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Robust tube-based constrained predictive control via zonotopic
set-membership estimation

V.T.H. Le, C. Stoica, D. Dumur, T. Alamo and E.F. Camacho

Abstract— This paper proposes an approach to deal with the
problem of robust output feedback model predictive control
for linear discrete-time systems subject to state and input con-
straints, in the presence of unknown but bounded disturbances
and measurement noises. The estimation of the states is built
using a zonotopic set-membership estimation. This set is time-
decreasing and is computed off-line as the solution of a Linear
Matrix Inequality optimization problem. The control law is
designed by using tube-based model predictive control such
that the closed-loop stability is guaranteed and the state and
input constraints are fulfilled. The proposed methodology is
illustrated through numerical simulations.

I. INTRODUCTION

Model Predictive Control (MPC) can be considered today
as a mature domain, both from the research and the industrial
applications points of view. This is mainly due to its ability to
handle hard constraints, which always appear when dealing
with real plants [1]. MPC is based on the receding horizon
strategy: an optimal control problem is solved at each time
instant to find a sequence of control input and then only the
first part of the control sequence is applied. The robustness
of MPC in the presence of uncertainties and disturbances is
studied by many authors [2], [3], [4], [5], [6]. The simplest
ways to enhance robustness are based on the deterministic
model predictive control by ignoring the disturbance over
the prediction horizon [2], [3]. These methods require full
knowledge of the state which usually cannot be reached
due to measurement noises acting on real systems. In this
case, the Luenberger observer and the Kalman filter can
be used to estimate the state of the system [4], [6], [7].
The Kalman filter [8] is based on probabilistic assumptions
about the perturbations and the noises which sometimes are
difficult to validate. In [4] the authors built a Luenberger
observer that contains a correction term computed by a gain
and the difference between the actual measurement and the
actual state estimation. Then a tube-based model predictive
control is designed, replacing in the optimization problem
the true states by the nominal estimated states. The state
estimation error lies in a time varying compact set which
converges to the minimal robust positive invariant set. The
design of this gain plays an important role in the observer
(and thus in the control performance) because it determines
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the convergence speed and also the size of the minimal robust
positive invariant set.

When dealing with bounded disturbances and measure-
ment noises or uncertain system, a substitute for Luenberger
observer and Kalman filter is to use a set-membership esti-
mation. The set-membership estimation has been developed
in the last 40 years [9], [10]. This method relies on the
description of uncertainties belonging to bounded compact
sets. The state estimation set is a compact set containing
all possible states of the system that are consistent with the
uncertain model and the measurement noise. This set is built
using some simple geometrical forms such as polytopes [11],
parallelotopes [12] [5], ellipsoids [9], [10] or zonotopes [13],
[14]. The set-membership estimation is proved to be robust
with respect to disturbances, measurement noises and even
in the presence of model uncertainties, which Luenberger
observer and Kalman filter cannot cover. On the contrary the
computation burden is more important for set-membership
estimation than for the Luenberger observer or the Kalman
filter. The set-membership estimation has been proposed also
for output feedback MPC but the research remains limited
due to its complexity [5], [15].

This paper considers the problem of robust output feed-
back MPC for constrained linear discrete-time systems sub-
ject to state disturbance and measurement noise. The main
contribution of this paper is a combination between the
set-membership estimation and the robust tube-based model
predictive control. The set-membership estimation is used
here in the perspective of future application of tube model
predictive control for systems with interval uncertainties.
When the set-membership estimation is used, a trade-off
between the precision and the computation burden has to
be achieved. In a linear formulation, polytopes can be used
for an exact representation of the domains of the system
state. However efficient results may be obtained only for
a reasonable number of vertices of the polytopes [11]. To
overcome this drawback, the representation by ellipsoids has
been used in the literature, sometimes with a significant loss
of performance [9], [10]. In this paper, the zonotopic form is
chosen as a compromise for the set-membership estimation
due to its better precision in comparison with the ellipsoidal
form and less complexity compared to polytopic form. The
zonotopic sets are computed off-line and the size of the
zonotope is time decreasing. If the center of the zonotope
can be stabilizable to the origin then the system has the
propriety of input-to-state stability. Based on this idea, a tube
predictive control is proposed to steer the nominal system
to the origin, so that the real system state converges to a



neighborhood of the origin in a similar way as in [3], [4].
The paper is organized as follows. Section II presents

useful mathematical notations and basic definitions. Section
III focuses on the problem formulation. In section IV, the
zonotopic set-membership estimation of a linear discrete-
time system is defined. The next section presents the robust
tube-based model predictive control and its properties. An
example is proposed in the Section VI in order to show
the advantages of the developed methodology. Finally, some
concluding remarks and future work are presented.

II. MATHEMATICAL NOTATIONS AND BASIC DEFINITIONS

An interval [a; b] is defined as the set {x : a ≤ x ≤ b}.
The unitary interval is B = [-1;1].

A box ([a1; b1], ..., [an; bn])T is an interval vector. A
unitary box in Rm, denoted Bm, is a box composed by m
unitary intervals.

The Minkowski sum and Pontryagin difference of two sets
X and Y are defined by X ⊕ Y = {x+ y : x ∈ X, y ∈ Y }
and X 	 Y = {z|z ⊕ Y ⊆ X} respectively.

A polytope Ω is the convex hull of its vertices
Ω = Co{v1; v2; ...; vn}. This means that if v ∈ Ω then
v =

∑n
i=1 αivi with

∑n
i=1 αi = 1 and αi ≥ 0 for

i = 1, ..., n.
Zonotopes are a special class of convex polytopes. A

m-zonotope in Rn can be defined as the linear image of
a m-dimensional hypercube in Rn. Given a vector p ∈ Rn
and a matrix H ∈ Rn×m, a m-zonotope is the set:
p⊕HBm = {p+Hz, z ∈ Bm}. This is the Minkowski sum
of the m-segments defined by m columns of matrix H in Rn.

The P -radius of a zonotope X = p⊕HBm is defined as
d(x) = max(‖x − p‖2P ), x ∈ X . This notion is related to
the ellipsoid (x− p)TP (x− p) ≤ 1.

A strip X is defined as the set {x ∈ Rn : |cTx− d| ≤ σ}
with c ∈ Rn, d, σ ∈ R.

A matrix M = MT ∈ Rn×n is called a positive-
definite matrix (respectively negative-definite matrix), de-
noted M � 0 (M � 0), if zTMz ≥ 0 (zTMz ≤ 0) for
all non-zero vectors z with real entries (z ∈ Rn).

A set X ⊂ Rn is called a C-set if X is compact, convex
and contains the origin. This is a proper set if its interior is
not empty.

Property 1: [13] Given two centered zonotopes
Z1 = H1Bm1 ∈ Rn and Z2 = H2Bm2 ∈ Rn. The
Minkowski sum of two zonotopes is also a zonotope defined
by Z = Z1 ⊕ Z2 =

[
H1 H2

]
Bm1+m2 .

Property 2: [13] The image of a centered zonotope
Z1 = H1Bm1 ∈ Rn by a linear application K can be com-
puted by a standard matrix product K · Z1 = (K ·H1)Bm1 .

Property 3: (Zonotope reduction) [13], [14] Given the
zonotope Z = p ⊕ HBm ∈ Rn and the integer s with
n < s < m, denote Ĥ the matrix resulting from the reorder-
ing of the columns of the matrix H in decreasing order of Eu-
clidean norm (Ĥ =

[
ĥ1...ĥi...ĥm

]
with ‖ĥi‖2 ≥ ‖ĥi+1‖2).

Then Z ⊆ p⊕
[
ĤT Q

]
Bs where ĤT is obtained from the

first s−n columns of matrix Ĥ and Q ∈ Rn×n is a diagonal

matrix that satisfies Qii =
∑m
j=s−n+1 |Ĥij |, with i ∈ N[1,n]

and N[1,n] = {1, 2, ..., n}.

III. PROBLEM FORMULATION

Consider the following linear discrete-time invariant sys-
tem of the form:{

xk+1 = Axk +Buk + Fωk
yk = cTxk + σvk

(1)

where xk ∈ Rn is the state of the system, yk ∈ R is the
measured output at sample time k. The vector ωk ∈ Rnω

represents the state perturbation vector and vk ∈ R is the
measurement perturbation (noise, offset, etc.). It is assumed
that the uncertainties and the initial state are bounded by
zonotopes: ωk ∈ W, vk ∈ V and x0 ∈ X0 that contain the
origin. W and V are assumed to be unitary boxes.

Consider the system (1) subject to constraints on state and
input: xk ∈ X , uk ∈ U , where X and U are two compact
and convex sets containing the origin as an interior point. It
is assumed that system (1) is controllable and observable.

With all these assumptions, it is clear that the state
vector is not exactly known at each sampling time. A set-
membership estimation is further used in order to find the
zonotope containing the true state at a given moment. The
size of the zonotope is decreasing at each sampling time,
leading to a more accurate estimation. Using the estimated
zonotope of the true state, a tube-based model predictive
control is then developed in order to stabilize the considered
system (subject to bounded disturbances, bounded noises and
constraints). As the state is known to belong to a zonotope
with a given center and radius, it is convenient to control the
center of the zonotope in order to satisfy the stability of the
considered system.

IV. GUARANTEED STATE ESTIMATION

Definition 1: Given the system (1) without any control and
with a measured output yk, the consistent state set at time k
is defined as Xyk

= {xk ∈ Rn : |cTxk − yk| ≤ σ}.
Definition 2: Consider the system (1). The exact uncertain

state set Xk is equal to the set of states that are consistent
with the measured output and the initial state set X0:
Xk = (AXk−1 ⊕ FW ) ∩Xyk

, for k ≥ 1.
Remark: The exact computation of this set is difficult. In

order to reduce the complexity of the computation, these sets
are bounded by mean of conservative outer bounds. Let us
consider that an outer bound of the exact uncertain state set
denoted X̂k−1 is available at time instant k−1. Suppose also
that a measured output yk is obtained at time instant k. Under
these assumptions, an outer bound of the exact uncertain state
set can be estimated using the following algorithm.

Algorithm 1
Step 1: (Prediction step) Given the system (1), compute a
zonotope X̄k that offers a bound for the uncertain trajectory
of the system (X̄k = AX̂k−1 ⊕ FW ).
Step 2: (Measurement) Compute the consistent state set
Xyk

by using the measurement. According to the assump-
tion on vk this set can be represented by a strip as



{x ∈ Rn : |cTx− yk| ≤ σ}.
Step 3: (Correction step) In order to find the state estimation
set, compute an outer approximation X̂k of the intersection
between Xyk

and X̄k.
The proposed algorithm is similar to the Kalman filter: the

first step is a prediction step, while the second and third steps
constitute a correction step. To obtain a zonotope bounding
the uncertain trajectory of the system, Properties 1 and 2 are
used. The complexity of this zonotope is limited by using
Property 3. To compute the intersection set of step 3 an
optimization problem will be detailed. As X̄k is a zonotope
and Xyk

is a strip, it is convenient to obtain an outer bound
of the intersection of a zonotope and a strip.

The next property provides a family of zonotopes (param-
eterized by the vector λ) that contains the intersection of a
zonotope and a strip.

Property 4: [14] Given the zonotope X = p⊕HBr ⊂ Rn,
the strip S = {x ∈ Rn : |cTx− d| ≤ σ} and the vector λ ∈
Rn, define a vector p̂(λ) = p+λ(d−cT p) ∈ Rn and a matrix
Ĥ(λ) = [(I − λcT )H σλ] ∈ Rn×(m+1). Then the following
expression holds X ∩ S ⊆ X̂(λ) = p̂(λ)⊕ Ĥ(λ)Br+1.

Proof:
Supposing an element x ∈ X∩S, on one hand this means

that x ∈ X = p⊕HBr. Using the definition of a m-zonotope
implies that there exists a vector z ∈ Br such that

x = p+Hz (2)

Adding and subtracting λcTHz to the previous equality leads
to the following expression:

x = p+ λcTHz + (I − λcT )Hz (3)

On the other hand, from x ∈ X∩S it is inferred that x ∈ S =
{x ∈ Rn : |cTx − d| ≤ σ}. Thus, there exists ω ∈ [−1; 1]
such that cTx − d = σω. Taking into account the form of
the vector x given by (2) leads to cT (p + Hz) − d = σω,
which is equivalent to cTHz = d− cT p+ σω. Substituting
cTHz in equation (3), the following expression is obtained:

x = p+ λ(d− cT p+ σω) + (I − λcT )Hz

= p+ λ(d− cT p) + λσω + (I − λcT )Hz
(4)

After simple computations and using the notation defined in
Property 4, the following form is obtained:

x = p̂(λ) +
[
(I − λcT )H σλ

] [z
ω

]
= p̂(λ)⊕ Ĥ(λ)

[
z
ω

]
(5)

and the following inclusion holds:

x = p̂(λ)⊕ Ĥ(λ)
[
z
ω

]
∈ p̂(λ)⊕ Ĥ(λ)Br+1 = X̂(λ). (6)

�

In order to choose λ, two approaches were presented in [14]:

1) Minimizing the segments of the zonotope offers a fast
computation but with a loss of performance for the
estimation;

2) Minimizing the volume of the intersection leads to
more accurate results, but at each sample time an
optimization problem must be solved.

In this section, an approach that offers both good per-
formance and a fast computation time is proposed. This
corresponds in fact to a new method used during the correc-
tion step of the algorithm proposed in Section 3. A different
criterion is presented to compute the vector λ in order to
overcome the drawbacks of the two mentioned methods.

Suppose an outer approximation of state set X̂k = p⊕HBr
at the time instant k and the measured output d = yk+1 at
the instant k + 1. The predicted state set at the next instant
X̄k+1 can be computed using (1), Property 1 and Property 2:

X̄k+1 = Ap⊕
[
AH F

]
Br+nω (7)

The results stated by Property 4 allow the computation of an
outer approximation of the intersection (exact estimation set)
between the predicted state set and the strip (which represents
the measured output):

X̂(λ) = p̂(λ)⊕ Ĥ(λ)Br+nω+1 (8)

with p̂(λ) = Ap+ λ(d− cTAp)
and Ĥ(λ) =

[
(I − λcT )

[
AH F

]
σλ
]
.

In order to compute the vector λ, the approach considered
in this paper is the following: compute a symmetric definite
positive matrix P and a vector λ such that at each sample
time, the P -radius of this zonotopic state estimation set is
decreased. This means that the zonotopic state estimation set
is contracted in time. As F (included in Ĥk+1(λ)) represents
a fixed part of the zonotope which can not be decreased
at each iteration, it is allowed to exclude F from the last
condition. This condition can be expressed in a mathematical
formulation as follows:

max
z̃,η

(‖H̃
[
z̃
η

]
‖2P ) ≤ max

z
(β‖Hz‖2P ) + σ2 (9)

with z̃, z ∈ Br, η ∈ B1, β ∈ [0, 1) and
H̃ =

[
(I − λcT )AH σλ

]
. This can be rewritten as:

max
z̃,η

(‖H̃
[
z̃
η

]
‖2P )−max

z
(β‖Hz‖2P )− σ2 ≤ 0 (10)

If the following expression is true then the expression (10)
is also true:

max
z̃,η

(‖H̃
[
z̃
η

]
‖2P − β‖Hz̃‖2P )− σ2 ≤ 0 (11)

Using the definition η ∈ B1 so that ‖η‖∞ ≤ 1, the
following expression holds σ2(1− η2) ≥ 0. Adding this term
to the left hand side of (11) leads to:

max
z̃,η

(‖H̃
[
z̃
η

]
‖2P − β‖Hz̃‖2P )− σ2 + σ2(1− η2) ≤ 0 (12)

or to a more compact form:[
z̃
η

]T
H̃TPH̃

[
z̃
η

]
− βz̃HTPHz̃ − σ2η ≤ 0, ∀

[
z̃
η

]
(13)



with H̃ =
[
(I − λcT )AH σλ

]
as defined before. Denoting

γ = Hz̃ then the inequality (13) can be written in the matrix
formulation:[

γ
η

]T [
A11 A12

∗ A22

] [
γ
η

]
≤ 0, ∀

[
γ
η

]
6= 0 (14)

with ’*’ denoting the terms required for the symmetry of
the matrix and the following additional notations: A11 = ((I − λcT )A)TP ((I − λcT )A)− βP

A12 = ((I − λcT )A)TPσλ
A22 = σ2λTPλ− σ2

(15)

Using the definition of a positive-definite matrix allows to
rewrite (14) as: [

A11 A12

∗ A22

]
� 0 (16)

which is further equivalent to:[
−A11 −A12

∗ −A22

]
� 0 (17)

Using the explicit notations (15) and doing some manipula-
tions in (17) a BMI (Bilinear Matrix Inequality) is derived:[

βP 0
∗ σ2

]
−

−
[
(AT −AT cλT )P

λTPσ

]
P−1

[
(AT −AT cλT )P

λTPσ

]T
� 0

(18)

Using the Schur complement [16], it is equivalent to the
following BMI:βP 0 (AT −AT cλT )P

∗ σ2 λTPσ
∗ ∗ P

 � 0 (19)

with β, P, λ as decision variables.
Denote the P -radius of the state estimation set at instant

k as dk(x) = max(‖x − pk‖2P ) where x ∈ X̂k. Then the
condition (9) can be written as dk+1(x) ≤ βdk(x) + σ2. At
infinity, this expression is equivalent to:

d∞(x) = βd∞(x) + σ2 (20)

leading to

d∞(x) =
σ2

1− β
(21)

Let us consider an ellipsoid E = {x : xTPx ≤ σ2

1−β } which
is equivalent to E = {x : xT (1−β)P

σ2 x ≤ 1}. In order to
minimize the radius (L∞) of the zonotope, the ellipsoid of
smallest diameter must be found [16]. The following EVP
(eigenvalue problem) has to be solved to find the values of
P = PT ∈ Rn×n and λ ∈ Rn.
Algorithm 2
Find the smallest value of β ∈ [0, 1) using the bisection al-
gorithm [17] such that the following optimization is feasible:

max
τ,P,Y

τ

subject to the LMIs
(1−β)P
σ2 � τI, τ ≥ 0βP 0 ATP −AT cY T
∗ σ2 Y Tσ
∗ ∗ P

 � 0
(22)

with Y = Pλ.
Remark: Using this algorithm, the size of the state estima-

tion set is decreased in time. Denote X̂∞ = p∞ ⊕ H∞Bq
where q is chosen in accordance with the dimension of matrix
H∞ the state estimation set at infinity. If a control law is
used to steer the center of the zonotopic estimation set to
the origin then the state system is steered to the zonotope
H∞B

q containing the origin. The system is stable in the
sense of input-to-state stability.

V. TUBE-BASED OUTPUT FEEDBACK MPC DESIGN

The output feedback MPC controller designed has the
form uk = Kx̂k + ck [3], [4], [18]. Considering x̂k as the
center of the zonotopic estimation set at instant k and using
the Property 4 and (8), the following state equation can be
obtained:

x̂k+1 = Ax̂k +Buk + λ(yk+1 − cT (Ax̂k +Buk)) (23)

Using (1) and doing some manipulations, the following
expression is obtained:

x̂k+1 = Ax̂k +Buk + ωcok (24)

with ωcok = λ(cTA(xk − x̂k) + cTFωk + σvk+1). Denoting
Sek = X̂k 	 pk, the input disturbance ωcok is bounded by
Wco
k = λcTASek ⊕ λcTW ⊕ λV . Note that for simplicity

reason the same notations as in [4] have been used. Con-
sidering now the nominal system which is not affected by
disturbances:

x̄k+1 = Ax̄k +Būk (25)

To counteract the disturbances, the trajectory is desired to
lie close to the nominal trajectory. If the nominal system is
steered to the origin then the center of the zonotopic state
estimation is bounded by a compact set and so is the real
state of the system. This can be done by using the control u
defined as:

u = ū+K(x̂− x̄) (26)

where ū is the control law applied to the nominal system
(25). The error between the estimation state and the nom-
inal state ek = x̂k − x̄k satisfies the difference equation:
ek+1 = Akek + wcok , Ak = A + BK. The matrix K is
chosen such that Ak is stable (ρ(Ak) < 1). Consequently,
if at time k, ek lies in the set Scok , then ek+1 lies in the
set Scok+1 = AkS

co
k ⊕Wco

k . Using the vector λ, the size of
Sek is decreased in time and also the size of Scok . These sets
converge respectively to Se∞ and Sco∞. Define Sk = Sek⊕Scok ,
then Sk tends to S∞ = Se∞ ⊕ Sco∞.

The robust tube MPC can be summarized as follows. At
time k a state estimation set is computed and a nominal



optimal control problem is solved on-line. Define the cost
function for the nominal system as:

VN (x̄, ū) = Vf (x̄N ) +
N−1∑
i=0

l(x̄i, ūi) (27)

where N is the prediction horizon, ū = {ū0, ..., ūN−1},
x̄i+1 = Ax̄i + Būi. If the current time is k, x̄i and ūi are
the predicted state and control at time k + i. The stage
cost function and the terminal cost function are defined by:
l(x, u) = 0.5(xTQx + uTRu), Vf (x) = 0.5xTPfx where
Pf , Q, R are positive definite matrices. With this notations,
the time varying constraints at current time k are: ūi ∈ Ūk+i, i ∈ N[0,N−1]

x̄i ∈ X̄k+i, i ∈ N[0,N−1]

x̄N ∈ X̄f

(28)

with Ūk+i = U 	 KScok+i, X̄k+i = X 	 Sk+i. To ensure
the feasibility and stability of this control law the following
conditions are assumed [4].
Assumption 1: Consider S0 = Sco0 ⊕Se0 ⊂ X and KSco0 ⊂ U .
Assumption 2: X̄f is a proper C-set, is positively invariant
for x̄k+1 = Akx̄k and satisfies X̄f ⊆ X̄N and KX̄f ⊆ ŪN .
Assumption 3: Vf (.) is a local control Lyapunov function
for x̄k+1 = Akx̄k for all x̄ ∈ X̄f . There exist constant c1,
c2 > 0 such that c1|x̄|2 ≤ Vf (x̄) ≤ c2|x̄|2 and Vf (Akx̄) +
l(x̄,Kx̄) ≤ Vf (x̄). This means that the Lyapunov function
is decreased at next sampling time.

Denote the set of admissible control sequences at instant
k, with the nominal state x̄:

UN (x̄, k) = {ūi : ūi ∈ Ūk+i, x̄i ∈ X̄k+i, x̄N ∈ X̄f ,

i ∈ N[0,N−1]} (29)

The optimal control problem solved on-line is:

V ∗N (x̂, k) = min
x̄,ū
{VN (x̄, ū) : ū ∈ UN (x̄, k), x̂ ∈ x̄⊕ Scok }

(30)
Consider:

x̄∗(x̂, k), ū∗(x̂, k) = argmin
x̄,ū
{VN (x̄, ū) : ū ∈ UN (x̄),

x̂ ∈ x̄⊕ Scok } (31)

then the control law applied to the system is obtained:

κN (x̂, k) = û∗(0, x̂, k) +K(x̂k − x̄∗(x̂, k)) (32)

with û∗(0, x̂, k) the first element of the sequence ū∗(x̂, k).
Using this control law it can be proved that (x, x̂) is

robustly steered to S∞ × Sco∞ exponentially fast satisfying
all constraints [4].

VI. ILLUSTRATIVE EXAMPLE

Consider a second-order system:

xk+1 =
[
1 1.1
0 1

]
xk +

[
1
1

]
uk + ωk

yk =
[
−2 1

]
xk + vk

with the disturbances (ω, v) ∈ W × V where W = {ω ∈
R2 : ‖ω‖∞ ≤ 0.1} and V = {v ∈ R : |v| ≤ 0.05}. The state

and control constraints are (x, u) ∈ X×U where X = {x ∈
R}2 : x1 ∈ [−50, 3], x2 ∈ [−50, 3]} and U = {u ∈ R : |u| ≤
9}. The feedback control matrix is K =

[
−0.618 −1

]
.

The weighting matrices in the cost function are Q = I ,
R = 0.01. The terminal cost Vf (x̄) is the value function
x̄TPfx for the unconstrained optimal control problem for
the nominal system x̄k+1 = Ax̄k + Būk and ūk = Kf x̄k
is the associated LQR control. The initial sets Se0 , Sco0 are
computed using the result in [19]. The terminal constraint
set X̄f (the black set depicted in Figure 3) is the maximal
positively invariant set for the system x̄k+1 = (A+BKf )x̄k
under the tighter constraints X̄N = X 	 SN and ŪN =
U	KScoN [20], [21]. The prediction horizon is N = 13. The
LMI optimization (22) is solved by using the LMI toolbox of
Matlab R©. Figures 1 and 2 compare the state estimation sets
of three approaches: the segment minimization, the volume
minimization and the P-radius minimization. These figures
show the advantage of proposed estimation method: the
performance is better than the segment minimization method
and as well as the volume minimization method. In addition,
Table I offers a comparison of the computation time (using
an Intel Core 2 Duo E8500 3.16 GHz). The conclusion is that
the computation time of the proposed method is the same as
the segment minimization method and faster than the volume
minimization method.

Figure 3 shows the tube trajectory of the system. The
largest zonotope (red) is the set x̄∗(x̂k, k)⊕ Sk, the smaller
zonotope (green) is the set x̄∗(x̂k, k)⊕Scok and the smallest
(blue) is the guaranteed state estimation set. Figure 4 shows
the stability of this output feedback system respecting the
constraints.

Fig. 1. Evolution of the state estimation set

VII. CONCLUSION

This paper presents a solution of robust output feedback
MPC for linear systems subject to state and input constraints
with bounded state disturbances and measurement noises. It



TABLE I
COMPUTATION TIME AFTER 50 SAMPLE TIMES

Algorithm Time(second)
Segment minimization 0.0312
Presented algorithm (without LMI optimization) 0.0312
Presented algorithm (with LMI optimization) 0.7488
Volume minimization 7.8469

Fig. 2. Evolution of the state estimation set (zoom of Fig. 1)

combines an off-line zonotopic set-membership estimation
with a robust tube-based constrained MPC controller. The
state and input constraints are satisfied and the stability of
the closed-loop is guaranteed. This method will be extended
in future work for linear systems with interval uncertainties.
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