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Abstract. The FP7 EU project ISI-PADAS aims at conceivingiatelligent
system, called PADAS, to support drivers, whickeinénes continuously from
warning up to automatic braking in the whole londihal control of the
vehicle. However, such supporting systems can rarmae unwanted side-
effect: due to the presence of automation in tlsrdy task, less attention and
reaction are needed by the drivers to intervertegriongitudinal control of the
vehicle. Such a paper aims at investigating theceffof the level of automation
on drivers, in particular on their Situation Awaess, when the user is
supported by a specific PADAS application, integdatwith a driver's
distraction classifier.

Introduction

The FP7 EU project ISi-PADAS (Integrated Human Mbdg and Simulation to
support Human Error Risk Analysis of Partially Antomous Driver Assistance
Systems) aims at conceiving an intelligent systealled PADAS (Partially
Autonomous Driver Assistance System) which aids dnumsers to drive safely, by
providing them with pertinent and accurate inforiorain real time about the external
conditions and by acting as a co-pilot in emergesgityations. The system interacts
with the driver through a Human-Machine Interfaét\M() installed on the vehicle
using an adequate Warning and Intervention StratéyS). Such a system
intervenes continuously from warning up to automaliraking in the whole
longitudinal control of the vehicle [1]. Recent @diave identified inattention — and in
particular distraction — as the primary cause afdents [3]. The ISI-PADAS project
has developed a model, able to detect and cladsifgr's distraction, which has then
been integrated into the PADAS, in order to avaidndigate the negative effects and
make the system “smarter” and more adaptive [2].

This paper addresses the problem of evaluatingetfeets of the automation on
driver's Situation Awareness when using a PADARgnating a Distraction (DIS)
classifier.



2 Fabio Tango, Luca Minin, Raghav Aras Olivier Pietquin

The Context and the Problem Addressed

Systems like the Adaptive Cruise Control (ACC) qgartially) automate the
longitudinal driving task and thus support userthis perspective, but — on the other
way — they can cause also less attention and rddrection time from drivers,
especially in case of unexpected events. Ward fabatl ACC appeared to improve
driving safety by reducing instances of unsafe egddistance in following tasks
[5]. However, he also highlighted a relevant impant ofsituation awareness (SA)
because of a reduced attention dedicated to poisijcand slower response times to
unexpected events. In addition, other studies harewed the influence of ACC
automation on performance, workload and attentitotation, e.g. [6]. Despite of the
indubitable advantages, drivers may direct tha&rditon away from the driving task
when using ACC, creating an unsafe situation dua lwss of situation awareness.
The study of Rudin-Brown confirms such results,hwétn unexpected increase in
accidents from driver distraction due to the intéom with the secondary task [7].

The PADAS Concept

The choice to focus the attention on longitudinéidg control task derived by a
preliminary in-depth accident analysis, conductedi¢rive hypotheses about causes
of driver’s errors responsible for crashes [8]tHis context, many studies have shown
the benefits of supporting systems in reducingdmsus [2]. Therefore, the project
has developed a PADAS calleddvanced Adaptive Cruise Control” (ACC+) with
the following functionalities. In normal conditiothe system can use the “traditional”
ACC. Then when the driver acts on the brake paHak indicating the will to brake,
the AB function is able to modulate the brakingi@ctautomatically. Finally, if the
driver ignored warning and AB did not intervene d¢me brakes, EB acts
autonomously in order to minimise the effects isecthis is not avoidable anymore.

The MDP Approach

Consider a system that assists the driver by apgplgorrective controls to the
vehicle (giving the driver warning signals and mtning in the braking) so that
collisions may be avoided. When a collision is imetit, there is no doubt about what
controls to apply: a clear collision warning must ¢niven to the driver, and brakes
must be applied as hard as possible to bring tlsé¢ Vehicle to a halt as quickly as
possible. When there is a safe distance betweetwih@ehicles, it is not clear what
the optimal controls are. Should no warnings, rakimg interventions occur? It could
be, for example, that not giving a warning when tledhicle is at a certain “safe
distance” leads (eventually) to a situation whelision is unavoidable whereas a
warning leads to an avoidance of the eventual stoili Deciding what corrective
controls to exercise in order to avoid an eventodlision is essentially a problem of
“credit assignment”: suppose an outcome is a caresem of a sequence of decisions.
How do we decide what part each of decisions pilayke outcome? In other words,
the credit assignment problem calls for a systema&sociating decisions to their
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long-term outcomes. One of the most important tlesdior formulating and solving
credit assignment in sequential decision-makingbl@ros is the Markov decision
process (MDP) theory ([2] for details). In modeajjim problem as an MDP, we
contemplate a decision-maker who is required te w@écisions over a sequence of
discrete time periods. In each period, the probbecupies one ol possible states
and the decision maker is called upon to choosa fgossible alternatives. Such a
decision and the state of the problem together rohite, according to fixed
probabilitiesP, the state occupied by the problem in the nexibdelEach choice is
evaluated by an immediat®st ¢ which is a function only of the state in which the
choice is madeMarkovian Property). The immediate cost tells the decision maker
how good or bad a choice is in the short turn,(ite.immediate consequence). It can
use the immediate costs to determine the long-wesirability of a sequence of
decisions. The objective of the decision makemske such decisions thaknimize
his long-termexpected cost. The solution to a sequential decision makiraplem is

of course a sequential decision makpugicy. A policy is a function which assigns to
each state an alternative. If the decision makgglliswing the optimal policy, it is the
case that in any period, whatever be the statepiediby the problem, the decision
the policy dictates will lead to long-term expectabt that is as small as or smaller
than any other decision he could have made [15]sThe MDP approach applied to
conceiving an optimal PADAS consists of two elersentodelling the problem as an
MDP; solving the (possibly unknown) MDP.

Modelling a PADAS Target Application as an MDP

First, the state of the MDP in the collision avaida problem has to be defined. In
this problem, the decision maker is the warning amdrvention system (of the
PADAS). The relevant factors that determine if dision with the leading vehicle
can occur are: time to collision; headway; velesitof the host and leading vehicles;
accelerations of the host and leading vehiclekéemd gas pedals position; driver’s
distraction level. So, the state in the proposedAian be considered as a 10-vector.
However, the number of states of such an MDP wdnéldoo large for solving the
MDP. If each element of the state is allowed tcetakly 3 possible values (a very
conservative estimate, indeed most elements waaité ¢ontinuous values), we
would end up with31° states!

For the sake of computational tractability, we mdstermine which of these
elements containsost information relevant to collision avoidance. Witfis in mind,
the time to collisiohand driver’s distraction variables are two gooddidates.

Distraction Model as an MDP State to improve the PRAS

A distraction classifier has been developed in tB&PADAS project and
integrated into the optimal WIS for the PADAS, withe aforementioned MDP

1 defined as the time it would take for a collisioroccur if the leading and follower vehicles maimteir
current velocities, that is the distance ratedhayrtrelative speed.
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approach. The distraction model has been implerdeioléowing also in this case a

Machine Learning approach, which constitutes aeqoidmmon method to detect
human visual distraction in a non-intrusive waysdzh on the vehicle dynamic data
([9], [10]). Concerning the distraction classifideveloped by the project, a broad
explanation is outside the scope of this paper, dmme details are provided as
following (the interested reader can see [11]). plaxticular, a Support Vector

Machines based model (SVM, well-known data-miningtimds) has been selected,
since achieving the best performances [11]. Seuta up, the PADAS is conceived
as an MDP, including an SVM-distraction classifiethe states defining the MDP.

The experimental Set-up Description

The scope of this experiment was twofold. On onedhdo assess the effect of
automation on driver’s situation awareness; onatiier hand, to compare the effects
of the ACC+ solutions in reducing the risk of csiltin and on system acceptability
from a driver perspective. Therefore the followpttases have been considered:

e ACC+ with a starting (initial) MDP policy0 including a model for drivers
distraction;

e ACC+ with a MDP running* policy (that is, the optimal policy developed
by solving the MDP problem), including a model fdriver distraction
detection

» ACC+ with a policy based on decelerati@Déc policy, described in [25]);

*  Without supporting systems (reference line).

Concerning the reference polipipec, it provides the driver with the same kind of
information of thep* policy, but the approach is different. The maieadofpDec is
to give the needed acceleration for the host vehiol order to reach the same speed
of the lead vehicle within a certain distance. Thénthe value is over certain
thresholds, a corresponding warning or action @vigled [25]. This policy represents
a traditional algorithm for the implementation of Bngitudinal distance
control/warning system.

For each of the above configurations, ten partitipén the age between 21 and 45
years (M = 31.0, SD = 9.0) were asked to completediiving sessions: each
condition consisted in a car-following task on ghway road where unexpected
braking events of the leading car have been remexluHence, each of the 10
subjects performed 36 driving sessions, dividefbkaws:

e 12 with the ACC+ working with thp* policy;
e 12 with the ACC+ working with thpDec policy;
e 12 without any supporting system

Two different levels of road visibility (low, LV;igh, HV) have been reproduced,
combined with the activation of the secondary tas#t the level of automation of the
vehicle longitudinal control. LV (200m) has beetraniuced with fog effect to force
low situation awareness situations. LV conditiors ieeen compared with the HV
condition(7000m).
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The secondary task adopted is the SURT (SurrugatelvResearch Task [24]).
Drivers were asked to interact with SURT every tithe task was presented on the
lateral (right hand side) touch screen installethimn simulator cabin. A high level of
SuRT difficulty has been set: high number of distimes with a reduced time to task
completion (i.e. the SURT screen was updated ed&betonds). The secondary task
has been activated in 6 conditions out of 12 fahedriver.

SA has been measured at the end of each sessiomeéys of a self reporting
guestionnaire called SART (Situation Awarenessrigaliechnique [23]) submitted to
participants: we expected a decrease of situati@areness when scenarios are critical
(i.e. low visibility and secondary task on) and kixeel of automation is low.

The number of occurred collisions has been alsouzted, to evaluate the effects
of highly automated longitudinal control in parti@uwhile dealing with low situation
awareness conditions. Finally, in order to verifg influence of the different ACC+
system automation on performance, workload andte allocation ([8] and [9]),
additional investigations have been conducted @tifip indicators: NASA-TIx and
Steering Entropy (SE).

The experiment has been conducted on the statwingrisimulator of the
University of Modena and Reggio Emilia (sg&/w.scaner2.coin

Data Processing and Results

During the experiment, several data on drivers’dv@ur were recorded from the
simulator network at a sample rate of 20Hz (1 ¢hatit each 0.05s).

Indicators and Indexes of Performance

SA has been measured by means of the SART queatienit is a quick and easy
self-rating measurement technique [23]. As a resulte interviews provided by the
guestionnaire, 10 dimensions were derived and tsedeasure SA. For each basic
driving condition (4 in total) and for each drivimgssion (3 in total, 2 with ACC+
and 1 without) the following measures have beefyagad:

*  Number of accidents occurred, allowing the evaluation of drivers’
longitudinal performances with reference to theelewf longitudinal
automation and the scenario complexity

e Seering Entropy [28] has been computed to evaluate drivers’ immpait in
lateral control for each of the above mentionedagions. SE is a measure of
randomness in a driver’'s steering control: it igheir when drivers make
larger erratic steering movements, indicating piddip unsafe behaviour.

* Nasa-Tlx [29] has been used to analyse, in order to havgemeral
understanding of the level of cognitive and physieffort required by
drivers while coping with concurrent tasks (caldeling and secondary task
interaction).



6 Fabio Tango, Luca Minin, Raghav Aras Olivier Pietquin

Finally, participants were asked to fill up the madbive questionnaire defined by
the ISI-PADAS consortium to assess both ACC+ rugipinand ACC+ runningpDec
policies.

Results for Automation Effects on Driver's Behaviou

SART questionnaire has been submitted to each culgjer times for each of the
three automation conditions. The aim of the evédmatonducted on collected data
was to compare the average values of SART indic#ttte aggregated SART scales
between subjects for each level of automation and basic drivingditians. According
to [23] the 10-scales of the SART have been aggedg®emands on attentional
resources (D)Supply of attentional resources (S) abdderstanding of the situation

(V).

SART indicator is computed as: U-(D-S), where U,abd S are the sum of the
answers to the SART scales belonging to these gatijoas:

Average SART indicator for each automation level and driving codition

SURT ON + Vishillty Low SuRT OFF + Visibilty High SuRT ON+ Visibity Hgh  SuRT OFF + Visibiity
Low

Fig. 1. Average values of SART computed on the whole sampl

In the figure, it is shown the quantitative vamatiof situation awareness among
the driving (x-axis) and the automation conditioMariations among automation
conditions are relevant between automated (ACCd)rat-automated situations and
there is a general positive increment of SA for fttrener conditions. Moreover, it is
possible to see the effect of the driving condsiqi®uRT and visibility) on the
perceived SA: the absence of the secondary taskogncearly increases the level of
perceived situation awarenesst-Aest analysis of SART values was conducted for
each driving condition and (in pairs) between tireé automation configurations, in
order to evaluate whether there are significarfedéhces between the correspondent
SART levels. Significant differences (p < 0.05)veen average values of SARth
andwithout automation have been found for all driving cormis but the “SURT +
Visibility low” one. All in all, no significant diferences were found comparing the
average values of SART computed for the AGEZ-+and ACC+pDec.

Concerning the lateral driving behaviour, the ageraalues of steering entropy
(SE) were computed for all subjects for the twmandtion types: ACC+ witp* and
ACC+ with pDec. As anticipated, SE revealed steering impairmeloes to factors
influencing the vehicle lateral control. In thissea these factors are the interaction
with SURT and the low visibility. TheTest analysis conducted on SE values showed
that there is a significant statistical differerfpe< 0.05) in SE performances between
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driving conditions (x-axis of the next figure) feach separated automated condition.
SE significantly increased with the presence ofgbeondary task, if compared to the
conditions without the SURT (see the following figu

Steering Entropy in the four basic driving condition w.r.t, autom ation

3,00
2,50
2,00
O ACC+ Pdec
1,50
@ ACC+ Pstar
1,00
0,50
0,00

SURTOFF+  SURTON+  SURTON+  SURTOFF+
Visibiity Hgh ~ Visibilty Low  Visibility Hgh  Visibility Low

Steering Entropy

Fig. 2. SE variations in the 4 driving conditions, w.tite two kinds of automation

For each driving condition, againtd&est has been also conducted to compare the
average values of SE in the two automated conditiorhighlight potential statistical
differences. No statistical differences betweers¢healues, however, were found in
each of the driving conditions.

Finally, the automation effects on driver’s workdoare analyzed. The NASA-TIx
guestionnaire has been submitted to each partisipafter each of the last four
driving conditions for each driving session (AC@*, ACC+ pDec and without
supporting systems). The following figure shows therage values of NASA-TIx
computed for each driving condition (x-axis) anddéach automation type:

NASA-TIx average values for each driving conditions w.r t. automation
type

SURT ON + SURT OFF + SURTON+  SURTOFF+
Visibiity Low  Visibilty Hgh  Visibiity High  Visibilty Low

Fig. 3. NASA-TIx average values

In general, the level of workload perceived by drsswas higher in the conditions
where SURT was active, lower when no secondarywaskpresent and visibility was
high. Significant differences among workload levaieasured for each automation
type in the four driving conditions were not fourekcept for the “SURT OFF +
Visibility high” where participants stated thatdrig without longitudinal assistance
induced high workload. In this case, the NASA ssa#towing this pattern are
physical effort (because drivers have to modulesipeed autonomously) and effort
(physical and mental demand).

Moreover, the level of NASA-TIx was higher in theC&+ pSar conditions if
compared to ACCpDec: the NASA scale contributing to the increase &f léavel of
workload perceived by drivers is “Frustration”. s stated they were annoyed by a
continuous warning signal provided by the AC@3ar also in conditions where they
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did not perceive a risk of collision and where thegre able to modulate the speed by
themselves in case that more deceleration was deede

Results for PADAS Performances

Some preliminary results on the performances of RBR@pplications, integrating
the Distraction classifier are pointed out in tkisction. Figure 4 (top) shows the
effects of the type of longitudinal automation (A€@iith p*, ACC+ with pDec)
compared to the control condition (no automatiom-MADAS) in the four basic
driving conditions:

Number of collisions occurred for each subject i the three driving sessions

e ACC Pec

=1 ACCH PSiar
- \oPadas

| Pol. (NoPadas)
|—— ol (ACC+ PDec)
— Pol. (ACC+ Pstar)

Number of collisions

Subjects

Fig. 4. Total collision using different PADAS configuratis: cumulative collisions for all
subjects in the top figure; collisions occurreddach subject in every driving session

The benefits of the ACC+ running tip& policy are evident: besides some user-
interaction issues discussed in the previous sextihe WIS, developed following an
MDP approach, allows drivers to intervene in tinmetbe brakes and avoid collision
with the lead vehicle when it suddenly stopped.iAlbll, drivers found ACC+ with
p* policy more cautious, in the sense that the sygvided warning signals also in
conditions where the lead vehicle braking was simEothan the sudden one and
where they did not perceive an imminent risk ofismins. This “learning effect” of
the system induced drivers to be prepared to blafere the sudden stop event.
Figure 4 (bottom) also reveals drivers impairmdot, each driving condition, in
coping not only with longitudinal control but alsgth secondary tasks activation and
road visibility (i.e. conditions where SA was atdl, in particular without the support
of longitudinal automation).

Discussion and Conclusions

This paper has presented the evaluation of thedtrgradriver’s behaviour, caused
by supporting systems with high level of automatitm addition, also the system
performances have been illustrated. We have focumsedhe following aspect:
situation awareness, lateral behaviour and worklo@dncerning the automatic
system, we have developed the PADAS applicatiolovieghg a MDP approach.
Experiments have been carried out in a static migigimulator.

Concerning SA, the SART questionnaires showed fitgmt benefits between
automated and not automated driving conditionsthie former, higher values of
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situation awareness reveal a relevant impact ofAGE+ (indifferentlyp* or pDec)

in providing the driver with a better understandofghe situation, particularly while
dealing with concurrent tasks like monitoring thévithg environment and executing
secondary task. Effects of the AC@#% andpDec on lateral vehicle control have been
also assessed using the SE indicator, revealinghbawo automation solutions did
not generate different lateral control impairmentsle significant different levels of
lateral impairments have been measured among driwanditions because of the
presence of the secondary task and low visibilityditions.

Drivers’ feedbacks on the different NASA scaleseaed an overall workload
increase in conditions where the secondary task agsise and the visibility was
obstructed, as expected. Within these conditiomsdia not found relevant workload
differences among the two ACC+ solutions, but farsimof these conditions driver
workload was higher in the conditions without austion then with ACC+. This can
be linked to the difficulty of performing secondatgsk like SURT in a harsh
environment (low visibility conditions). So, we cawonclude that high-automated
systems, such as ACC+, did not reduce neither thpairment of drivers in
controlling the vehicle, nor their situation awages; moreover, driver’s workload did
not enhance, due to system use.

Another very interesting aspect was the evaluatib®’ADAS performances, in
particular considering its efficacy in avoiding eethely dangerous situations. From
preliminary results presented here, considering rthmber of collisions occurred
when using ACC+ withp* or pDec, compared with the situation when no supporting
system is used, results pointed in favour of theCA@* system. In fact, this solution
proved to be the most effective in avoiding acciderf compared to the numbers
measured for the other automation solution andttier driving condition without
automation. The major benefit introduced by the AQ® was the cautious warning
information and assistance strategy that alloweddtiver to anticipate a potential
sudden brake of the lead car.

Although these good results, from internal acceggaquestionnaires, drivers were
annoyed by this cautious strategy providing AB algn(hap-tic + acoustic in
particular) frequently along the test session.

This research represents a feasibility study fomawvative approach to PADAS
applications development, based on MDP and integrat SVM driver’s distraction
classifier. Of course, all these methods, takearsdply, are not new in literature, but
at the best of authors’ knowledge, their use is #ind of domain and with this type
of integrated approach is quite innovative. Witbpect other traditional algorithms
used for implementing the WIS of ADAS applicatiofi®. pDec), our approach is
based on learning the “behaviour” directly from theeraction between driver and
system (vehicle + automation) in the specific emviment; therefore we regard it as
more appropriate to provide the right informationthe right time (this has been
proved by the drastic reduction in the number diisions). On the other hand, such a
system needs to be refined, since users assessedoid conservative; however, due
to that direct interaction between human and systesrare strongly confident to tune
appropriately this kind of PADAS. So, next stepd imvolve the refinement of cost
function, a more precise definition of the parameteonstituting the state of the
MDP, new possible technique for the MDP problenusoh and — last but not least —
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a deeper investigation and integration of the dtdion model into the WIS of the
system.

The authors would like to specially thank the IBEBAS consortium that has
supported the development of this research.
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