estimate of the conditional
expectation X̂i|i = E[X|Y1, . . . , Yi]:

X̂i|i = X̂i|i−1 +Ki(Yi − Ŷi|i−1) (8)

where Ki is the so-called Kalman gain (which is computed
according to some statistics not developed here) and Ŷi|i−1

is the prediction of the observation given the current esti-
mate of X̂i|i−1 and eq. (7). In the KTD framework, the hid-
den quantities to be estimated are the Q-function parameters
(X = θ), and the observations are the rewards (Y = ri)
(as well as related transitions from states to states given ac-
tions: {s, a, s′}). Optimal parameters can evolve with time,
meaning that the optimal policy is not fixed (so is the associ-
ated Q-function). It is the case if the system is not stationary
for example, which happens in dialogue systems because the
user population evolves for instance. Yet, this evolution is not
known (the function f of eq. (6) is not known) and, adopting
the Occam’s razor principle, a random walk evolution model
is assumed for parameters (θi = θi−1 + vi with vi being a
centered white evolution noise). Rewards are linked to pa-
rameters through the (sampled) Bellman optimality equation
(see eq. (4)) which provides the gi function of eq. (7). A
centered and white observation noise ni is added because the
estimated value Qθ doesn’t necessary live in the functional
space H (inductive bias). This provides the following state-
space formulation in the Kalman filtering paradigm:{

θi = θi−1 + vi
ri = Q̂θi(si, ai)− γmaxa∈A Q̂θi(si+1, a) + ni

(9)

According to the Kalman Filtering theory, the KTD-Q algo-
rithm provides among all linear estimators the one minimiz-
ing the expectation (remember that parameters θi are modeled
as random variables) of the mean-squared error conditioned
on past observed rewards: Ji(θ) = E[‖θi − θ‖2|r1:i].

The full algorithm is not given here for the seek of brevity
(all details can be found in [Geist and Pietquin, 2010a]), how-
ever the general update rule is provided. Parameters θi but
also an associated variance Pi are maintained. For each new
transition, some statistics Pri (scalar) and Pθri (vector) as
well as the predicted reward r̂i (basically, this predicted re-
ward is computed using the observation equation, and ri− r̂i,
the difference between the observed reward and its prediction,
is actually a temporal difference error) are computed (using
notably θi−1 and Pi−1), and parameters (as well as the vari-
ance matrix) are updated using according to the Kalman gain
Ki: 

Ki = PθriP
−1
ri

θi = θi−1 +Ki(ri − r̂i)
Pi = Pi−1 −KiPriK

T
i

(10)

4 Application to a dialog management
problem

The considered system to control is a form-filling and task-
oriented spoken dialog system. The problem is a tourism in-
formation task, similarly to the one in [Lemon et al., 2006].
Its goal is to provide information about restaurants in a city
based on specific user preferences. There are three slots in
this dialog problem, namely the location of the restaurant
in the city, the cuisine of the restaurant and its price-range.
Given past interactions with the user, the agent has to ask
questions so as to propose the best choice according to the
user preferences.

4.1 Related MDP
The corresponding MDP’s state has 3 continuous components
ranging from 0 to 1, each representing the averaging of filling
and confirmation confidence scores (provided by the speech
recognition system) of the respective slots. There are 13 pos-
sible actions: ask for a slot (3 actions), explicit confirmation
of a slot (3 actions), implicit confirmation of a slot and ask
for another slot (6 actions) and close the dialog by proposing
a restaurant (1 action). The corresponding reward is always
0, except when it closes the dialog. In this case, the agent
is rewarded 25 per correct slot filling, -75 per incorrect slot
filling and -300 per empty slot. The discount factor is set to
γ = 0.95 and it thus favors shorter interactions (see eq. (2)).

4.2 Experimental setup
Even if the ultimate goal is to implement RL on a real dialog
management problem, a user simulation technique was used
here to generate data. This way, the sensibility of learning
can be analyzed, and obtained policies can be tested suffi-
ciently often to obtain meaningful statistics. The user simu-
lator was plugged to the DIPPER dialogue management sys-
tem [Lemon et al., 2006] to generate dialogue samples. To
generate data, the dialogue manager strategy was based on a
simple hand-coded policy (which aims at filling each slot by
explicitly asking before closing dialog) combined with ran-
dom action selection. With a probability ε, the system acts
randomly, and with a probability 1 − ε, the system acts ac-
cording to the specified policy. Random actions are actually
chosen among “reasonable actions” and a set of hand-crafted
rules prevents the dialogue manager to confirm a slot while it
has never been asked before, for instance. This ensures that
the state-action space is sufficiently explored (even if consid-
ered algorithms are off-policy, they cannot learn what to do
in situations which are not similar to any seen dialogue turn).

KTD-Q is compared to 3 other algorithms, namely fitted-
Q [Gordon, 1995], LSPI [Lagoudakis and Parr, 2003] and
Q-learning [Sutton and Barto, 1998]. All algorithms are off-
policy. Fitted-Q and LSPI are sample-efficient batch algo-
rithms. Q-learning is an online algorithm (the off-policy vari-
ation of SARSA, the mostly used algorithm in the SDS liter-
ature). KTD is a sample-efficient online algorithm.

4.3 Reinforcement Learning setup
The Q-function is represented using one Radial Basis Func-
tion (RBF) network per action. Each RBF network has three
equi-spaced Gaussian functions per dimension, each one with
a standard deviation of σ = 1

3 (state variables ranging from
0 to 1). Therefore, there are 351 (i.e., 33 × 13) parameters.
The corresponding feature vector is zero everywhere, except
in the 9 components corresponding to the considered actions
which are of the form exp(−‖s−si‖

2

2σ2), si being the ith RBF
center. For all the algorithms, the initial parameter vector θ0
is set to 0. For LSPI and fitted-Q, no parameters have to
be tuned (which is an advantage of these approaches). For
Q-learning, one has to choose the learning rate α. Here a
learning rate of 0.2 is chosen, divided by two each 104 in-
teractions (similarly to what is done in [Lemon et al., 2006]
for SARSA). For KTD-Q, a prior variance over parameters

(matrix P0) and the variance of the observation noise have to
be chosen. It is less usual than choosing a learning rate, but
not really more difficult (see [Geist and Pietquin, 2010a] for
details about parameters tuning for KTD in general).

4.4 Results
Obtained results are presented on figures 1 (abscissa in lin-
ear scale) and 2 (abscissa in logarithmic scale). These curves
show the mean discounted cumulative rewards and associated
standard deviations of each learnt policy in addition to the
hand-coded policy. The hand-coded policy is not provided as
a baseline but only to show that the learnt policies (with all
the algorithms) were obtained by observing dialogues gener-
ated with this quite poor policy (there is no need of a good
initial policy). The abscissa represents transitions (or dialog
turns) and not dialogs. In average, a dialog obtained with an
optimal policy is composed of 4 to 8 turns. To compute these
statistics, each algorithm was trained 8 times for 5.104 inter-
actions on different simulations (for each training phase, all
algorithms used the same transitions), and each obtained pol-
icy was tested 50 times. Therefore, each point is an average
of 400 runs. Notice that we stopped each testing dialog if
not finished after 100 turns. The associated reward is close
to 0. Therefore, a value of 0 means that the agent did not
learn to stop the dialog, and it is therefore normal that the as-
sociated standard deviation is low. Fitted-Q and LSPI curves
start only at 5.103 samples: these algorithms require inverting
some matrices which are too badly conditioned below a few
thousands of samples (knowing that we have a few hundreds
of parameters)3.

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 0 5000 10000 15000 20000 25000 30000 35000 40000 45000 50000

A
ve

ra
ge

 d
is

co
un

te
d

su
m

 o
f

re
w

ar
ds

Number of training samples

FittedQ
LSPI

KTDQ
Q-Learning

Hand-crafted

Figure 1: Results, linear scale.

According to figure 1, Q-learning learns very slowly, it
does not even learn a policy as good as the hand-coded one
after 5.104 interactions. This is compliant with the litera-
ture [Lemon et al., 2006]. KTD-Q learns near optimal poli-
cies in very few samples. They are a little bit underperform-
ing compared to those learnt by LSPI or fitted-Q. However,

3Although the convergence problem can be solved by regulariz-
ing the matrices to be inverted, our experiments showed that regu-
larized LSPI resulted in unstable policies.

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 50 100 600 1000 5000 20000 50000

A
ve

ra
ge

 d
is

co
un

te
d

su
m

 o
f

re
w

ar
ds

Number of training samples

FittedQ
LSPI

KTDQ
Q-Learning

Hand-crafted

Figure 2: Results, log. scale.

recall that KTD-Q is an online algorithm. Therefore, it pro-
cess each sample only one-time, contrary to fitted-Q or LSPI
which process each transition many times in the regression
process. One can notice that KTD-Q learns good policies
very fast, that is why we provide on figure 2 the same curves
with a logarithmic scale for the x-axis.

This figure shows that after 300 hundred transitions, Q-
learning learns a not so bad policy (approximately equivalent
to the hand-crafted policy). However, it looses this perfor-
mance quite quickly, learning is not stable at this stage (ac-
cording to experiments not reported here, tuning the learning
rate does not help here).On the other hand, the KTD-Q algo-
rithm learns good policies (performing equally to LSPI after
convergence) after only a few hundreds of transitions, and in
a stable manner (variance is decreasing). Another interest-
ing aspect is its ability to provide good policies when there
is not enough sample to even run fitted-Q or LSPI (they do
not converge). So, 500 turns (about 100 dialogues) are suffi-
cient to learn a near-optimal policy while standard Q-learning
would require 1000 times more. This amount of dialogs can
be easily collected in real applications to learn optimal poli-
cies with KTD-Q. Also, the variance is much lower with
KTD after 5000 turns than for LSPI meaning that results are
more reproducible.

5 Discussion
Results presented in the previous section are very promising.
The proposed online algorithm could learn high performance
policies from few tens of dialogue turns collected with a very
simple strategy (its performance is quite bad when compared
to the learnt ones) and without having to change the policy
while interacting with users during the learning phase. One
should remember that the learning curves are drawn with re-
spect to dialogue turns and not dialogues. In average, a com-
plete learnt dialogue was about 4 to 5 turns long (it is shorter
than the optimal control, but it does not always satisfies the
user). Since the Fitted-Q and LSPI learn quasi-optimal poli-
cies after only 5 to 10k dialogue turns, it means that only 1k
to 2k dialogues were required to learn. The KTD algorithm
learns dialogue policies before the Fitted-Q and LSPI don’t

even converge, this is why the curves for the these batch al-
gorithms only start later.

Although the task addressed in this paper is relatively
simple (3-slots), its size is similar in terms of state-action
space to those presented in the state of the art dealing
with RL for SDS optimization [Levin and Pieraccini, 1998;
Levin et al., 2000; Singh et al., 1999; Lemon et al., 2006].
Actually, scaling up in terms of dialogue task is not to be
compared to scaling up in terms of RL problems. For ex-
ample, the dialogue task described in [Gasic et al., 2010;
Jurcicek et al., 2010] is a 12-slot dialogue problem (so 4
times more than the system described in this paper). Yet, the
RL state space used by the authors to optimize the strategy
is only composed of 2 continuous and 2 discrete dimensions
which makes this problem of comparable size with the one
addressed in this paper in terms of RL complexity. Moreover,
the MDP framework is chosen and not the Partially Observ-
able MDP (POMDP) framework like in [Gasic et al., 2010;
Jurcicek et al., 2010]. Yet, the POMDP resumes to an MDP
in these works through the summary space trick. So, the com-
plexity of the example described in this paper is comparable
to state-of-the-art but simpler to analyse, this is why we have
opted for this task.

It is rare that in the SDS literature, algorithms are com-
pared according to their sample-efficiency, that is the number
of required dialogues to reach convergence toward a good dia-
logue policy. Learning curves are generally provided to show
that some methods out-perform others but the actual number
of dialogues required to learn is not the main focus. In [Levin
and Pieraccini, 1998; Levin et al., 2000] the authors men-
tion that more than 700k dialogues were needed to learn the
optimal policy on a 3 slots problem (for a database querying
task). This seminal work encouraged researchers to build user
simulation so as to generate enough data for RL algorithms to
converge, this is probably why sample-efficiency has not been
investigated so much. Yet, some recent works [Gasic et al.,
2010; Jurcicek et al., 2010] have focused on sample-efficient
RL algorithms. Nevertheless they use online and on-policy
algorithms which also require user simulation, not only for
expanding the datasets but simply to be run. Therefore, all
the problems induced by simulation are still present [Schatz-
mann et al., 2005].

In [Chandramohan et al., 2010], the authors also propose
the use of sample-efficient algorithms but batch ones while
this paper proposes an online algorithm. The work reported
in [Li et al., 2009] is also about a sample-efficient batch algo-
rithm. In that paper, the task is not more complex (although
the vocabulary is, but the study reported here stands at the
intention level) since a maximum of three slots are also re-
quested by the system (most of dialogues only need one slot
to be filled). The system is also helped by the introduction
of human knowledge to pre-select actions. Also, [Li et al.,
2009] makes use of a user simulation method to generate dif-
ferent sets of data as was done in this paper which makes the
work presented here suitable for comparison with the state of
the art. Yet, simulation is not mandatory in the general case.
In addition, the user simulation doesn’t simplify the task to
be learnt (which only depends on the state-action space size
and the quality of the exploration done with the handcrafted

policy) and results are not losing generality.
Finally, the comparison of the reproducibility of the results

when using Fitted-Q and LSPI shows that KTD is more sta-
ble. Indeed, the variance on the performances seems to be
lower and decreasing with time with this new algorithm.

6 Conclusion
This contribution addressed the problem of rapid learning
of optimal spoken dialogue management policies with rein-
forcement learning from online interaction while simply ob-
serving a poor policy behaving (off-policy learning). Sev-
eral generalization schemes have been compared including
batch and online learning algorithms. All the algorithms
are off-policy meaning that they learn by observing a low-
performance but acceptable policy. The experimental results
show that the KTD-Q algorithm can learn a near optimal pol-
icy in few hundreds of dialog turns (corresponding to less
than 100 dialogs). This means that an optimal policy could
be directly learnt from collected data avoiding data expansion
methods based on user modeling. Also better approximation
schemes than linear parameterizations are envisioned such as
neural networks. Moreover, similarly to GPTD [Gasic et al.,
2010], uncertainty maintained by the KTD framework can be
used to actively explore the state-action space so as to fasten
convergence. Finally, the Kalman filtering paradigm would
allow introducing prior knowledge to handle partial observ-
ability by extending the parameter vector and adding evolu-
tion equations into the state-space model described in Sec-
tion 3.

References
[Bellman, 1957] Richard Bellman. A Markovian Decision Process.

Journal of Mathematics and Mechanics, 1957.

[Chandramohan et al., 2010] Senthilkumar Chandramohan,
Matthieu Geist, and Olivier Pietquin. Optimizing Spoken
Dialogue Management with Fitted Value Iteration. In Inter-
speech’10, Makuhari (Japan), 2010.

[Gasic et al., 2010] Milica Gasic, Filip Jurcicek, Simon Keizer,
François Mairesse, Blaise Thomson, Kai Yu, and Steve Young.
Gaussian processes for fast policy optimisation of pomdp-based
dialogue managers. In SIGDIAL’10, Tokyo, Japan, 2010.

[Geist and Pietquin, 2010a] Matthieu Geist and Olivier Pietquin.
Kalman Temporal Differences. Journal of Artificial Intelligence
Research (JAIR), 39:489–532, October 2010.

[Geist and Pietquin, 2010b] Matthieu Geist and Olivier Pietquin.
Managing Uncertainty within Value Function Approximation in
Reinforcement Learning. In Journal of Machine Learning Re-
search, Workshop & Conference Proceedings (JMLR W& CP):
Active Learning and Experimental Design, Sardinia, Italy, 2010.

[Gordon, 1995] Geoffrey Gordon. Stable Function Approximation
in Dynamic Programming. In ICML’95, 1995.

[Henderson et al., 2008] James Henderson, Oliver Lemon, and
Kallirroi Georgila. Hybrid reinforcement/supervised learning of
dialogue policies from fixed data sets. Computational Linguis-
tics, 2008.

[Jurcicek et al., 2010] Filip Jurcicek, Blaise Thomson, Simon
Keizer, Milica Gasic, François Mairesse, Kai Yu, and Steve

Young. Natural Belief-Critic: a reinforcement algorithm for pa-
rameter estimation in statistical spoken dialogue systems. In In-
terspeech’10, Makuhari (Japan), 2010.

[Kalman, 1960] Rudolf Kalman. A new approach to linear filtering
and prediction problems. Transactions of the ASME–Journal of
Basic Engineering, 82(Series D):35–45, 1960.

[Lagoudakis and Parr, 2003] Michail Lagoudakis and Ron Parr.
Least-squares policy iteration. Journal of Machine Learning Re-
search, 4:1107–1149, 2003.

[Larsson and Traum, 2000] Staffan Larsson and David R. Traum.
Information state and dialogue management in the TRINDI dia-
logue move engine toolkit. Natural Language Engineering, 2000.

[Lemon et al., 2006] Oliver Lemon, Kalliroi Georgila, James Hen-
derson, and Matthew Stuttle. An ISU dialogue system exhibiting
reinforcement learning of dialogue policies: generic slot-filling
in the TALK in-car system. In EACL’06, Morristown, NJ, USA,
2006.

[Levin and Pieraccini, 1998] Esther Levin and Roberto Pieraccini.
Using markov decision process for learning dialogue strategies.
In Proceedings of the International Conference on Acoustics,
Speech and Signal Processing (ICASSP’98), Seattle, Washington,
1998.

[Levin et al., 2000] Esther Levin, Roberto Pieraccini, and Wieland
Eckert. A stochastic model of human-machine interaction for
learning dialog strategies. IEEE Transactions on Speech and Au-
dio Processing, 8(1):11–23, 2000.

[Li et al., 2009] Lihong Li, Suhrid Balakrishnan, and Jason
Williams. Reinforcement Learning for Dialog Management us-
ing Least-Squares Policy Iteration and Fast Feature Selection. In
InterSpeech’09, Brighton (UK), 2009.

[Pietquin and Dutoit, 2006] O. Pietquin and T. Dutoit. A prob-
abilistic framework for dialog simulation and optimal strategy
learning. IEEE Transactions on Audio, Speech and Language
Processing, 14(2):589–599, 2006.

[Pietquin et al., 2011] O. Pietquin, M. Geist, S. Chandramohan,
and H. Frezza-Buet. Sample-Efficient Batch Reinforcement
Learning for Dialogue Management Optimization. ACM Trans-
actions on Speech and Language Processing, 2011.

[Schatzmann et al., 2005] Jost Schatzmann, Matthew N. Stuttle,
Karl Weilhammer, and Steve Young. Effects of the user model
on simulation-based learning of dialogue strategies. In ASRU’05,
San Juan, Puerto Rico, 2005.

[Schatzmann et al., 2006] Jost Schatzmann, Karl Weilhammer,
Matt Stuttle, and Steve Young. A survey of statistical user simu-
lation techniques for reinforcement-learning of dialogue manage-
ment strategies. The Knowledge Engineering Review, 21(2):97–
126, June 2006.

[Singh et al., 1999] S. Singh, M. Kearns, D. Litman, and
M. Walker. Reinforcement learning for spoken dialogue systems.
In NIPS’99, Denver, USA, 1999.

[Sutton and Barto, 1998] Richard S. Sutton and Andrew G. Barto.
Reinforcement Learning: An Introduction. The MIT Press, 3rd
edition, March 1998.

[Walker et al., 1997] M. Walker, D. Litman, C. Kamm, and
A. Abella. PARADISE: A framework for evaluating spoken dia-
logue agents. In ACL’97, Madrid (Spain), 1997.

[Williams and Young, 2007] Jason Williams and Steve Young. Par-
tially observable Markov decision processes for spoken dialog
systems. Computer Speech and Language, 21(2):231–422, 2007.

