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Abstract. The FP7 EU project ISi-PADAS aims at conceiving an intelligent 
system, called PADAS, to support drivers, which intervenes continuously from 
warning up to automatic braking in the whole longitudinal control of the 
vehicle. However, such supporting systems can have some unwanted side-
effect: due to the presence of automation in the driving task, less attention and 
reaction are needed by the drivers to intervene in the longitudinal control of the 
vehicle. Such a paper aims at investigating the effects of the level of automation 
on drivers, in particular on their Situation Awareness, when the user is 
supported by a specific PADAS application, integrated with a driver’s 
distraction classifier. 

Introduction 

The FP7 EU project ISi-PADAS (Integrated Human Modelling and Simulation to 
support Human Error Risk Analysis of Partially Autonomous Driver Assistance 
Systems) aims at conceiving an intelligent system called PADAS (Partially 
Autonomous Driver Assistance System) which aids human users to drive safely, by 
providing them with pertinent and accurate information in real time about the external 
conditions and by acting as a co-pilot in emergency situations. The system interacts 
with the driver through a Human-Machine Interface (HMI) installed on the vehicle 
using an adequate Warning and Intervention Strategy (WIS). Such a system 
intervenes continuously from warning up to automatic braking in the whole 
longitudinal control of the vehicle [1]. Recent data have identified inattention – and in 
particular distraction – as the primary cause of accidents [3]. The ISI-PADAS project 
has developed a model, able to detect and classify driver’s distraction, which has then 
been integrated into the PADAS, in order to avoid or mitigate the negative effects and 
make the system “smarter” and more adaptive [2].  

This paper addresses the problem of evaluating the effects of the automation on 
driver’s Situation Awareness when using a PADAS integrating a Distraction (DIS) 
classifier. 
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The Context and the Problem Addressed 

Systems like the Adaptive Cruise Control (ACC) can (partially) automate the 
longitudinal driving task and thus support users in this perspective, but – on the other 
way – they can cause also less attention and reduced reaction time from drivers, 
especially in case of unexpected events. Ward found that ACC appeared to improve 
driving safety by reducing instances of unsafe headway distance in following tasks 
[5]. However, he also highlighted a relevant impairment of situation awareness (SA) 
because of a reduced attention dedicated to positioning and slower response times to 
unexpected events. In addition, other studies have proved the influence of ACC 
automation on performance, workload and attention allocation, e.g. [6]. Despite of the 
indubitable advantages, drivers may direct their attention away from the driving task 
when using ACC, creating an unsafe situation due to a loss of situation awareness. 
The study of Rudin-Brown confirms such results, with an unexpected increase in 
accidents from driver distraction due to the interaction with the secondary task [7].  

The PADAS Concept 

The choice to focus the attention on longitudinal driving control task derived by a 
preliminary in-depth accident analysis, conducted to derive hypotheses about causes 
of driver’s errors responsible for crashes [8]. In this context, many studies have shown 
the benefits of supporting systems in reducing accidents [2]. Therefore, the project 
has developed a PADAS called “Advanced Adaptive Cruise Control” (ACC+) with 
the following functionalities. In normal condition, the system can use the “traditional” 
ACC. Then when the driver acts on the brake pedal, thus indicating the will to brake, 
the AB function is able to modulate the braking action automatically. Finally, if the 
driver ignored warning and AB did not intervene on the brakes, EB acts 
autonomously in order to minimise the effects in case this is not avoidable anymore. 

The MDP Approach 

Consider a system that assists the driver by applying corrective controls to the 
vehicle (giving the driver warning signals and intervening in the braking) so that 
collisions may be avoided. When a collision is imminent, there is no doubt about what 
controls to apply: a clear collision warning must be given to the driver, and brakes 
must be applied as hard as possible to bring the host vehicle to a halt as quickly as 
possible. When there is a safe distance between the two vehicles, it is not clear what 
the optimal controls are. Should no warnings, no braking interventions occur? It could 
be, for example, that not giving a warning when the vehicle is at a certain “safe 
distance” leads (eventually) to a situation where a collision is unavoidable whereas a 
warning leads to an avoidance of the eventual collision. Deciding what corrective 
controls to exercise in order to avoid an eventual collision is essentially a problem of 
“credit assignment”: suppose an outcome is a consequence of a sequence of decisions. 
How do we decide what part each of decisions plays in the outcome? In other words, 
the credit assignment problem calls for a system for associating decisions to their 
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long-term outcomes. One of the most important theories for formulating and solving 
credit assignment in sequential decision-making problems is the Markov decision 
process (MDP) theory ([2] for details). In modelling a problem as an MDP, we 
contemplate a decision-maker who is required to take decisions over a sequence of 
discrete time periods. In each period, the problem occupies one of N possible states 
and the decision maker is called upon to choose from K possible alternatives. Such a 
decision and the state of the problem together determine, according to fixed 
probabilities P, the state occupied by the problem in the next period. Each choice is 
evaluated by an immediate cost c which is a function only of the state in which the 
choice is made (Markovian Property). The immediate cost tells the decision maker 
how good or bad a choice is in the short turn (i.e., its immediate consequence). It can 
use the immediate costs to determine the long-term desirability of a sequence of 
decisions.  The objective of the decision maker to make such decisions that minimize 
his long-term expected cost. The solution to a sequential decision making problem is 
of course a sequential decision making policy. A policy is a function which assigns to 
each state an alternative. If the decision maker is following the optimal policy, it is the 
case that in any period, whatever be the state occupied by the problem, the decision 
the policy dictates will lead to long-term expected cost that is as small as or smaller 
than any other decision he could have made [15]. Thus the MDP approach applied to 
conceiving an optimal PADAS consists of two elements: modelling the problem as an 
MDP; solving the (possibly unknown) MDP. 

Modelling a PADAS Target Application as an MDP 

First, the state of the MDP in the collision avoidance problem has to be defined. In 
this problem, the decision maker is the warning and intervention system (of the 
PADAS). The relevant factors that determine if a collision with the leading vehicle 
can occur are: time to collision; headway; velocities of the host and leading vehicles; 
accelerations of the host and leading vehicles; brake and gas pedals position; driver’s 
distraction level. So, the state in the proposed MDP can be considered as a 10-vector. 
However, the number of states of such an MDP would be too large for solving the 
MDP. If each element of the state is allowed to take only 3 possible values (a very 
conservative estimate, indeed most elements would take continuous values), we 
would end up with  3�� states!  

For the sake of computational tractability, we must determine which of these 
elements contains most information relevant to collision avoidance. With this in mind, 
the time to collision1 and driver’s distraction variables are two good candidates.  

Distraction Model as an MDP State to improve the PADAS 

A distraction classifier has been developed in the ISI-PADAS project and 
integrated into the optimal WIS for the PADAS, with the aforementioned MDP 

                                                           
1 defined as the time it would take for a collision to occur if the leading and follower vehicles maintain their 

current velocities, that is the distance rated by their relative speed. 
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approach. The distraction model has been implemented following also in this case a 
Machine Learning approach, which constitutes a quite common method to detect 
human visual distraction in a non-intrusive way, based on the vehicle dynamic data 
([9], [10]). Concerning the distraction classifier developed by the project, a broad 
explanation is outside the scope of this paper, but some details are provided as 
following (the interested reader can see [11]). In particular, a Support Vector 
Machines based model (SVM, well-known data-mining methods) has been selected, 
since achieving the best performances [11]. So, to sum up, the PADAS is conceived 
as an MDP, including an SVM-distraction classifier in the states defining the MDP. 

The experimental Set-up Description 

The scope of this experiment was twofold. On one hand, to assess the effect of 
automation on driver’s situation awareness; on the other hand, to compare the effects 
of the ACC+ solutions in reducing the risk of collision and on system acceptability 
from a driver perspective. Therefore the following phases have been considered: 

• ACC+ with a starting (initial) MDP policy p0 including a model for drivers 
distraction; 

• ACC+ with a MDP running p* policy (that is, the optimal policy developed 
by solving the MDP problem), including a model for driver distraction 
detection 

• ACC+ with a policy based on deceleration (pDec policy, described in [25]); 
• Without supporting systems (reference line). 

 
Concerning the reference policy pDec, it provides the driver with the same kind of 

information of the p* policy, but the approach is different. The main idea  of pDec is 
to give the needed acceleration for the host vehicle, in order to reach the same speed 
of the lead vehicle within a certain distance. Then, if the value is over certain 
thresholds, a corresponding warning or action is provided [25]. This policy represents 
a traditional algorithm for the implementation of a longitudinal distance 
control/warning system. 

For each of the above configurations, ten participants in the age between 21 and 45 
years (M = 31.0, SD = 9.0) were asked to complete 12 driving sessions: each 
condition consisted in a car-following task on a highway road where unexpected 
braking events of the leading car have been reproduced. Hence, each of the 10 
subjects performed 36 driving sessions, divided as follows: 

• 12 with the ACC+ working with the p* policy; 
• 12 with the ACC+ working with the pDec policy; 
• 12 without any supporting system 

 
Two different levels of road visibility (low, LV; high, HV) have been reproduced, 

combined with the activation of the secondary task and the level of automation of the 
vehicle longitudinal control. LV (200m) has been introduced with fog effect to force 
low situation awareness situations. LV condition has been compared with the HV 
condition (7000m). 
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The secondary task adopted is the SuRT (Surrugate visual Research Task [24]). 
Drivers were asked to interact with SuRT every time the task was presented on the 
lateral (right hand side) touch screen installed in the simulator cabin. A high level of 
SuRT difficulty has been set: high number of distractors with a reduced time to task 
completion (i.e. the SuRT screen was updated each 3-6 seconds). The secondary task 
has been activated in 6 conditions out of 12 for each driver. 

 
SA has been measured at the end of each session by means of a self reporting 

questionnaire called SART (Situation Awareness Rating Technique [23]) submitted to 
participants: we expected a decrease of situation awareness when scenarios are critical 
(i.e. low visibility and secondary task on) and the level of automation is low.  

The number of occurred collisions has been also calculated, to evaluate the effects 
of highly automated longitudinal control in particular while dealing with low situation 
awareness conditions. Finally, in order to verify the influence of the different ACC+ 
system automation on performance, workload and attention allocation ([8] and [9]), 
additional investigations have been conducted on specific indicators: NASA-Tlx and 
Steering Entropy (SE). 

 
The experiment has been conducted on the static driving simulator of the 

University of Modena and Reggio Emilia (see www.scaner2.com). 

Data Processing and Results 

During the experiment, several data on drivers’ behaviour were recorded from the 
simulator network at a sample rate of 20Hz (1 data-point each 0.05s). 

Indicators and Indexes of Performance  

SA has been measured by means of the SART questionnaire. It is a quick and easy 
self–rating measurement technique [23]. As a result of the interviews provided by the 
questionnaire, 10 dimensions were derived and used to measure SA. For each basic 
driving condition (4 in total) and for each driving session (3 in total, 2 with ACC+ 
and 1 without) the following measures have been analysed: 

• Number of accidents occurred, allowing the evaluation of drivers’ 
longitudinal performances with reference to the level of longitudinal 
automation and the scenario complexity 

• Steering Entropy [28] has been computed to evaluate drivers’ impairment in 
lateral control for each of the above mentioned situations. SE is a measure of 
randomness in a driver’s steering control: it is higher when drivers make 
larger erratic steering movements, indicating potentially unsafe behaviour.  

• Nasa-Tlx [29] has been used to analyse, in order to have a general 
understanding of the level of cognitive and physical effort required by 
drivers while coping with concurrent tasks (car-following and secondary task 
interaction).  
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Finally, participants were asked to fill up the subjective questionnaire defined by 

the ISI-PADAS consortium to assess both ACC+ running p* and ACC+ running pDec 
policies. 

Results for Automation Effects on Driver’s Behaviour 

SART questionnaire has been submitted to each subject four times for each of the 
three automation conditions. The aim of the evaluation conducted on collected data 
was to compare the average values of SART indicator of the aggregated SART scales 
between subjects for each level of automation and basic driving conditions. According 
to [23] the 10-scales of the SART have been aggregated: Demands on attentional 
resources (D), Supply of attentional resources (S) and Understanding of the situation 
(U). 

 
SART indicator is computed as: U-(D-S), where U, D, and S are the sum of the 

answers to the SART scales belonging to these aggregations: 

 

Fig. 1. Average values of SART computed on the whole sample 

In the figure, it is shown the quantitative variation of situation awareness among 
the driving (x-axis) and the automation conditions. Variations among automation 
conditions are relevant between automated (ACC+) and not-automated situations and 
there is a general positive increment of SA for the former conditions. Moreover, it is 
possible to see the effect of the driving conditions (SuRT and visibility) on the 
perceived SA: the absence of the secondary task and fog clearly increases the level of 
perceived situation awareness. A t-Test analysis of SART values was conducted for 
each driving condition and (in pairs) between the three automation configurations, in 
order to evaluate whether there are significant differences between the correspondent 
SART levels. Significant differences (p < 0.05) between average values of SART with 
and without automation have been found for all driving conditions but the “SURT + 
Visibility low” one. All in all, no significant differences were found comparing the 
average values of SART computed for the ACC+ p* and ACC+ pDec. 

Concerning the lateral driving behaviour, the average values of steering entropy 
(SE) were computed for all subjects for the two automation types: ACC+ with p* and 
ACC+ with pDec. As anticipated, SE revealed steering impairments due to factors 
influencing the vehicle lateral control. In this case, these factors are the interaction 
with SuRT and the low visibility. The t-Test analysis conducted on SE values showed 
that there is a significant statistical difference (p < 0.05) in SE performances between 
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driving conditions (x-axis of the next figure) for each separated automated condition. 
SE significantly increased with the presence of the secondary task, if compared to the 
conditions without the SuRT (see the following figure): 

 

Fig. 2. SE variations in the 4 driving conditions, w.r.t. the two kinds of automation 

For each driving condition, again a t-Test has been also conducted to compare the 
average values of SE in the two automated conditions to highlight potential statistical 
differences. No statistical differences between these values, however, were found in 
each of the driving conditions. 

Finally, the automation effects on driver’s workload are analyzed. The NASA-Tlx 
questionnaire has been submitted to each participants after each of the last four 
driving conditions for each driving session (ACC+ p*, ACC+ pDec and without 
supporting systems). The following figure shows the average values of NASA-Tlx 
computed for each driving condition (x-axis) and for each automation type: 

 

Fig. 3. NASA-Tlx average values 

In general, the level of workload perceived by drivers was higher in the conditions 
where SuRT was active, lower when no secondary task was present and visibility was 
high. Significant differences among workload levels measured for each automation 
type in the four driving conditions were not found, except for the “SuRT OFF + 
Visibility high” where participants stated that driving without longitudinal assistance 
induced high workload. In this case, the NASA scales showing this pattern are 
physical effort (because drivers have to module the speed autonomously) and effort 
(physical and mental demand). 

Moreover, the level of NASA-Tlx was higher in the ACC+ pStar conditions if 
compared to ACC+ pDec: the NASA scale contributing to the increase of the level of 
workload perceived by drivers is “Frustration”. Drivers stated they were annoyed by a 
continuous warning signal provided by the ACC+ pStar also in conditions where they 
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did not perceive a risk of collision and where they were able to modulate the speed by 
themselves in case that more deceleration was needed. 

Results for PADAS Performances 

Some preliminary results on the performances of PADAS applications, integrating 
the Distraction classifier are pointed out in this section. Figure 4 (top) shows the 
effects of the type of longitudinal automation (ACC+ with p*, ACC+ with pDec) 
compared to the control condition (no automation, No-PADAS) in the four basic 
driving conditions: 

 

Fig. 4. Total collision using different PADAS configurations: cumulative collisions for all 
subjects in the top figure; collisions occurred for each subject in every driving session 

The benefits of the ACC+ running the p* policy are evident: besides some user-
interaction issues discussed in the previous sections, the WIS, developed following an 
MDP approach, allows drivers to intervene in time on the brakes and avoid collision 
with the lead vehicle when it suddenly stopped. All in all, drivers found ACC+ with 
p* policy more cautious, in the sense that the system provided warning signals also in 
conditions where the lead vehicle braking was smoother than the sudden one and 
where they did not perceive an imminent risk of collisions. This “learning effect” of 
the system induced drivers to be prepared to brake before the sudden stop event. 
Figure 4 (bottom) also reveals drivers impairment, for each driving condition, in 
coping not only with longitudinal control but also with secondary tasks activation and 
road visibility (i.e. conditions where SA was critical, in particular without the support 
of longitudinal automation).  

Discussion and Conclusions 

This paper has presented the evaluation of the impact on driver’s behaviour, caused 
by supporting systems with high level of automation. In addition, also the system 
performances have been illustrated. We have focused on the following aspect: 
situation awareness, lateral behaviour and workload. Concerning the automatic 
system, we have developed the PADAS application following a MDP approach. 
Experiments have been carried out in a static driving simulator. 

Concerning SA, the SART questionnaires showed significant benefits between 
automated and not automated driving conditions. In the former, higher values of 
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situation awareness reveal a relevant impact of the ACC+ (indifferently p* or pDec) 
in providing the driver with a better understanding of the situation, particularly while 
dealing with concurrent tasks like monitoring the driving environment and executing 
secondary task. Effects of the ACC+ p* and pDec on lateral vehicle control have been 
also assessed using the SE indicator, revealing that the two automation solutions did 
not generate different lateral control impairments while significant different levels of 
lateral impairments have been measured among driving conditions because of the 
presence of the secondary task and low visibility conditions.  

Drivers’ feedbacks on the different NASA scales revealed an overall workload 
increase in conditions where the secondary task was active and the visibility was 
obstructed, as expected. Within these conditions, we did not found relevant workload 
differences among the two ACC+ solutions, but for most of these conditions driver 
workload was higher in the conditions without automation then with ACC+. This can 
be linked to the difficulty of performing secondary task like SURT in a harsh 
environment (low visibility conditions). So, we can conclude that high-automated 
systems, such as ACC+, did not reduce neither the impairment of drivers in 
controlling the vehicle, nor their situation awareness; moreover, driver’s workload did 
not enhance, due to  system use. 

Another very interesting aspect was the evaluation of PADAS performances, in 
particular considering its efficacy in avoiding extremely dangerous situations. From 
preliminary results presented here, considering the number of collisions occurred 
when using ACC+ with p* or pDec, compared with the situation when no supporting 
system is used, results pointed in favour of the ACC+ p* system. In fact, this solution 
proved to be the most effective in avoiding accidents, if compared to the numbers 
measured for the other automation solution and for the driving condition without 
automation. The major benefit introduced by the ACC+ p* was the cautious warning 
information and assistance strategy that allowed the driver to anticipate a potential 
sudden brake of the lead car.  

Although these good results, from internal acceptance questionnaires, drivers were 
annoyed by this cautious strategy providing AB signals (hap-tic + acoustic in 
particular) frequently along the test session. 

This research represents a feasibility study for an innovative approach to PADAS 
applications development, based on MDP and integrating a SVM driver’s distraction 
classifier. Of course, all these methods, taken separately,  are not new in literature, but 
at the best of authors’ knowledge, their use in this kind of domain and with this type 
of integrated approach is quite innovative. With respect other traditional algorithms 
used for implementing the WIS of ADAS applications (i.e. pDec), our approach is 
based on learning the “behaviour” directly from the interaction between driver and 
system (vehicle + automation) in the specific environment; therefore we regard it as 
more appropriate to provide the right information in the right time (this has been 
proved by the drastic reduction in the number of collisions). On the other hand, such a 
system needs to be refined, since users assessed it as too conservative; however, due 
to that direct interaction between human and system, we are strongly confident to tune 
appropriately this kind of PADAS. So, next steps will involve the refinement of cost 
function, a more precise definition of the parameters constituting the state of the 
MDP, new possible technique for the MDP problem solution and – last but not least – 
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a deeper investigation and integration of the distraction model into the WIS of the 
system. 

The authors would like to specially thank the ISi-PADAS consortium that has 
supported the development of this research. 
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