

Fast Imaging of Void Defects in Conductive Half-Space

T. Henriksson, M. Lambert, D. Lesselier

DRE/L2S (UMR 8506 CNRS-SUPELEC-Univ. Paris Sud 11)
91192 Gif-sur-Yvette cedex - France

Outline

- Introduction
- Origin
- Eddy-Current (Diffusive) MUSIC Imaging
- Numerical Validation of Asymptotics
- MUSIC Images and Discussion
- Recapitulation
- Future works

Introduction

Main motivations

- Eddy-Current (EC) Non-Destructive Testing (NDT) of metal workpieces of interest in wide range of applications
- Position & some shape of defect (with distinction between volumetric and crack-like) of real relevance
- Computation-heavy imaging via iterative optimization
- Quicker non-iterative method, even at loss of accuracy

Present-day approach

- MUSIC (MUltiple SIgnal Classification) alg. for detection of small voids
- To our knowledge, first employed in low-frequency EC-NDT

Question investigated herein

What to infer from Multi-Static Magnetic Response matrices for diffusive-like wavefields & eddy-currents?

Origin?

General asymptotic framework & 3D imaging methods

- Ammari & Kang Reconstruction of Small Inclusions from Boundary Measurements Springer (04) and following books
- Ammari, Iakovleva, Lesselier, Perrusson MUSIC-type electromagnetic imaging of a collection of small 3-D bounded inclusions SIAM J. Scientific Comput. (07)

•

- Iakovleva, Gdoura, Lesselier, Perrusson Multi-static response matrix of a 3-D inclusion in half-space and MUSIC imaging IEEE Trans. Antennas Propagat. (07)
- Iakovleva, Lesselier On the back-propagation of singular fields and the multi-static response matrix *IEEE Trans. Antennas Propagat*. (08)
- Henriksson, Lambert, Lesselier MUSIC-type algorithm for eddycurrent non-destructive evaluation of small defects in metal plates ENDE (XIV) IOS (11)

Eddy-Current (Diffusive) Imaging (1)

Asymptotics (valid for voids small vs. skin depth) of secondary H field, for P spherical voids centered at x_i , bobbin centered at r_n :

$$\mathbf{H}_{s}^{(n)}(\mathbf{r}) = \mathbf{H}^{(n)}(\mathbf{r}) - \mathbf{H}_{0}^{(n)}(\mathbf{r}) = -\sum_{j=1}^{P} \left[i\omega \epsilon_{2} \mathbf{G}_{r}^{me}(\mathbf{r}, \mathbf{x}_{j}) \cdot \mathbf{M}_{j} \left(\frac{\epsilon_{j}}{\epsilon_{2}}, V_{j} \right) \mathbf{E}_{0}^{(n)}(\mathbf{x}_{j}) \right]$$

Generalized polarization tensors:

$$\mathbf{M}_{j}\left(\frac{\epsilon_{j}}{\epsilon_{2}}, V_{j}\right) = \frac{3(\epsilon_{j} - \epsilon_{2})}{2\epsilon_{2} + \epsilon_{j}} |V_{j}| \mathbf{I}, \text{ where } |V_{j}| = \frac{4\pi a_{j}^{3}}{3}$$

 $\begin{aligned}
\epsilon_2 &= \epsilon_0 + i \frac{\sigma_2}{\omega} \\
\epsilon_j &= \epsilon_0
\end{aligned}$

 δ_{s} skin-depth

Bobbin radius small enough: dyadic Green's function $G_t^{em}(r_n, x_i) \approx \text{primary } E_0^{(n)}(x_i)$

Eddy-Current (Diffusive) Imaging (2)

MUSIC

Singular Value Decomposition ← Multistatic Response matrix A ← Secondary magnetic field (*M* receiver & *N* transmit array elements)

$$G_r^{me}(\mathbf{x}_j) = k^2 [\mathbf{G}_r^{me}(\mathbf{r}_1, \mathbf{x}_j) \cdot \hat{\mathbf{z}}, \dots, \mathbf{G}_r^{me}(\mathbf{r}_M, \mathbf{x}_j) \cdot \hat{\mathbf{z}}]^t$$

$$G_t^{em}(\mathbf{x}_j) = k^2 [\mathbf{G}_t^{em}(\mathbf{x}_j, \mathbf{r}_1) \cdot \hat{\mathbf{z}}, \dots, \mathbf{G}_t^{em}(\mathbf{x}_j, \mathbf{r}_N) \cdot \hat{\mathbf{z}}]^t$$

$$\mathbf{A} = \sum_{i=1}^P G_r^{me}(\mathbf{x}_j) \mathbf{M}_j G_t^{em}(\mathbf{x}_j) = \mathbf{U} \mathbf{\Sigma} \mathbf{V}^*$$

Number of non-zero singular values for j^{th} defect \leftarrow rank of matrices $G_r^{me}(x_i)$ and $G_t^{em}(x_i)$

⇒ Image function W(x) ← orthogonal projectors onto noise subspaces associated to left & right signal subspaces U_s and V_s

$$\mathbf{W}(\mathbf{x}) = \frac{1}{||\mathbf{P}_r(G_r^{me}(\mathbf{x}) \cdot \mathbf{a})||^2} + \frac{1}{||\mathbf{P}_t(G_t^{em}(\mathbf{x}) \cdot \mathbf{a})||^2} \qquad \mathbf{P}_r = (\mathbf{I} - \mathbf{U}_s \mathbf{U}_s^*)$$

$$\mathbf{P}_t = (\mathbf{I} - \mathbf{V}_s \mathbf{V}_s^*)$$

 $\mathbf{a} = (1, 1, 1)$

Numerical Validation of Asymptotic Signals

Impedance variation CIVA (**black**) & *z*-polar. **asymptotic H-field** with primary \mathbf{E}_0 using \mathbf{G}_t^{em} (**red**), along 15 (3 × 5) receiving bobbins when exciting from bobin (a) 1, (b) 2, (c) 3, (d) 8, (e) 9, (f) 10

MUSIC Imaging from Noisy Asymptotic Data (1)

Singular value distribution & MUSIC images with full 7 x 7 array set-up $[\delta_s/2$ separation between each center, radii $\delta_s/6.5$]

MUSIC Imaging from Noisy Asymptotic Data (2)

Singular value distribution & MUSIC images with full 5 x 5 array set-up $[3\delta_s/2 \text{ separation between each center, radii } \delta_s/6.5]$

MUSIC Imaging from Noiseless & Noisy CIVA Data

Singular value distribution & MUSIC images with full 5 x 5 array set-up [$3\delta_s/2$ separation between each center, radii $\delta_s/6.5$]

Changing Size & Density of Array (1)

$\delta_{\rm S} = 1.58 \; {\rm mm}$

- Each bobbin: inner & outer radii $b_n = \delta_S/6.5$, $c_n = \delta_S/6$, thickness $H = \delta_S/15.8$, lift-off $\delta_S/15.8$
- Total number of bobbins M = 16, 25, 36 & 49 \rightarrow array 4 x 4 to 7 x 7
- (Δx , Δy) separation between bobbin centers varied from $2\delta_s/7$ to $2\delta_s$

Changing Size & Density of Array (2)

Changing Array Topology (1)

Changing Array Topology (2)

One spherical void (radius $\delta_s/10)$ at depth $4\delta_s/5$

10 dB noisy data

5 x 5 array, which is

Recap

- Asymptotic secondary magnetic field OK as long as bobbin size and radius of defect small vs. skin-depth of conductive plate.
- Successful MUSIC images achieved for one/two spherical voids with both asymptotic and CIVA data.
- A 5 x 5 uniform bobbin array with separation $\approx 2\delta_s/3$ suffices in most cases for noise up to 10 dB. Density and size to be matched.
- Lost information due to smaller number of bobbins also compensated by increased array area (up to certain point).
- A tighly packed array might improve robustness against noise a bit.
- Image isolevels (here 70% of max) adjustable as well (not shown here) yet not so essential.
- Singular values sensitive to noise level of data.

Future Works

- Managing multi-frequency datasets (e.g., 3 sets in EC-NDT)
 Use of another, more appropriate imaging functional
 Improve robustness vs. noise
- Characterization of defects via retrieval of Polarization Tensors
 Polarization Tensors (PT) retrieved for ellipsoidal equivalents
 Unless higher order of PT, no separation shape/electrical parameters
- Extension to crack-like (planar) defects
 Need of simple direct model, e.g., Pavo & Lesselier, *T-Mag* 06.
 Need of sound imaging theory, e.g., like 3-D counterpart of

Park, Lesselier MUSIC-type imaging of a thin penetrable inclusion from its multi-static response matrix *Inverse Problems* (09)

Park, Lesselier Electromagnetic MUSIC-type imaging of perfectly conducting, arc-like cracks at single frequency *J. Comput. Phys.* (09)