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Disturbance rejection in iISS feedback nonlinear systems:
a sensitivity trade-off

– Preprint, extended version of the paper published in IEEE CDC 2011 –

Antoine Chaillet and Hiroshi Ito

Abstract: This note investigates the trade-off arising in
disturbance attenuation for nonlinear feedback systems in
the framework of integral input-to-state stability. Similarly
to the linear case, we show that if a gain tuning on one
subsystem is used to drastically reduce the effect of its ex-
ogenous disturbances, then the other subsystem’s disturbance
attenuation is qualitatively the same as in open loop.

I. INTRODUCTION

The objective of the present paper is to provide some
insights on how the well-known sensitivity / co-sensitivity
trade-off arising for feedback linear time-invariant (LTI)
systems extends to nonlinear plants. More precisely, consider
two feedback nonlinear subsystems and assume that the
nonlinear gain of one subsystem can be made smaller by
a convenient control design. Then the nonlinear loop gain
becomes smaller and the small-gain stability criterion is
satisfied with a larger margin. A natural question is then
whether this induces stronger robustness to disturbances
for the overall feedback system. We give an answer to
this question in the dissipative formulation for input-to-state
stability (ISS, [18]) and integral ISS (iISS, [20]) systems.

The results presented along this paper rely on small gain
arguments. More precisely, we make use of recent results on
Lyapunov-based small gain theorems for iISS [10], which
include ISS as a special case. Compared to other nonlinear
small gains existing in the literature such as [11], [12], [21],
[1], [4], this result allows both to deal with not necessarily
ISS systems, and to provide an explicit construction of a
Lyapunov function for the overall interconnection in the
presence of exogenous inputs, which are two helpful features
for this work.

Instead of relying on the exact knowledge of differential
equation models, we employ iISS dissipation inequalities
to describe nonlinear systems in feedback loop. Compared
to the frequency analysis for LTI systems (cf. classical
textbooks such as [5]), iISS dissipation inequalities do not
provide an equality between the input and its response,
but rather an inequality that provides only a “worst-case”
estimate (sometimes not very tight) of the input influence
on the overall system: no distinction can be made between
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systems that are strongly sensitive to inputs, and those for
which the dissipation inequality is simply too loose.

In order to overpass this difficulty, we proceed in two
different manners. The first one (Section IV) consists in
building, for a given pair (α, γ) of iISS supply rates, an
iISS system ẋ = f(x, d) for which these estimates are tight,
in the sense that all disturbances that may act on that system
have a negative impact on the system’s performance and that
this effect is not compensated by a dissipation rate stronger
than the prescribed one. Roughly speaking, this is done by
imposing (at least in some relevant state regions)

∂V

∂x
(x)f(x, d) = −α(|x|) + γ(|d|) ,

where V denotes a given Lyapunov function candidate.
The equality sign in this equation guarantees the sought
tightness of the estimates. We show that, given an iISS supply
pair (α, γ), Lyapunov-based small gain arguments always
authorize the existence of such a system and consequently
the non-rejection of some disturbances. Of course, this first
approach is of purely theoretical interest, as the constructed
system has typically no practical relevance. The second
approach (Section V) demonstrates this trade-off without
introducing such fictitious subsystems. Assuming that one
subsystem admits a bounded disturbance that does have a
negative effect on its performance, we show that, in feedback,
this effect cannot be attenuated by the gain tuning of the other
subsystem.

Notation. Given x ∈ Rn, |x| denotes its Euclidean
norm. Given a set A ⊂ Rn, |x|A := infz∈A |x− z|.
Given a constant δ > 0, Bδ := {x ∈ Rn : |x| ≤ δ}.
Given a set A ⊂ R and a constant a ∈ R, A≥a :=
{s ∈ A : s ≥ a}. satδ : Rn → Rn is defined, for all
x ∈ Rn, by satδ(x) := (δsat(x1/δ), . . . , δsat(xn/δ))

T ,
where sat(s) := min(|s|, 1)sign(s) for all s ∈ R. Given a
function σ : Rm → Rn, ker(σ) := {x ∈ Rm : σ(x) = 0}.
A continuous function α : R≥0 → R≥0 is said to be of
class PD if it is positive definite. It is said to be in class
K if, in addition, it is increasing. It is said to be of class
K∞ if it is of class K and α(s) → ∞ as s → ∞. A
function β : R≥0 × R≥0 → R≥0 is said to be of class
KL if β(·, t) ∈ K for any fixed t ≥ 0 and β(s, ·) is
continuous non increasing and tends to zero at infinity for
any fixed s ≥ 0. Given α ∈ K, α(∞) ∈ R≥0 ∪ {∞} is
defined as lims→∞ α(s). Given α, γ ∈ K, α(∞) > γ(∞)
means that either α ∈ K∞, or α(∞) = cα ∈ R≥0 and



γ(∞) = cγ ∈ R≥0 with cα > cγ . Um is the set of
measurable locally essentially bounded signals d : R≥0 →
Rm. Given u ∈ Um, ‖u‖ := ess supt≥0 |u(t)|. Given ∆ ≥ 0,
Um≤∆ := {u ∈ Um : ‖u‖ ≤ ∆}. V : Rn → R≥0 is called a
Lyapunov function candidate if it is C1, positive definite and
radially unbounded.

II. PROBLEM STATEMENT

We consider two dynamical systems Σ1 and Σ2 intercon-
nected in a feedback configuration through their outputs y1

and y2, and subject to exogenous disturbances d1 and d2, cf.
Fig. 1.

Fig. 1. Feedback interconnection.

It is well known that, when Σ1 and Σ2 are LTI, the
sensitivity / co-sensitivity tradeoff impedes the disturbance
rejection of both d1 and d2 at the same frequency. To sketch
out this tradeoff, consider single input - single output systems
and let Hi denote the transfer function of Σi, i ∈ {1, 2}. If
H1 is tuned in such a way that H2H1(1−H2H1)−1 → 0 at a
given frequency, then one cannnot avoid (1−H1H2)−1 → 1.
This results in H2(1−H1H2)−1 → H2, meaning that the d1-
rejection imposes that the effect of d2 is similar to the open-
loop. This fundamental obstruction to control design was
first studied in [3]. It imposes, in particular, a compromise
between precision / output disturbance rejection and sensor
noise attenuation. See [8], [15], [17], [7] for an in-depth
analysis. The aim of this paper is to analyze to what extent
this result can be adapted to nonlinear plants. The feedback
interconnection considered in this note is

ẋ1 = f1(x1, x2, d1, θ) (1a)
ẋ2 = f2(x2, x1, d2) , (1b)

where (xT1 , x
T
2 )T =: x ∈ Rn1+n2 denote the sate of each

subsystem, (dT1 , d
T
2 )T =: d ∈ Um1+m2 are exogenous

disturbances, and θ ∈ Θ ⊂ Rp is a free parameter as,
for instance, a vector of tuning gains. We stress that this
structure does not necessarily require that the subsystems
(1a) and (1b) are connected through their whole states, but
rather authorizes output feedback interconnection as f1 (resp.
f2) may involve only part of x2 (resp. x1) or a function of
its entries.

While the above LTI reasoning does not require any stabil-
ity assumption on Σ1 and Σ2 when considered individually,
the small-gain approach we follow in this note imposes that
each subsystem is iISS with a class K dissipiation rate [20].

Assumption 1 There exist α1, γ1, ϕ1 ∈ K, α1, α1 ∈ K∞,
and a C1 function V1 : Rn1 → R≥0 satisfying α1(|x1|) ≤

V1(x1) ≤ α1(|x1|) with the property that, given any λ > 1,
there exist θ ∈ Θ such that, for all (x1, x2) ∈ Rn1+n2 and
all d1 ∈ Rm1 ,

∂V1

∂x1
f1 ≤ −α1(|x1|) +

1

λ
[γ1(|x2|) + ϕ1(|d1|)] . (2)

This first assumption not only guarantees iISS for the x1-
subsystem (1a), but also that the disturbance rejection for this
subsystem can be tuned at will by a convenient choice of the
parameter θ. More precisely, considering u1 := (xT2 , d

T
1 )T as

the exogenous input of (1a) and relying on classical reason-
ings for iISS systems (cf. [2, Corollary IV.3]), Assumption
1 naturally yields the following trajectory estimate for (1a):

|x1(t)| ≤ β(
∣∣x0

1

∣∣ , t)+ηÇ 1

λ

∫ t

0

γ̃1(|u1(τ)|)dτ
å

(3)

where x1(·) := x1(·;x0
1, x2, d1, θ), x2(·) := x2(·;x0

2, x1, d2),
γ̃1(·) := 2 max{γ1(·), ϕ1(·)} and η and β denote respec-
tively class K and KL functions. Thus, once the exogenous
signals x2 and d1 are given, the above estimate illustrates the
possibility to arbitrarily reject their effect on the behavior of
the x1-subsystem by conveniently tuning θ (i.e. by increasing
λ). Note that the dissipation rate α1 is assumed to belong to
class K rather than simply PD as in [2]. This is motivated by
the small gain argument [10] we invoke in the sequel. Hence,
Assumption 1 actually imposes iISS plus ISS with respect
to small inputs1 with an assignable supply rate. Even though
Assumption 1 may be hard to achieve in practice, this note
aims precisely at showing that, despite such a strong stabiliz-
ability assumption, disturbance rejection cannot be expected
to be arbitrary in a feedback interconnection. Nonetheless,
we stress that, under specific matching conditions, Assump-
tion 1 can be ensured by control designs available in the
literature such as [16, Lemma 3]. The results in [22], [14]
may also be inspiring. For instance, the following result
easily follows from [16, Lemma 3].

Proposition 1 (Actuation errors) Let f : Rn1 → Rn1 and
gi : Rn1 → Rn1 , i ∈ {1, . . . , p}, be locally Lipschitz
functions and assume that the system

ẋ1 = f(x1) +

p∑
i=1

gi(x1)ui

is globally asymptotically stabilizable by a continuous state
feedback u = κ◦ : Rn1 → Rp, satisfying κ◦(0) = 0, with
associated C1 Lyapunov function V1 satisfying, for each i ∈
{1, . . . , p},

∂V1

∂x1
(0)gi(0) = 0 .

Then there exists a continuous state feedback κ : Rn1 ×
R≥0 → Rp such that the system

ẋ1 = f(x1) +

p∑
i=1

gi(x)(κ(x1, θ) + x2 + d1) ,

1This combination is sometimes referred to as Strong iISS.



where θ denotes a scalar gain, satisfies Assumption 1 with
this function V1.

On the other hand, the x2-subsystem is assumed to be
iISS, with a fixed supply rate.

Assumption 2 There exist α2, γ2, ϕ2 ∈ K, α2, α2 ∈ K∞,
and a C1 function V2 : Rn2 → R≥0 such that, for all
(x1, x2) ∈ Rn1+n2 and all d2 ∈ Rm2 ,

α2(|x2|) ≤ V2(x2) ≤ α2(|x2|) (4)

∂V2

∂x2
f2(x2, x1, d2)≤−α2(|x2|) + γ2(|x1|) + ϕ2(|d2|). (5)

Here also the dissipation rate is assumed to be of class
K rather than PD [2]. This assumption is necessary for the
application of the small gain theorem [10] on which we base
this study.

III. TUNING FOR d1−REJECTION

We state the following result, which formally shows that,
as expected, the tuning of θ allows for arbitrary attenuation
of d1.

Proposition 2 Let Assumptions 1 and 2 hold and assume
that the following implication holds true for each i ∈ {1, 2}:

γ3−i ∈ K∞ ⇒ αi ∈ K∞ . (6)

Assume also that the small gain condition2

c2γ2 ◦ α−1
1 ◦ α1 ◦ α−1

1 ◦ c1γ1(s) ≤
α2 ◦ α−1

2 ◦ α2(s) , ∀s ≥ 0 (7)

holds for some constants c1 > 0 and c2 > 1. Then, there exist
β ∈ KL, α, γ, ζ ∈ K∞, and ∆ > 0 and, given any ` > 1,
there exist θ ∈ Θ such that, for all x0 ∈ Rn1+n2 , all d1 ∈
Um1 and all d2 ∈ Um2 , the feedback interconnection (1) is
iISS and ISS with respect to small inputs, and its solution
satisfies

α(|x(t)|) ≤ β(
∣∣x0
∣∣ , t) +

∫ t

0

γ (|d1(τ)| /`) dτ

+

∫ t

0

γ(|d2(τ)|)dτ , ∀t ≥ 0 . (8)

and, for all d1 ∈ Um1

≤`∆ and all d2 ∈ Um2

≤∆,

|x(t)| ≤ β(
∣∣x0
∣∣ , t) + ζ(‖d1‖/`) + ζ(‖d2‖). (9)

It is worth noting that the upper and lower bounds on
Vi (namely, αi and αi), i ∈ {1, 2} involved in (7) could
be removed if (2) and (5) were replaced by dissipation
inequalities involving only Vi rather than xi. We keep the

2Condition (7) requires in particular that either γ1(∞) is finite or α1 ∈
K∞. In both cases, Assumption 1 guarantees that a convenient tuning of θ
makes (1a) ISS with respect to x2. More details can be found in [10].

original small-gain condition (7) of [10] as the bounds (2)
and (5) are usually easier to establish in practice.

We also stress that small-gain condition in [10] requires
both c1 and c2 to be greater than 1. Relaxing to only c1 > 0
in (7) is made possible by the fact that, in the context of the
present article, the constant λ multiplying the supply rate γ1

is tunable at will through the parameter θ (cf. Assumption
1).

Apart from these details, the iISS and ISS with respect to
small inputs of the feedback interconnection (1) under (6)-(7)
directly follows from previous results of the second author
[10]. See Section VII-A for the complete proof. Let us recall
that the small-gain condition (7) is not symmetric. We have
chosen to assume (7) rather than its counterpart:

c1γ1 ◦ α−1
2 ◦ α2 ◦ α−1

2 ◦ c2γ2(s) ≤ α1 ◦ α−1
1 ◦ α1(s),

in order to allow for the interconnection of not necessarily
ISS subsystems. See [10] for details.

Compared to [10], the novelty of Proposition 2 stands in
the explicit estimate of the disturbance attenuation allowed
by the tuning gain θ. Indeed, since the functions α, β, γ and
ζ in (8)-(9) are independent of `, Proposition 2 guarantees
that the effect of the exogenous disturbance d1 over the
solutions’ behavior can be made arbitrarily small provided
a convenient tuning of θ (i.e., corresponding to sufficiently
large λ and `). In addition, since (9) ensures ISS with
respect to all d1 of amplitude smaller than `∆, with ∆
independent of `, the class of ISS-tolerated disturbances can
be enlarged at will. These constitute two interesting features
for the rejection of the d1 disturbance. However, no such
d2-disturbance attenuation appears in the trajectory estimates
(8)-(9). This fact could either be due to an intrinsic property
of feedback interconnections, or simply to the looseness of
the upper bounds (8)-(9). The rest of the paper shows that this
property is indeed intrinsic and that no such d2-attenuation
can be expected in general.

IV. SENSITIVITY TO d2: A “WORST CASE” SYSTEM

In contrast to the previous section, we now show that the
increase of λ, by a convenient tuning of the gain θ, is in
general of no help in reducing the influence of d2 over x2.
The proof of this result is provided in Section VII-C.

Theorem 1 Let Assumption 1 hold, let dmin2 < dmax2 be two
positive constants, and let α2, γ2, ϕ2 denote some given K
functions. Let V2 : Rn2 → R≥0 be any Lyapunov function
candidate satisfying

∂V2

∂x2
(x2) 6= 0 , ∀x2 6= 0 . (10)

Then one can always find class K functions ν2 and η2, and
a vector field f2 : Rn2 ×Rn1 ×Rm2 → Rn2 , continuous on
Rn2×Rn1×(Rm2 \ {0}), satisfying Assumption 2 with these
prescribed functions α2, γ2 and ϕ2, and such that, given any
θ ∈ Θ, any initial state x0

2 ∈ Rn2 and any disturbance
d1 ∈ Um1 and d2 ∈ Um2 satisfying

dmin2 ≤ ‖d2(t)‖ ≤ dmax2 , (11)



all forward complete solutions of (1) starting with
∣∣x0

2

∣∣ ≥
η2 (‖d2‖) satisfy

|x2(t)| ≥ ν2(ess infτ≥0 |d2(τ)|), ∀t ≥ 0. (12)

Theorem 1 shows that the only knowledge of the dissipa-
tion inequality associated to each subsystem cannot guaran-
tee, in general, an arbitrary d2-disturbance attenuation even
when control gains can be tuned in order to decrease the
sensitivity of the x1-subsystem with respect to its inputs.
Indeed, it guarantees that such an interconnection may al-
ways yield, for some particular systems, the existence of an
incompressible lower bound (12) whose size is somewhat
“proportional” to the minimal value of |d2|, for solutions
starting sufficiently far from the origin. The crucial point is
that this lower bound holds regardless of the chosen gain
θ. It is therefore hopeless to expect arbitrary d2-disturbance
rejection for this system by relying only on the associated
dissipation inequalities.

Remark 1 If in addition to the assumptions of Theorem 1,
the small gain condition (7) holds, then the assumptions of
Proposition 2 are satisfied and consequently the feedback
interconnection (1) is iISS and ISS with respect to small
inputs (cf. (8)-(9)) if λ is made small enough by a convenient
choice of θ. In particular, (1) results forward complete and
the lower bound (12) holds at all times.

The property stated as Theorem 1 is quite intuitive once
the inequality (5) is sufficiently tight. The contribution of this
result is, in fact, to show that such a dissipation inequality is
always tight for some particular systems. More precisely, the
proof of Theorem 1 relies on the following lemma, that may
have interest on its own. It is similar in spirit to [10, Lemma
1], but applies to any given Lyapunov function candidate. Its
proof is provided in Section VII-B.

Lemma 1 Given m,n ∈ N≥1, let ϕ : Rn×Rm → R be any
continuous function satisfying

|x| ≤ σ(u) ⇒ ϕ(x, u) ≥ 0 , (13)

for some continuous function σ : Rm → R≥0. Consider any
Lyapunov function candidate V : Rn → R≥0 satisfying

∂V

∂x
(x) 6= 0 , ∀x 6= 0 . (14)

Then, there exists a vector field f : Rn × Rm → Rn,
continuous on Rn×(Rm \ ker(σ)), such that, for all x ∈ Rn
and all u ∈ Rm,

∂V

∂x
(x)f(x, u) ≤ ϕ(x, u) (15)

|x| ≥ σ(u) ⇒ ∂V

∂x
(x)f(x, u) = ϕ(x, u) . (16)

This lemma shows that, under mild assumptions, the
dissipation inequality (5) is always “tight” for what we refer
to as a worst-case system. In other words, any Lyapunov
function candidate constitutes a tight iISS/ISS estimate of
the behavior of these systems. This can be seen by taking ϕ
as an iISS or ISS supply pair for this system. Here we refer to
a “worst case” situation as, for this system, the application
of any input signal works against the convergence of the
associated Lyapunov function, and that it can be compensated
by no greater dissipation rate than α(|x|).

Remark 2 The right-hand side f of the constructed system
may not be locally Lipschitz. However, depending on the
choice of the function ϕ, the existence of solutions may be
guaranteed at all time. For instance, the application of the
comparison lemma guarantees forward completeness for any
function ϕ satisfying, at least for large |x|,

ϕ(x, u) ≤ cV (x) + η(|u|) ,

where c ∈ R and η : Rm → R denotes a continuous function.
See [9] for further discussions on how forward completeness
of feedback systems can be guaranteed. Also, the fact that f
is not necessarily continuous in u = 0 is not a crucial issue
as Lemma 1 will typically be used for inputs lower-bounded
away from zero.

V. SENSITIVITY TO d2: IMPEDING DISTURBANCES

In most situations, exogenous inputs do not systematically
work against the convergence of the associated Lyapunov
function, as opposed to the worst-case systems developed in
Section IV. For instance, for the scalar system ẋ = −x+ d,
any positive signal d tends to slowing down the convergence
of x to zero for positive values of the initial state x0, but it
actually speeds it up if x0 ≤ 0. This observation suggests
that no tight Lyapunov function, in the sense of Lemma 1,
exists for most dynamical systems of practical relevance, nor
can a Lyapunov function candidate W satisfying

Ẇ ≥ −α(|x|) + γ(|u|) , ∀x ∈ Rn, ∀u ∈ Rm,

with α, γ ∈ K, be expected in general. On the other hand,
in many cases, disturbances do induce an increase of the
associated Lyapunov function at least in some regions of the
state space. It is also reasonable to assume that their size
is bounded for bounded states. This motivates the following
assumption, which can be seen as a destabilizing counterpart
of the small control property, cf. e.g. [19], [6].

Assumption 3 There exists a Lyapunov function candidate
W2 : Rn2 → R≥0, a K function Υ2 and a continuous3

function d2 : Rn1+n2 → Rm2 such that, given any x =
(xT1 , x

T
2 )T ∈ Rn1+n2 ,

|d2(x)| ≤ Υ2(|x|) (17)

3The continuity requirement on d2 may probably be relaxed by relying on
Arstein-type constructions [19] to get a continuous destablizing feedback.
Since such a construction is of little interest in the context of this note, we
assume continuity of d2 for simplicity.



∂W2

∂x2
(x2)f2(x2, x1, d2(x)) > 0 .

This assumption ensures that at least one disturbance,
whose size is somewhat “proportional” to the norm of the
state, tends to destabilize the x2-subsystem with x1 as an
input.

For feedback systems satisfying Assumption 3, the fol-
lowing result shows that the tuning of the gain θ cannot be
expected to induce arbitrary d2-disturbance rejection.

Theorem 2 Let Assumption 3 hold. Then there exists Υ ∈ K
such that, given any δ > 0, there exists a signal d?2 ∈ Um2

satisfying
‖d?2‖ ≤ Υ(δ) (18)

such that, given any θ ∈ Θ and any d1 ∈ Um1 , the set
Rn\Bδ is globally attractive for the feedback interconnection
(1) (i.e., lim inft→∞

∣∣x(t;x0, d)
∣∣ ≥ δ) if the latter is forward

complete.

The above result establishes that, for all systems satisfying
Assumption 3, either the resulting interconnection is not
forward complete (in which case disturbance rejection is
obviously not achieved), or any ball centered at the origin can
be made repellent for the overall interconnection, regardless
of the choice of the tuning gain θ, by a bounded disturbance
d?2 whose amplitude is “proportional” to the size of the
chosen ball. This means that the maximum disturbance
rejection is purely a function of the applied disturbance d?2
and that the tuning of θ has no effect on it. We stress that,
in the above result, the larger the upper bound in (18) is, the
further away from origin solutions will asymptotically go to
(as Bδ grows larger).

Remark 3 If, in addition, the vector fields f1 and f2 are
chosen according to Assumptions 1 and 2 and the small
gain condition (7) holds, then Proposition 2 ensures that
the overall system is iISS (hence, forward complete).

VI. CONCLUSION

Motivated by the observation that the smaller the loop
gain is, the larger the internal stability margin is for a
feedback system, this paper has investigated the effect of
decreasing the loop gain on external stability, and established
a natural trade-off between rejection of disturbances entering
in different places in the feedback loop. If one subsystem’s
parameters are tuned to reduce the effects of its disturbances,
then the other subsystem eventually has been shown to
behave as if it were in open-loop. While this trade-off is quite
natural, the dissipation formulation of this paper enables to
confirm the property for nonlinear systems, thus without
relying on transfer functions. This iISS framework employed
in this paper also allows to encompass subsystems whose
solutions are not necessarily bounded for bounded inputs.The
extension to the interconnection of more than two subsystems

cas be envisioned based on large-scale small gain theorems
such as [4].

VII. PROOFS

We start by recalling the following lemma, whose proof
can be found along the lines of [10].

Lemma 2 For each i ∈ {1, 2}, let Vi : Rni → R≥0 be a C1

function satisfying, for all xi ∈ Rni , αi(|xi|) ≤ Vi(xi) ≤
αi(|xi|) with αi, αi ∈ K∞, and assume that there exist
αi, γi, ϕi ∈ K such that (6) holds and, for all s ≥ 0,

c2γ2 ◦ α−1
1 ◦ α1 ◦ α−1

1 ◦ c1γ1(s) ≤ α2 ◦ α−1
2 ◦ α2(s) (19)

with c1, c2 > 1. Then there exist ρ1, ρ2, α, γ ∈ K such that,
for all (x1, x2) ∈ Rn1 × Rn2 ,∑2

i=1 ρi(Vi(xi))
[
−αi(|xi|)+γi(|x3−i|)+ϕi(|di|)

]
≤ −α(|x|) + γ(|d|) .

This lemma provides an explicit construction of a Lya-
punov function for the feedback interconnection of iISS sys-
tems under the small gain condition (19). It is instrumental
for the proof of Proposition 2.

A. Proof of Proposition 2

First notice that ϕ1 can be assumed to be of class K∞
without loss of generality (if it is not, just consider any K∞
function greater than ϕ1). In view of [20, Corollary 10],
there exist K∞ functions ϕ0 and ϕ̃1 such that ϕ1(rs) ≤
ϕ̃1(r)ϕ0(s) for all r, s ≥ 0. Given any d1 ∈ Rn1 and any
λ > 0, pick r = |d1| /ϕ−1

0 (λ) and s = ϕ−1
0 (λ). We then

conclude from the above expression that

ϕ1(|d1|)
λ

≤ ϕ̃1

Ç
|d1|

ϕ−1
0 (λ)

å
. (20)

Given any arbitrary ` > 1, pick any λ satisfying

λ > max {ϕ0(`); 1} . (21)

Observing that the supply rate for (1a) with respect to x2 is
1
λγ1, (7) ensures that the small gain condition (19) in Lemma
2 is fulfilled for some c1 > 0. Assumptions 1 and 2 are
then enough to apply Lemma 2 and conclude the existence
of ρ1, ρ2, α ∈ K and γ̃ ∈ K∞ such that, given any x =
(xT1 , x

T
2 )T ∈ Rn1+n2 and any d = (dT1 , d

T
2 )T ∈ Rm1+m2 ,∑2

i=1 ρi(Vi(xi))
[
−αi(|xi|)+γi(|x3−i|)+ϕ̃i(|di|)

]
≤ −α(|x|) + γ̃(|d|) , (22)

where, for notation homogeneity, ϕ̃2 := ϕ2. Similarly to
[10], consider the function V defined as

V (x) :=

∫ V1(x1)

0

ρ1(s)ds+

∫ V2(x2)

0

ρ2(s)ds . (23)



It easily follows from Assumptions 1 and 2 that its derivative
along the trajectories of (1) yields

V̇ ≤ ρ1(V1)

Å
−α1(|x1|) +

γ1(|x2|)
λ

+
ϕ1(|d1|)

λ

ã
+ρ2(V2)

(
− α2(|x2|) + γ2(|x1|) + ϕ2(|d2|)

)
.

By (20) and (21), it then follows that

V̇ ≤ ρ1(V1) (−α1(|x1|) + γ1(|x2|) + ϕ̃1 (|d1| /`))
+ρ2(V2)

(
− α2(|x2|) + γ2(|x1|) + ϕ̃2(|d2|)

)
,

which, in view of (22), implies that

V̇ ≤ −α(|x|) + γ̃

Å∣∣∣∣Å d1/`
d2

ã∣∣∣∣ã . (24)

Using the fact that γ̃(a+ b) ≤ γ̃(2a) + γ̃(2b) for all a, b ≥
0 (since γ̃ ∈ K∞) and integrating this inequality with [2,
Corollary IV.3] along the solutions of (1) yields

V (x(t)) ≤ β̃(V (x(0)), t) + 2

∫ t

0

γ̃ (2 |d1(τ)| /`) dτ

+2

∫ T

0

γ̃(2 |d2(τ)|)dτ , ∀t ≥ 0 ,

where β̃ denotes a KL function. Moreover, exploiting (23)
and the bounds on V1 and V2 guaranteed by Assumptions
1 and 2, V results a Lyapunov function candidate, which
guarantees the existence of K∞ functions α, α ∈ K∞ such
that, for all x ∈ Rn, α(|x|) ≤ V (x) ≤ α(|x|). We obtain
that

α(|x(t)|) ≤ β̄(
∣∣x0
∣∣ , t) + 2

∫ t

0

γ̃ (2 |d1(τ)| /`) dτ

+ 2

∫ t

0

γ̃(2 |d2(τ)|)dτ ,

where β is the KL function defined as β̄(s, t) := β̃(α(s), t)
for all s, t ≥ 0. This establishes (8) with γ(s) := 2γ̃(2s)
for all s ≥ 0. Finally, let ∆ > 0 be any constant sat-
isfying ∆ ≤ γ̃(∞). Then, recalling that |(d1/`, d2)| ≥
max {|d1/`| , |d2|}, the quantity α−1 ◦ 1

2 γ̃(|(d1/`, d2)|) is
finite for all |d1| ≤ `∆ and all |d2| ≤ ∆, and it holds from
(24) that

|x| ≥ α−1 ◦ 1

2
γ̃

Å∣∣∣∣ d1/`
d2

∣∣∣∣ã ⇒ V̇ ≤ −1

2
α(|x|).

Classical ISS reasonings then ensures ISS with respect
to all d1 ∈ Um1

≤`∆ and all d2 ∈ Um2

≤∆, and establishes
(9) for some KL function β̂ and some K∞ function ζ.
The conclusion follows by noticing that β̄ and β̂ can be
taken the same by considering the KL function β(s, t) :=

max
¶
β̄(s, t), β̂(s, t)

©
for all s, t ≥ 0.

B. Proof of Lemma 1

Let c : R≥0 → R≥0 denote the function defined for all
s ≥ 0 as

c(s) := min
|x|=s

∣∣∣∣∂V∂x (x)

∣∣∣∣ . (25)

Since V is C1, c is continuous and, in view of (14), it is
positive definite. Now, let ζ : R≥0 ×Rm → R≥0 denote the
function defined, for all s ≥ 0 and all u ∈ Rm, as

ζ(s, u) :=

ß
sc(s)2 if s ≤ σu

σ(u)c(σ(u))2 if s > σu .
(26)

Note that ζ is continuous on R≥0×Rm and that ζ(s, u) > 0
for all s 6= 0 and all u /∈ ker(σ). We claim that the result
holds with the vector field f defined as f(0, u) := 0 and,
for all x 6= 0,

f(x, u) := ϕ(x, u)
ξ(x, u)∣∣∂V
∂x (x)

∣∣2
Å
∂V

∂x
(x)

ãT
,

where ξ : Rn × Rm → R≥0 denotes the function defined as

ξ(x, u):=

 1 if |x| ≥ σ(u)
a(u) |x|+ b(u) if |x| ∈ [σ(u)/2;σ(u))
sat(ζ(|x| , u)) if |x| < σ(u)/2 ,

with

a(u) :=
1− sat(ζ(σ(u)/2, u))

σ(u)/2

b(u) := 2 sat(ζ(σ(u)/2), u)− 1 .

Note that, with this choice of a and b and recalling the
properties of ζ, the function ξ is continuous on Rn ×
(Rm \ ker(σ)) and satisfies

0 ≤ ξ(x, u) ≤ 1 , ∀x ∈ Rn, u ∈ Rm . (27)

Moreover, in view of (25) and (26), given any u ∈ Rm \
ker(σ), it satisfies

lim sup
x→0

ξ(x, u)∣∣∂V
∂x (x)

∣∣2 = lim sup
x→0

sat(ζ(|x| , u))∣∣∂V
∂x (x)

∣∣2
≤ lim sup

x→0
|x|
∣∣∂V
∂x (x)

∣∣2∣∣∂V
∂x (x)

∣∣2
≤ 0 .

Since ξ is a nonnegative function, it follows that, given any
u ∈ Rm \ ker(σ),

lim
x→0

ξ(x, u)∣∣∂V
∂x (x)

∣∣2 = 0 ,

and consequently, for each u? ∈ Rm \ ker(σ),

lim
(x,u)→(0,u?)

f(x, u) = 0 = f(0, u?) .

Exploiting the obvious continuity of f in any x? 6= 0 for
any u? ∈ Rm \ ker(σ), it follows that f is continuous on
Rn × (Rm \ ker(σ)).



Furthermore, for any x ∈ Rn and u ∈ Rm satisfying
|x| ≥ σ(u), it holds that

f(x, u) = ϕ(x, u)
1∣∣∂V

∂x (x)
∣∣2
Å
∂V

∂x
(x)

ãT
.

Consequently

∂V

∂x
f(x, u) =

∂V

∂x
(x)

ϕ(x, u)∣∣∂V
∂x (x)

∣∣2
Å
∂V

∂x
(x)

ãT
= ϕ(x, u) ,

which establishes (16). Finally, if |x| < σ(|u|), then (13)
guarantees that ϕ(x, u) ≥ 0. In view of (27), it follows that

∂V

∂x
(x)f(x, u) ≤ ϕ(x, u)∣∣∂V

∂x (x)
∣∣2
∣∣∣∣∂V∂x (x)

∣∣∣∣2
≤ ϕ(x, u) ,

which, together with (16) establishes (15) and thus ends the
proof.

C. Proof of Theorem 1

First of all, notice that, since V2 is a Lyapunov function
candidate, (4) holds for some α2, α2 ∈ K∞. Let u2 :=
(xT1 , d

T
2 )T and consider

ϕ(x2, u2) = −α2(|x2|) + γ2(|x1|) + ϕ̃2(|d2|) ,

where ϕ̃2 is the class K function defined as

ϕ̃2(s) :=
1

2
min {ϕ2(s);α2(s)} , ∀s ≥ 0 .

This construction of ϕ̃2 ensures that the function α−1
2 ◦ ϕ̃2

is well defined over R≥0. Also, this function satisfies (13)
for any continuous nonnegative function σ such that, for all
u2 ∈ Rn1+m2 , σ(u2) ≤ α−1

2 ◦ ϕ̃2(|d2|). In particular, this
condition is fulfilled with σ(u2) = σ2(|d2|), if σ2 is the K
function defined as

σ2(s) := α−1
2 ◦ ϕ̃2

Å
dmin2 s

2dmax2

ã
, ∀s ≥ 0. (28)

Applying Lemma 1 to V2 with the above functions ϕ and
σ ensures the existence of a vector field f2 such that V̇2 :=
∂V2

∂x2
(x2)f2(x2, x1, d2) ≤ −α2(|x2|) + γ2(|x1|) + ϕ̃2(|d2|),

for all x ∈ Rn and all d2 ∈ Rn2 . This makes Assumption
2 fulfilled by noticing that ϕ̃2(s) ≤ ϕ2(s) for all s ∈ R≥0.
Lemma 1 also guarantees that, for all x and d2 satisfying
|x2| ≥ σ2(|d2|),

V̇2 = −α2(|x2|) + γ2(|x1|) + ϕ̃2(|d2|)
≥ −α2(|x2|) + ϕ̃2(|d2|) . (29)

Note that, since σ(u2) = σ2(|d2|) and σ2 ∈ K, ker(σ) =
Rn1 × (Rm2 \ {0}). Lemma 1 thus ensures that f2 is
continuous over Rn2 × Rn1 × (Rm2 \ {0}). Now, consider
any disturbance d2 ∈ Um2 satisfying (11) and let d2 :=
ess infτ≥0 |d2(τ)|. Note that it holds that

d2 ≥ dmin2 , ‖d2‖ ≤ dmax2 . (30)

Let θ ∈ Θ be any arbitrary tuning gain, let d1 ∈ Um1 ,
and consider any forward complete solution of (1) starting
with an initial condition x0 = (x0

1
T
, x0

2
T

)T ∈ Rn1 × Rn2

satisfying ∣∣x0
2

∣∣ ≥ α−1
2 ◦ ϕ̃2(d2) . (31)

In view of (28), this ensures in particular that∣∣x0
2

∣∣ > σ2(‖d2‖) . (32)

Let t1 ∈ R≥0 ∪ {∞} be defined as

t1 := sup {t ≥ 0 : |x2(τ)| ≥ σ2(‖d2‖)∀τ ∈ [0, t)} . (33)

In view of (32) and invoking the continuity of solutions, it
holds that t1 ∈ R>0 ∪ {∞} and, for all t ∈ [0, t1), it holds
from (4) and (29) that

v̇2(t) ≥ −α2(|x2(t)|) + ϕ̃2(|d2(t)|)
≥ −α2 ◦ α−1

2 (v2(t)) + ϕ̃2(d2) , (34)

where v2(·) := V2(x2(·)). We then rely on the following
lemma, proved in Section VII-E.

Lemma 3 Let α be a class K locally Lipschitz function and
let a ∈ R≥0. Let [0, t̄) ⊂ R≥0 be the maximum interval
of existence of a diffentiable function v whose derivative
satisfies v̇(t) ≥ −α(v(t)) + a for all t ∈ [0, t̄). Then the
following implication holds:

α(v(0)) ≥ a ⇒ α(v(t)) ≥ a,∀t ∈ [0, t̄).

Recalling that the function α2 ◦ α−1
2 is invertible over

[0, ϕ̃2(d2)] by construction of ϕ̃2, Equation (34) together
with Lemma 3 ensure that

v2(0) ≥ α2 ◦ α−1
2 ◦ ϕ̃2(d2) ⇒

v2(t) ≥ α2 ◦ α−1
2 ◦ ϕ̃2(d2) , ∀t ∈ [0, t1) ,

which yields, in view of (4),∣∣x0
2

∣∣ ≥ η2(d2) ⇒ |x2(t)| ≥ ν2(d2) ,

where the functions η2, ν2 ∈ K are defined as

η2 := α−1
2 ◦ ϕ̃2

ν2 := α−1
2 ◦ α2 ◦ α−1

2 ◦ ϕ̃2 . (35)

Equation (31) guarantees that the left-hand side of this
implication holds true. Hence

|x2(t)| ≥ ν2(d2) , ∀t ∈ [0, t1) . (36)

In other words, Theorem 1 is proved if we show that t1 =
+∞. If it were not the case, then it would mean, in view of
(33), that

|x2(t1)| = σ2(‖d2‖) . (37)

Consider the greatest time t2 ≥ 0 for which

|x2(t)| ≥ ν2(d2) , ∀t ∈ [0, t2] . (38)

In view of (36), we necessarily have that t2 ≥ t1. But (28)
and (35) ensure that σ2(d2) < ν2(d2). The continuity of
solutions together with (33), (37) and (38) then impose that
t2 < t1, which induces a contradiction. Thus, t1 is infinite,
which makes (36) valid for all t ≥ 0 and concludes the proof.



D. Proof of Theorem 2

Let Υ2, W2 and d2 be generated by Assumption 3. Since
W2 is a Lyapunov function candidate, there exist a2, a2 ∈
K∞ such that, for all x2 ∈ Rn2 ,

a2(|x2|) ≤W2(x2) ≤ a2(|x2|) . (39)

Given any δ ≥ 0, let δ̄ := a−1
2 ◦ a2(δ). Note that δ̄ ≥ δ.

Define also

d′2(x) := satΥ2(δ̄)

(
d2(x)

)
∀x ∈ Rn1+n2 . (40)

Given any θ ∈ Θ, any d1 ∈ Rn1 and any x0 ∈ Rn, let
x(·) := x(·;x0, d1, d

′
2, θ) denote the solution of (1) and let

d?2(t) := d′2(x(t)) for all t ≥ 0. Note that, if the system (1)
is forward complete, then d?2(t) exists for all t ≥ 0. Also, in
view of (17) and (40) and recalling that a−1

2 ◦ a2(s) ≥ s for
all s ≥ 0, d?2 satisfies (18) with Υ = Υ2. In addition,

|x(t)| ≤ δ̄ ⇒ d?2(t) = d2(x(t)) .

In view of Assumption 3, the derivative of W2 along the
solutions of (1) then satisfies

|x(t)| ≤ δ̄ ⇒ Ẇ2(x2(t)) > 0 . (41)

Hence, with (39) and the continuity of x(·),

|x(s)| ≤ δ̄, ∀s ∈ [0, t) ⇒ |x2(t)|>a−1
2 ◦ a2(

∣∣x0
2

∣∣). (42)

We prove the following two facts:∣∣x0
2

∣∣ > δ̄ ⇒ |x2(t)| ≥ δ, ∀t ≥ 0 (43)∣∣x0
2

∣∣ ≤ δ̄ ⇒ ∃t ≥ 0 : |x2(t)| ≥ δ̄ . (44)

These combined properties establish that, in any cases, the
solution x2(·) (and consequently x(·)) eventually leaves the
ball Bδ and never goes back into it, i.e., for all x0 ∈ Rn1 ×
Rn2 ,

lim
t→∞

|x2(t)|Rn2\Bδ = 0 ,

which indeed establishes the result. In order to establish (43)-
(44), consider any x0

2 ∈ Bδ̄ and let

ε := min
¶
Ẇ2(z) : a−1

2 ◦ a2(
∣∣x0

2

∣∣) ≤ |z| ≤ δ̄© .
Note that such an ε exists as Ẇ2 is continuous and the
considered set is compact and non empty (since a−1

2 ◦a2(δ̄) ≤
δ̄). In view of (41), it holds that ε > 0 and Ẇ2(x2(t)) ≥ ε as
long as |x(t)| ≤ δ̄. Integrating this inequality and exploiting
(39) then guarantees that, as long as x2(·) remains inside Bδ̄ ,

|x2(t)| ≥ a−1
2

(
a2(
∣∣x0

2

∣∣) + εt
)
.

This establishes (44). Finally, for
∣∣x0

2

∣∣ > δ̄, either |x2(t)| > δ̄
at all times in which case the right-hand side of (43) holds,
or there exists a time t? at which |x2(t?)| = δ̄. Exploiting
the above inequality by considering x2(t?) as the initial
condition then shows that, as long as x2(·) remains inside
Bδ̄ , |x2(t)| ≥ a−1

2

(
a2(δ̄) + εt

)
≥ δ, which establishes (43)

and thus ends the proof.

E. Proof of Lemma 3

We distintiguish between two cases.
Case 1: a < α(∞). Consider the differential equation ẏ =
−α(y) + a. Then letting z := y−α−1(a) yields ż = −α̃(z)
where α̃ is the locally Lipschitz class K function defined as
α̃(s) := α(s+α−1(a))−a. By [13, Lemma 4.4], z(·) exists
over R≥0 and satisfies z(t) = β(z(0), t), where β ∈ KL,
for all z(0) ≥ 0, and all t ≥ 0. In terms of y, this reads
y(t) = β(y(0)−α−1(a), t)+α−1(a) for all y(0) ≥ α−1(a).
But [13, Lemma 3.3] guarantees that, if v(0) ≥ y(0), then
v(t) ≥ y(t) for all t ∈ [0, t̄). It follows that, for all v(0) ≥
α−1(a), v(t) ≥ α−1(a) for all t ∈ [0, t̄).

Case 2: a ≥ α(∞). In this case, v̇(t) ≥ 0 for all t ∈ [0, t̄)
, which makes the claim trivial.
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