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Abstract. The development of functional-structural plant models has opened interesting perspec-
tives for a better understanding of plant growth as well as for potential applications in breeding
or decision aid in farm management. Parameterization of such models is however a difficult issue
due to the complexity of the involved biological processes and the interactions between these pro-
cesses. The estimation of parameters from experimental data by inverse methods is thus a crucial
step. This paper presents some results and discussions as first steps towards the construction of
a general framework for the parametric estimation of functional-structural plant models. A gen-
eral family of models of Carbon allocation formalized as dynamic systems serves as the basis for
our study. An adaptation of the 2-stage Aitken estimator to this family of model is introduced as
well as its numerical implementation, and applied in two different situations: first a morphogenetic
model of sugar beet growth with simple plant structure, multi-stage and detailed observations, and
second a tree growth model characterized by sparse observations and strong interactions between
functioning and organogenesis. The proposed estimation method appears robust, easy to adapt to
a wide variety of models, and generally provides a satisfactory goodness-of-fit. However, it does
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not allow a proper evaluation of estimation uncertainty. Finally some perspectives opened by the
theory of hidden models are discussed.

Key words: functional-structural plant models, carbon allocation, GreenLab, maximum likelihood
estimator, Aitken Estimator, hidden models
AMS subject classification: 92B05, 92B15

1. Introduction
To describe plant growth, crop models or process-based models were first developed [31], [5]. They
generally aim at predicting yields in fields or greenhouses at a global scale (for example grain yield
per square meter). System observation is generally easy and the main issue in parameter estimation
concerns identifiability: the number of parameters can be large compared to the dimension of the
state / observation vector. [47] recalls the classical estimation methods for crop models. Recent
advances in individual plant growth modelling have opened the way to improvements of crop mod-
els by describing the functional growth dynamics at organ level, taking into account plant structure
and organogenesis. Such models are generally referred to as functional-structural models [57],
[23]. However, the complexity of the phenomena involved when modelling the growth of individ-
ual plants has sometimes led to the development of very heavy simulation models, capitalizing an
important amount of biological knowledge but very difficult to calibrate from experimental data
and thus unproper for real applications. Simulated annealing was however used for calibration in
[12] resorting to very heavy computations. In this context however, recent efforts have been made
to develop the mathematical formulation of functional-structural models as dynamic systems, see
[18], [63], [8]. The resulting dynamic systems are non-linear and multi-variable (with very high
dimensions of the state-space). Based on this formalism, the objective of this paper is to propose
a general framework for the parametric estimation of dynamic models of individual plant growth.
Specifically, we will consider morphogenesis models whose state variables are given by the masses
or dimensions of plant organs.

Estimation of parameters in dynamic systems has been widely studied in the past decades, we
refer for example to [24] or [41]. Most estimation procedures involve adopting a probabilistic
framework for model equations by taking into account process and measurement errors. When
system observations are regular, very efficient methods based on filtering techniques have been
devised. The principle is to treat observed data successively and to improve estimation at each
step according to error prediction, see for example extended Kalman filters in [40], recursive least
squares in [42] and more recently unscented Kalman filter [32] or particle filtering [17] specifically
designed for non-linear systems. These methods have been broadly used and adapted in various
domains, including life sciences [54] and modelling for forestry [22].

However, some systems do not allow regular data acquisition, particularly living systems, as
measurements are too complex. For the type of plant growth models considered in this study,
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the variables of interest are generally biomasses (dried or fresh matter). The system output is
multivariate and generally corresponds to the masses of some elementary units of the plant (for
example all organs, see [27]).

This paper presents some results and discussions as first steps towards the construction of a
general framework for the parametric estimation of functional-structural plant models. A general
family of models of Carbon allocation formalized as dynamic systems serves as the basis for our
study (Section 2.). An adaptation of the 2-stage Aitken estimator (see [58]) to this family of model
is introduced (Section 3.) and applied in two different situations: first a morphogenetic model of
sugar beet growth with simple plant structure, multi-stage and detailed observations (Section 4.),
and second a tree growth model characterized by sparse observations and strong interactions be-
tween functioning and organogenesis 5.). Finally, after discussing the properties of the estimation
methodology (Section 6.), some perspectives opened by the theory of hidden models are discussed
(Section 7.).

2. Dynamic System of Carbon Allocation during Plant Growth
A large number of biophysical processes are studied in the frame of functional-structural plant
modelling (cf. [23]). In this paper, we concentrate on the carbon budget which can be consid-
ered as central regarding morphogenesis. It involves biomass production and allocation [35]. We
consider models describing the growth at the organ scale of an individual plant, potentially in
a population (field crops, forest stands. . . ). Competition with other individuals for light, water,
nutrients can thus be taken into account and affects the computation of biomass production or al-
location. Literature is very rich with models of this type, and we refer to [35], [53], [23], [21] for
reviews.

2.1. State Variables and State Equations
Organs in plant architecture are characterized by:

• their botanical types: blades, petioles, internodes, flowers, fruits, roots but also potentially
sub-categories, for example distinction can be made according to organ physiological age to
differentiate organs on the main trunk and secondary branches [4]. Even for complex tree
architectures, it is possible to factorize the population of organs to finally get a reasonable
total number of categories (as shown by [9]).

• their times of appearance, since the structure is developing.

We will denote byO the set of botanical types and we let {τk}k∈K denote all the (discrete) times of
organ initiations, where K represents an index set. LetKo ⊂ K denote an index subset correspond-
ing to the times of initiations specifically for organs of type o. For example in maize, there are
several times of initiations for blades, while there is only one time of initiation for the cob. If we
consider a finite time of growth T , ∀k ∈ K, τk ≤ T and K is finite. We suppose that the botanical
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categories are defined in such a way that all organs with the same type and same time of initiation
are identical.

For models of carbon allocation at the organ scale, the state variables of interest are thus the
biomasses of all types of organs. Let (o, k) ∈ O × Ko and let qo,k(t) denote the biomass at time t
of an organ of type o and time of initiation τk. Then the vector of state variables q(t) is given by

q(t) = (qo,k(t))o∈O,k∈Ko
. (2.1)

The state equation is thus of the general form:

dq(t)

dt
= f (q(t), E(t), P, t) (2.2)

with E(t) a set of environmental variables at time t and P a vector of biophysical or empirical
parameters. If the state equation is valid under a wide range of environmental conditions for the
same set of parameters P , then we can deduce a strong genetic determinism of these parameters.
It was underlined as a great potential interest of plant ecophysiological models in order to develop
a predictive capacity that scales from genotype to phenotype [29], [39].

Generally, models of biomass allocation are based on energetic budgets that are not true on
a continuous basis, and discrete versions of the state equation (2.2) are derived by considering
(tn)n∈[0;N ] the finite sequence of succesive times corresponding to the evolution steps (for example
days for crop models or years for forestry models), and we write:

q (tn+1) = q (tn) +

∫ tn+1

tn

f (q(t), E(t), P, t) dt (2.3)

2.2. The Example of Source-Sink Models
The state function f may take different forms according to the type of model used (empirical or
allometry models, transport resistance ...). We illustrate the formulation of the state equation for
the source-sink approach first introduced in [62] and on which are based a large variety of mod-
els of carbon allocation (TOMSIM [30], GRAAL [18], GreenLab [66], ECO-Meristem [45] . . . ).
Sources correspond initially to the seed and then to biomass production and reserve remobilization.
Sinks are demands for biomass of all living organs [20]. For the sake of simplicity, we consider
that all sinks have access to all sources, this hypothesis is that of the common pool of biomass
and is shown to be relevant for small plants [14]. However, this hypothesis is not fundamental and
could be relaxed.

Let so,k(t) denote the sink value at time t of an organ of botanical type o and time of initiation
τk and No,k(t) the total number of such organs at time t. Of course, if t < τk, so,k(t) = No,k(t) =
0. Under these assumptions (source-sink model with a common pool of reserves for biomass
allocation to all living organs) the state equation of carbon allocation is given ∀(o, k) ∈ O ×Ko:

dqo,k(t)

dt
=

so,k(t)

D(t)
Q(t) if t ≥ τk

qo,k(t) = 0 if t ≤ τk.

(2.4)
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where:

• D(t) is the total demand of the plant at time t (that is to say the sum of all sinks)

D(t) =
∑
o,k

No,k(t)so,k(t) (2.5)

• Q(t) is the biomass available for allocation (and can be considered as the system input).

Q(t) generally corresponds to biomass accumulation by photosynthesis, but can also result from
biomass remobilization. If this phenomenon is taken into account, a negative term will be added
in the right hand side of Equation (2.2) to describe the consecutive loss of organ mass.

We denote
s(t) = (so,k(t))(o,k)∈O×Ko

and N(t) = (No,k(t))(o,k)∈O×Ko

and if v1 and v2 are two vectors of the same dimension, v1 · v2 is their scalar product. Then the
state equation 2.2 is given by:

dq(t)

dt
=

s(t)

N(t).s(t)
Q(t) . (2.6)

This equation can serve as the frame for a lot of models, depending on how the variables N(t),
s(t) and Q(t) are determined. We refer to [8] who describes the different versions of the GreenLab
model in this frame, according to the level of system interactions. The basic version considers:

• N(t) as given (for fixed organogenesis)

• s(t) as empirical functions only depending on some parameters: s(t, P )

• Q(t) simply resulting from biomass accumulation and given by ecophysiological laws, for
example by Beer’s law, as a function of the environmental conditions, green leaf surface
area (deduced from leaf biomass) and biophysical parameters (energetic efficiency, Beer’s
extinction coefficient . . . ): Q(q(t), E(t), P ).

3. Parameter Estimation of Plant Growth Models

3.1. Basic Concepts on the Maximum Likelihood Estimation of Discrete Dy-
namic Systems

In this section, we recall some useful results on the estimation of discrete dynamic systems. We
refer for example to [24] for a comprehensive presentation of the subject.

We consider a dynamic system S described by a discrete time model. Let (tn)n∈[0;N ] be the
finite sequence of succesive times corresponding to the evolution steps. We denote by Xn ∈ Rx

the set of characteristic system variables at tn, Xn = X (tn), and we denote by Un ∈ Ru, the set of
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exogeneous variables (entries, controls...) at tn, and P ∈ Rp, the vector of model parameters. The
type of models addressed in this paper can be written in the following form:

Xn+1 = Fn(Xn, Un, P ) (3.1)

with X0 given.
Let Y ∈ Ry be a vector of experimental observations made on the system at one or several times.
These observations correspond to model outputs Ỹ deduced from (Xn)n:

Ỹ = G((Xn)n , P ) (3.2)

If the initial state X0 and (Un)n are known, Ỹ is (implicitly) a function of P . Model errors are
represented by the random vector ε :

ε = Y − Ỹ (P ) . (3.3)

In this article, we choose to use the maximum likelihood estimator since it often has some optimal
properties, like asymptotic efficiency (see for example [11]). The conditional likelihood of Y given
P , Π(Y |P ), is the probability density of Y when P is the vector of model parameters. Identification
of the system parameters can be performed by finding P ∗ that maximizes Π(Y |P ).
We suppose that ε is a Gaussian vector of covariance matrix Σ and zero mean. Since the model is
deterministic, Π(Y |P, Σ) = Π (ε) and we have:

Π(Y |P, Σ) = [(2π)ydet(Σ)]−1/2 exp

[
−1

2

(
Y − Ỹ (P )

)T

Σ−1
(
Y − Ỹ (P )

)]
(3.4)

If Σ is known, P ∗ is given by the Gauss-Markov estimator, that is to say by minimizing the
quadratic criteria :

J(P ) =
(
Y − Ỹ (P )

)T

Σ−1
(
Y − Ỹ (P )

)
. (3.5)

However, the covariance matrix Σ is generally unknown. In such a case, estimators of Σ and P ∗

can be derived if we have a large number of repetitions of the experimental observations. It is not
the type of problem addressed here, since for plants, repetitions cause other problems due to the
strong variability between individuals. This issue will be tackled in further studies.

The classical way to overcome this problem is thus to model the error covariance. The simplest
possibility is to suppose that output errors are independent and homoscedastic, that is to say Σ =
σ2I , where I is the identity matrix. The maximum likelihood estimator is thus equivalent to the
ordinary least-square estimator. However, this choice is often too limited and other types of model
for the error covariance matrix are preferable.

3.2. A 2-stage Aitken Estimator applied to Plant Growth System
The fundamental equation of Carbon allocation (2.3, 2.4) is in the form of a classical discrete
dynamic system (3.1). Depending on the particular model chosen, the set of parameters may vary.
Some parameters can be directly measured on the field (organ expansion and life spans, mass per
unit area. . . ) and the others are to estimate from experimental data.
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P.-H. Cournède et al. Some parameter estimation issues in plant growth modelling

3.2.1. Observations

For the type of models considered here, that is to say models of carbon allocation at the organ
scale, the state variables of interest are the biomasses of all types of organs, as detailed in section
2.1.:

Xn = (qo,k(tn))(o,k)∈O×Ko
.

Theoretically, organ masses can be measured and measurements are destructive (we cut the organs
to weigh them). Therefore, the basic situation gives the observation vector Ỹ as Ỹ = XN , with tN
the experimental time. It raises however two types of problems.

First, in order to take into account the dynamics of plant growth, it would be interesting to
consider an observation vector composed of several intermediate observations at different growth
stages. Since measurements are destructive, observations should thus be done on different plants,
that are supposed representative of the same dynamic system, with the same parameters. This
hypothesis is practically never true due to the high variability in plant populations at field level
resulting from local environmental variations, genetic variability within a population or variations
in seed masses [15]. Since taking into account this variability through an appropriate population
growth model is only at its early stage, a practical method is first to define an average plant or an
average of plants at each observation time (cf. [36]) and to use multi-stage observations based on
this average plant.

Second, the experimental process of weighing all plant organs is very heavy (moreover gener-
ally, for a better accuracy, dry masses are considered, which also involves oven-drying the organs).
It is all the more true when we consider plants with complex architectures and a large number of
organs, like trees. Therefore, we may consider sparse or aggregated observations. Such strategy
has been used for maize for example, with compartment masses at some stages (that is to say that
all organs of the same type o are weighed together) or measuring individual masses for only some
of the leaves (one out of five for example) [46]. For trees, some more complex methodologies
were introduced by [26], [38]: a detailed description of the trunk (masses of all growth units) and
aggregated description of the main branches (for each branch, all organs of the same type o are
weighed together).

Finally, the experimental vector may be very irregular and composite. A general way to for-
malize the corresponding system observation Ỹ is by:

• defining a set of available types of observation functions (Gi)i∈I , with I a finite index set,
defined on the state variables, and for each i, Gi : Rx → Rαi ,

• choosing a set of observation times (texp
k )1≤k≤K ,

• for each observation time texp
k , choosing a subset of the observation functions (Gi)i charac-

terized by an index subset Ik ⊂ I .

Finally, the system observation vector Ỹ corresponding to the experimental vector Y is given by:

Ỹ =
(
Ỹ (1), Ỹ (2), . . . , Ỹ (K)

)
(3.6)
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with
Ỹ (k) = (Gi (X (texp

k )))i∈Ik

3.2.2. Heteroscedasticity

The error covariance matrix is not known and the homoscedastic hypothesis is not a very good
option for the GreenLab model since the masses in Y corresponds to different types of organs with
potentially very different size orders (e.g. petioles of a few grammes in sugar beet versus the whole
root system of 250 g, cf. [36]).

We thus consider a more general heteroscedastic hypothesis, corresponding to an error model
studied in details by [58] and introduced for the GreenLab model by [67]: the y observation are
classified into q groups, with each of the yi error terms in group i has common unknown variance
θi (1 ≤ i ≤ q) and errors supposed mutually independent. For the observation vector on plants,
each group corresponds to a type of organ. We suppose:

ε = Y − Ỹ (P ) ∼ N (0, Σ) .

with Σ a diagonal matrix of rank y:

Σ =


θ1Iy1 0 0 · · · 0

0 θ2Iy2 0 · · · 0
... . . . . . . . . . ...
0 · · · 0 θq−1Iyq−1 0
0 · · · 0 0 θqIyq

 (3.7)

with Ik, the identity matrix of rank k. Note that it may induce rearranging the data in the Ỹ vector
by grouping the data of the same type, resulting in a different arrangement from the one given in
(3.6) based on the list of heterogeneous observations.

3.2.3. Two stage Aitken estimator

For such type of sytems, a two stage Aitken estimator can be used (cf. [58]). It will be denoted
P̂2SA. We first find estimates θ̂i for all θi and then use the Gauss-Markov estimator for P (cf. (3.5
)) with an estimated covariance matrix Σ̂:

P̂2SA = ArgminP

((
Y − Ỹ (P )

)T

Σ̂−1
(
Y − Ỹ (P )

))
. (3.8)

If yi − p ≥ 2, a usual choice for the estimation of θi is given by:

θ̂i =
1

yi − p

(
Yi − Ỹi

(
P̂LS,i

))T (
Yi − Ỹi

(
P̂LS,i

))
(3.9)
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with P̂LS,i the least-square estimator of P on the i-th sub-sample (the i-th group), i.e. :

P̂LS,i = ArgminP

((
Yi − Ỹi (P )

)T (
Yi − Ỹi (P )

))
In the linear case, the properties of this estimator are studied by [58].

Remark 1. The negative log-likelihood denoted by L (P, θ) is:

L (P, θ) =
y

2
2π +

q∑
i=1

yi

2
ln (θi) +

1

2

q∑
i=1

1

θi

((
Yi − Ỹi(P )

)T (
Yi − Ỹi (P )

))
so that the maximum-likelihood estimators for P and θ (denoted by P̂ and θ̂) are:

θ̂i =
1

yi

(
Yi − Ỹi(P )

)T (
Yi − Ỹi(P )

)
, for 1 ≤ i ≤ q, (3.10)

and

P̂ = ArgminP

(
q∑

i=1

1

θi

(
Yi − Ỹi(P )

)T (
Yi − Ỹi(P )

))
. (3.11)

P̂ is thus solution of the implicit p-dimensional system of equations:

q∑
i=1

yi(
Yi − Ỹi(P̂ )

)T (
Yi − Ỹi(P̂ )

) (∂Ỹ

∂P

(
P̂
))T (

Yi − Ỹi(P̂ )
)

= 0 .

Such equation is generally intractable, and we’d rather solve iteratively Equations (3.10, 3.11)
starting with

θ̂i =
1

yi

(
Yi − Ỹi

(
P̂LS,i

))T (
Yi − Ỹi

(
P̂LS,i

))
then deducing P̂ and again correcting θ̂ with this new version of P̂ , until this procedure stabilizes.
Numerical tests however showed that there is no significant difference compared with the 2SA
estimator given by (3.8,3.9).

Remark 2. In the linear case, that is to say if there exists a matrix A ∈Myp (R) such that:

Y = Ỹ0 + AP + ε , (3.12)

Equation (3.8) can be solved explicitly:

P̂2SA =
(
AT Σ̂−1A

)−1

AT Σ̂−1
(
Y − Ỹ0

)
, (3.13)

Such formulation is interesting in order to solve numerically Equation (3.8) in the non-linear case.
An iterative procedure can be derived. Given P̂n, we deduce P̂n+1 by a linear approximation near
P̂n. We have:

Ỹ
(
P̂n + β

)
≈ Ỹ

(
P̂n

)
+

∂Ỹ

∂P

(
P̂n

)
β
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and we compute P̂n+1 = P̂n + βn with βn chosen according to Equation (3.13):

βn =

(∂Ỹ

∂P

(
P̂n

))T

Σ̂−1

(
∂Ỹ

∂P

(
P̂n

))−1(
∂Ỹ

∂P

(
P̂n

))T

Σ̂−1
(
Y − Ỹ

(
P̂n

))
.

This iterative method to solve the minimization problem given in Equation (3.8) is called Gauss-
Newton method, cf. [60]. Numerical tests for the estimation of the GreenLab parameters seem to
show that this method is more efficient than quasi-Newton minimization methods.

3.2.4. Estimator variance

In the linear case (cf. Eq. (3.12)), the covariance of the Gauss-Markov estimator for P is:

Cov
(
P̂
)

=
(
AT Σ−1A

)−1
, (3.14)

it corresponds to the Cramer-Rao bound since the Gauss-Markov estimator provides the best esti-
mate for P . When Σ is diagonal and in the case of the 2-stage Aitken estimator, that is to say when
Σ is estimated for using the Gauss-Markov estimator, it is proved by [58] that to order

(
1
y

)
, the

variance of P̂2SA is that of the Gauss-Markov estimator in Eq. (3.14). A correction of the variance
to order

(
1
y2

)
is given by [58].

For the non-linear GreenLab model applied to simple plants (sugar beet, maize . . . ), Equation
(3.14) was shown to be a very good approximation for V ar

(
P̂2SA

)
by Monte-Carlo simulations.

Such result can be explained by the weak level of non-linearity of the system that has been revealed
by applying global sensitivity techniques (Sobol’s method) in [65]. The level of non-linearity of the
model increases for more complex plants, particularly when it presents strong levels of interactions
between structure and functioning, as for trees [64].

4. A characteristic application on experimental data of sugar-
beet

In this section, we illustrate the estimation method by reporting the results of the parametric iden-
tification of the GreenLab model applied to sugar beet (Radar variety). This study was conducted
at the French research institute for sugar beet (ITB) and the results were presented by [36].

4.1. Model specificities for sugar beet
The time step for the discretization of the fundamental discretized allocation equation (2.6) is cho-
sen as the architectural growth cycle, that is to say as the time necessary for a new phytomer to
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appear (it generally corresponds to a constant accumulation of temperature above a base tempera-
ture [36]). It is given by:

qn+1 = qn + sn
un

Nn · sn

. (4.1)

(For any variable α, αn stands for the variable α at the nth architectural growth cycle.)

• We have only one physiological age, and a mono-stem plant. The number of organs Nn is
given, according to the observed phyllochron (with a decay in the leaf rhythm of appearance
at full-cover)

• The organs concerned are blades, petioles, and the root system considered as an organ. They
are respectively indexed by b, p and r. The sink functions so are chosen to only depend on
organ’s type o and organ’s age since initiation u. They are given by parametric β-density
functions, modulated by a norm:

so(u) =
Po

No

(
u

To

)ao−1(
1− u

To

)bo−1

, with No =

(
ao − 1

ao + bo − 2

)ao−1(
bo − 1

ao + bo − 2

)bo−1

• The input variable un is a feedback function of the state variables:

un = PARnSpµ (1− exp (−kAn/Sp)) (4.2)

with

– PARn the photosynthetically active radiation received during growth cycle n,

– Sp an empirical coefficient corresponding to a characteristic surface (related to the two-
dimensional projection of space potentially occupied by the plant onto the x-y plane)

– µ is an empirical coefficient related to the Radiation Use Efficiency

– k is the Beer-Lambert extinction coefficient

– An is the total green leaf area, given by An = 1
e

∑
k

(Nb,k)n (qb,k)n where a constant

mass per unit area e is assumed. Note that here the variables (Nb,k)n represent the
numbers of active blades (non senescent). After a thermal time T f

b since their initia-
tions, time that may vary with the leaf, leaf blades become senescent and no longer
participate to photosynthesis.

4.2. Parametric identification
Some parameters can be directly observed experimentally: e, Tb, Tp, T f

b , Tr, k and some parameters
are fixed Pb = 1 (since sinks are relative to each other, one of them has to be fixed for uniqueness)
and Pr = 400 (since it appears that the fitting quality is not influenced by the root sink provided
this one is big enough). The vector of hidden parameters is thus:

P = (µ, Sp, Pp, αb, βb, αp, βp, αr, βr) .
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Concerning the experimental data from which the model parameters are estimated, biomass mea-
surements were carried out at seven different stages. At each date, seven individuals plants were
selected and the dry mass of every individual organ (blades, petioles and root storage) was mea-
sured. The average of the seven plants was constructed.

The numerical values of the parameters as well as their variances are given in [36] and are not
recalled here. As an illustration, Figure 1 shows the fitting curves.

Figure 1: Fitting results: Average plants at organ level: experimental data (in red) and
simulated data (lines) (a) Blade dry masses and (b) petiole dry masses according to
phytomer ranks, at 7 different growth stages; (c) root dry mass as a function of the growth
cycle (with experimental measures at the same 7 stages)

5. Application to plants with complex structures: the case of
trees

As underlined before, a particularity of mature trees is generally their complex structures. Be-
side the parameters of the functional model, it is also necessary to estimate the parameters of the
organogenesis model. The difficulty arises from the complex interactions between functioning and
organogenesis in trees. For some models, the level of interaction is too intricate and the parameter
estimation has to be done for the two processes altogether. It is for example the case of the ALMIS
[19] or L-Peach [1] models: local conditions like local availability of assimilates and nutrients
determine the appearance of new organs. In source-sink models with a common pool of reserves
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as described in section 2.2., the interaction between functioning and organogenesis is restricted to
the number of organs for primary growth, on organ and branch life spans and on secondary growth.
Reversely, the functioning has a global retroaction on the appearance of new organs through the
ratio of available biomass to demand.

We apply the Aitken estimator to the model of tree growth described by [38], [48] in the
GreenLab frame.

5.1. Model specificities for trees
5.1.1. Organogenesis

For most trees grown in temperate zones, growth is rhythmic, i.e. there is alternation of periods
of activity of the apical meristems and of resting periods. The sequences of times (tn)n≥0 will
correspond to every active period of the apical meristem. They are characterized by a growth flush
and the creation of new growth units (Figure 2). A growth unit is composed of a set of phytomers,
considered as the elementary botanical units of constant composition (generally an internode, a
leaf and potential axillary buds). The concept of physiological age [3] helps differentiate between
the different types of axes (and accordingly the organs they are composed of) according to some
morphological properties. The main trunk has a physiological age 1 and the oldest physiological
age (denoted P ) is the ultimate state of differentiation for an axis, it is usually short, without
branches. Usually, we need less than 5 physiological ages to describe the axis typology in a given
tree.

Figure 2: Illustration of a growth unit of beech tree and its constitutive zones Z1k, that are charac-
terized by the physiological ages of the bearing axis (here 1) and that of their lateral buds (k).
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Growth units are decomposed into zones Zik that are characterized by the physiological age i
of the bearing axis and the physiological age k of the (potential) lateral buds of their phytomers,
as introduced by [25]. As described in [9], plant topology can simply be seen as a function of the
development sequences (uik(tn))t and (vik(tn))t for all (i, k) such that 1 ≤ p ≤ q ≤ P , where

• uik(tn) gives the number of phytomers of physiological age i with axillary buds of physio-
logical age k in growth units appearing at time tn (nth growth cycle),

• vik(tn) gives the number of growth units of physiological age k borne by axes of physiolog-
ical i appearing at time tn (nth growth cycle).

Note that these variables are generally stochastic for trees as detailed in [33]. Different buds of the
same type in the tree may have different productions. Usually, characterizing the average organo-
genesis behavior is sufficient to compute plant functioning. The number of organs of all types
N(tn) = (No,k(tn))(o,k)∈O×Ko

can be deduced from all the sequences (uik(tn))n and (vik(tn))n as
detailed in [9] (or in [33], [43] for the stochastic case).

A fundamental property of trees is their plasticity in response to changes in their growth con-
ditions. Plants are seen as self-regulating systems that can react to exogenous (e.g. environ-
mental stresses that reduce plant production; organ or branch pruning that reduce plant demand)
or endogenous (e.g. apparition of new branches or fruits that increase demand) influences. In
the GreenLab model, this translates into an index of tree vigor, defined as the ratio of available
biomass to total demand (Q/D) [48]. This ratio is representative of the level of trophic competi-
tion inside the plant. Thus it allows simulating as well the ontogenetic changes in plant topology
throughout its growth phases (progressive set up of architectural units) as architectural plasticity
in response to environmental changes. This ratio controls the appearance and longevity of new or-
gans (organogenesis) and branches, thus updating the potential topology at each growth cycle. The
development sequences (uik(tn))n and (vik(tn))n can be modeled as functions of this ratio. For
instance, the total number of new axes vik(tn) actually appearing on zones Zik in the whole tree
depends on the number of existing positions potentially bearing that kind of axes, Nik(tn−1), and
on the value of Q/D at time tn−1. [38] proposed the following equations to describe the average
numbers of phytomers and branches appearing at each growth cycle:

uik(tn) =
⌊
A1

ik + A2
ik ·

Q(tn−1)
D(tn−1)

⌋
vik(tn) =

⌊
N ik(tn−1) ·

(
B1

ik + B2
ik ·

Q(tn−1)
D(tn−1)

)⌋ (5.1)

where for a real number x, bxc represents its rounded value and A1
ik, A2

ik, B1
ik, B2

ik are model
parameters.

5.1.2. Ecophysiological model

For trees, the biomass production Q (tn) can be expressed using the same Beer’s law as in Equation
(4.2). A difference to take into account the important changes in plant architecture is to consider
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the parameter Sp (related to the crown projection surface and important to compute self-shading as
well as competition with other plants) as an increasing function of tree leaf area ([10]):

Sp (tn) = Sp0

(
A (tn)

Sp0

)α

The production function thus involves 3 hidden parameters: the radiation use efficiency µ, Sp0 and
α.

Internode growth can be decomposed into two phases: primary growth which consists in stem
elongation and secondary growth, or cambial growth, which consists in diameter increase by suc-
cessive ring increments (annual increments for trees in temperate zones). Trees are characterized
by the predominance of the secondary growth as a factor determining internode mass and size.

In the GreenLab model, consistently with the hypothesis of a common pool of reserves for
biomass allocation, there is first a global step of allocation of biomass dedicated to primary and
secondary growths respectively at the whole plant level. It corresponds to the hypothesis that
plants have a global allocation strategy which generally favors primary growth (new growth units).
Secondary growth is mostly used to stock biomass reserves. We denote by α(t), the proportion
of biomass allocated to primary growth. After this first step, α(t)Q(t) is distributed among the
primary sinks and (1− α(t)) Q(t) among all the secondary sinks. Equation (2.6) becomes:

qo,k(t + 1) = qo,k(tn) +

(
α(tn)so,k(tn)

D1(tn)
+

(1− α(tn)) ro,k(tn)

D2(tn)

)
Q(tn) (5.2)

with so,k(tn) corresponding to primary sink and ro,k(tn) to secondary sink (for cambial growth),
and

D1(tn) =
∑
o,k

No,k(tn)so,k(tn) , (5.3)

and
D2(tn) =

∑
o,k

No,k(tn)ro,k(tn) . (5.4)

For most temperate trees, stem elongation and leaf expansion can be considered as immediate.
Therefore, primary sinks so,k(tn) can be deduced from direct measurements (the ratios of organ
weights give directly the allocation coefficients) [26].

There are numerous evidences in the literature that radial growth is more sensitive to changes
in growth conditions than primary growth: for instance, trees suffering from high competition can
produce long primary shoots but usually narrow rings [50]. Cambial growth can play a buffer role:
trees invest more in secondary growth if conditions are favorable. This translates, again, into the
index of tree vigor, defined as the ratio of available biomass to total demand (Q/D) [48] and [38]
proposed to choose

α(tn) =
1

1 + 1

Pr·(Q(tn)
D(tn))

γ

(5.5)

where Pr and γ are empirical parameters to estimate.
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The formulation of secondary sink has to take into account the physiological age of the intern-
ode, as well as its position in plant structure, since its influence on the cambial growth of each phy-
tomer has long been highlighted ([2]). We refer to [38] for a detailed description of the equations
giving the secondary sinks. Finally, their expressions involve the parameters (Rk)1≤k≤P , corre-
sponding to coefficients modulating allocation according to the physiological ages k of branches,
and an empirical coefficient λ expressing the balance between uniform allocation (common pool)
and topoly-driven allocation (Pressler law, [2]).

5.2. Adaptation of the estimation method
Apart from the parameters that can be measured directly on trees, the basic formulation of the
tree ecophysiological model describing source-sink relationships would thus involve the following
vector of hidden parameters that need to be estimated by model inversion:

P1 =
(
µ, Sp0, α, Pr, γ, (Rk)1≤k≤P , λ

)
.

If plant topology is given (that is to say if the development sequences uik (tn)n, vik (tn)n are known
for all 1 ≤ i ≤ k ≤ P ), the model outputs are continuous functions of the parameters and the 2-
stage Aitken estimator can be applied straightforwardly. Regarding topological parameters, we
need to estimate the parameters driving the retroaction of functioning on organogenesis

P2 =
(
A1

ik, A
2
ik, B

1
ik, B

2
ik

)
1≤i≤k≤P

.

Equations (5.1) include transformations from real values to integers. Hence, they do not generate
continuous variations of the model outputs and the Gauss-Newton method described in Section
3.2.3. can no longer be applied. We need to resort to heuristic methods to minimize the cost
function (3.8). We chose the simulated annealing algorithm [34].

Owing to the relative simplicity of functional-structural interactions in the GreenLab model,
it is possible to perform the estimation of topological and functional parameters in a recursive
loop with separated steps. In a first step, the topology is set as observed for each tree. It sets the
frame allowing the functioning parameters to be estimated, using a continuous method. Once these
functional parameters are estimated, topological data (e.g. number of branches or organs of given
physiological age classes) are added into the target data and the topological parameters are set free
to vary. Several trials are usually needed to ensure convergence to a reasonable solution with the
simulated annealing.

5.3. Application to beech tree
5.3.1. Measurement procedure and data

Two common beech trees (Fagus sylvatica L.) grown in understorey were measured in May 2006
from the natural stand of Champenoux, near Nancy (North-Eastern part of France). Tree 1 was 21
year-old and Tree 2 was 46 year-old.

148
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The topological development of beech tree follows the botanical rules of the Troll architectural
model [28]. Following [59], four physiological ages were distinguished: short shoots bearing no
branches (physiological age (PA) 4), long shoots bearing only short shoots (PA 3), long ramified
shoots (PA 2) and trunk (PA 1). Fig. 2 and 3 illustrate the potential compositions of beech growth
units. Samples were taken at random locations in tree crowns in order to estimate the mass per

Figure 3: Potential topology for growth units of the four physiological ages. The topology of
growth unit on the main stem (PA 1) is set directly from experimental measurements.

unit area, allometric ratios for biomass partitioning (sinks), and allometric relationships linking
internode dimensions to their masses.

For mature trees, observation of the state vector q(t) (cf. Equation (2.1)) would necessitate
prohibitive experimental load. Therefore, some particular choices were made to define the exper-
imental vector Y (t) from which the parameters could be estimated: complete trunk profile (fresh
mass, mean diameter and length of each growth unit, plus annual ring width at regular intervals)
and compartment biomasses (cumulated biomass of all branch internodes, cumulated biomass of
all leaves) for each branch of physiological age 2.

5.3.2. Results of the estimation process

These results are presented in details in [38]. In this section, we underline some specific points
characteristic of the estimation process for trees.

As no quantitative topological information was recorded concerning the branching structure of
order 2 branches, the topological parameters were fitted on aggregated data of biomass compart-
ments only. The model parameters were estimated to create an average structure with a global
demand at each growth cycle similar to the real one. The average simulated weights of blade
and internode were compared to the measured data to ensure that the total number of metamers is
globally coherent with the experimental observations.
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As no measurement was done concerning the environment factor, it was assessed to be constant
during the growth period but specific to the local environment of each tree. It was, therefore,
considered as a parameter of the model (instead of a control factor) and its value was estimated
from experimental data. It is an indicator of the global level of environmental pressure on tree
growth and it is the only parameter that was allowed to vary independently for Tree 1 and Tree 2.
For every other parameter, a unique value was estimated from the data of both trees simultaneously.
A smaller value of the environment was found for Tree 1 (5.6 vs 10) which was consistent with a
higher mass per unit area for Tree 2, usually characteristic of more favorable light conditions.

Fitting results for the trunks are presented in Figure 4. Although data from tree 1 and tree 2 are
in very different ranges, they could be fitted in parallel with satisfactory success.

Figure 4: Fitting results: observed and simulated growth units’ weights and diameters on the trunk;
ring profile for tree 2. Series represent the successive ring diameters of growth units according to
their year of appearance.

The experimental vector for tree 2 also included sequences of ring widths for 12 growth units
located at different heights near the bottom of the trunk (Figure 4). There is a slight over-estimation
of internode pith mass but the global trends are respected. The accuracy of simulation of ring
diameters is particularly important as it gives access to information about the past growth of the
tree. Thus, not only the last stage but the complete source-sink evolution in time is likely to be
correct in the simulated tree.

150
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Concerning topological parameters, several optima are possible, in particular because the equa-
tions like 5.1 include transformations from real values to integers. Therefore, intervals are given
for these values [38].

These results illustrate that a simulated tree with a simplified structure can mimic the morpho-
logical plasticity of a real tree when the branching structure is controlled by a dynamic feedback of
its trophic state on its organogenesis processes. It was also a first proof-of-feasibility of the fitting
procedure presented above.

6. Discussion
The aim of this article was to present a framework for the parameter estimation of dynamic systems
of carbon allocation in the context of functional-structural plant growth modelling. We believe
that the methodology presented is quite generic and could be applied for a large variety of model
implementations. It was illustrated on two very different growth models for sugar beet and beech
tree involving different levels of model complexity: long organ expansion for sugar beet, strong
levels of interactions between organogenesis and functioning, secondary growth for beech tree.
Both models however correspond to derivations of the GreenLab generic modelling frame, which
has led to extensive variations, for plants as different as maize [27], arabidopsis [7], grapevine
[52], pine [26] or cucumber [49], and for which model parameterization was obtained through this
methodology, adapted to each particular case. It is proved to be very robust.

If the goodness of fit is in all cases satisfactory, the statistical analysis of the estimation results
is not properly done yet, and it makes it difficult to develop a predictive capacity for the model,
by controlling the uncertainty of prediction. As a matter of fact, the variances of the estimates are
given under the assumption that the error model chosen is the good one and that the model is linear.
As shown by [65], the linearity hypothesis might be acceptable in some cases, but the hypothesis
of Σ diagonal, with masses of the same organ type having common variance θi (1 ≤ i ≤ q)
and errors supposed mutually independent, cf. (3.7), is quite gross. It corresponds to using only
the deterministic part of the dynamical model, which is really restrictive since in dynamic models,
errors propagate (see an example on plant growth models in [56]). Current studies aim at improving
estimation by modelling the dynamics of the covariance matrix of the model noise.

Moreover, even though the system of study is an individual plant, it belongs to a population
of individuals and the results of interest regarding parameter estimation are those that character-
ize the whole population. Particularly, as underlined by [29], [39], model parameters should be
characteristic of a given genotype in order to help bridge the gap between genotype and phenotype
for applications of plant growth models in plant breeding. Therefore, an important issue concerns
how to combine observations on different individuals that are characterized by strong variability in
the estimation process. It may concern local environmental conditions, initial conditions or even
genetic variability within the same genotype [15]. So far, the methodology was purely applied
on a hypothetic ’average plant’, built for example in the sugar beet case as the average of several
plants, which was possible owing to the simple structure of sugar beet plants. In the test case on
beech trees, we were able to estimate a difference in the environmental effect for the two trees.
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However, as explained above, in terms of retroaction of organogenesis we were only able to assess
an average behavior that led to the same global source-sink dynamics at the whole plant level.

In case of complex stochastic organogenesis, the method presented in Section 5.2. should be
adapted. The major problem arises when flushes of growth units are not synchronized, especially
for tropical trees [13], and it is thus impossible to deduce ages of growth units by direct obser-
vations. In the estimation process proposed in Section 5.2., it is thus no longer possible to fix
an average topology in order to first estimate the functional parameters, before estimating the pa-
rameters of retroaction of functioning on topology. Two different ways are being explored: first by
estimating in the first place the parameters of the stochastic organogenesis model from observations
on the distributions of the numbers of organs or of specific structural patterns in plants ([44]), or
by a combined approach allowing to estimate jointly the functional parameters and organogenesis
parameters [61] from architectural data when the stochastic model has few parameters.

Another crucial issue for the application of plant growth models is the simplification of the
experimental process. For example, if breeders want to characterize a whole set of genotypes by
their specific model parameters, they probably can not afford the heavy experiments that were used
to estimate the sugar beet parameters in the example of Section 4.. It would thus be important to
optimize the experimental protocol, which implies being able to characterize the uncertainty in
parameter estimation according to the level of experimental details. Likewise, as underlined in
Section 5.3.1., the same problem occurs for mature trees since the number of organs is prohibitive
for measurements. Sampling and aggregation are the keys to experimental simplifications, and
several tries were performed, see [37] for trees or [46] for maize, without however proposing a
systematic approach of uncertainty evaluation.

For a better control of model uncertainty, it is necessary to improve the statistical framework for
modelling. For this reason, we are currently exploring the implementation of functional-structural
plant models as hidden models, and the perspectives it opens. The closing section of this paper is
thus more like an introduction to current works, and the problems they may resolve.

7. A promising Perspective: the Frame of Hidden Models
Instead of considering the state variables as the vector of organ masses varying with time, the
observed organ masses are organized into ordered sequences, in which the ordering is taken with
respect to the growth cycle of organ appearance. Such sequences lead to an equivalent descrip-
tion of the dynamic system in the framework of hidden (latent variable) models (cf. [6]): model
equations can be interpreted as a bidimensional stochastic process, which describes the evolution
of system variables.

First, we describe the case where the observation vector consists of measurements on a single
plant. More precisely, let Y := {Yn}n∈N∗ be the sequence of observed organ biomasses, ordered as
described above with n the growth cycle of appearance. Each Yn is generally a multidimensional
vector, that can be divided into subvectors Yo,n, each one corresponding to a different type of organ.
Let also Q := {Qn}n∈N be the sequence of successively produced biomasses Qn, at each growth
cycle n, where Q0 corresponds to the seed mass. Qn is considered to be distributed to the different
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organs at cycle n + 1. The following assumptions describe generally the representation of the
model in this framework, and the dependence relations among system variables:

1. Y is the observed sequence, where Y given Q, forms a sequence of conditionally in-
dependent random variables, and each subvector Yo,n of Yn, given Q, depends only on
(Qn−1, Qn, . . . , Qn+To−2)

def
= Qn+To−2

n−1 , where To is the characteristic expansion time for each

organ of type o. Let T
def
= maxo To. The vector Qn+T−2

n−1 , corresponds to the vector of con-
tributing biomasses to the expansion of the organs of Yn. If we denote by Gn(Qn+To−2

n−1 , P )
the empirical function that models its expected value (its exact value, when there is no error),
then the vector Yn given Qn+T−2

n−1 follows N
(
Gn(Qn+T−2

n−1 , P ), ΣY

)
, where ΣY is an appro-

priate covariance matrix, not necessarily diagonal, that takes into account the correlation
structure of the model.

2. Q is the hidden sequence, and the kind of dependence among the random variables Qn de-
termines the nature of the hidden model. We present here the case when Qn given the vector
of previous biomasses (Q0, Q1, . . . , Qn−1) depends only on Qn−1. In this case, we are in
the framework of a Hidden Markov model. If we denote by Rn−1(Qn−1, P ) the recurrent
relation that expresses the corresponding sequence of expected values, then Qn given Qn−1

follows N
(
Rn−1(Qn−1, P ), Vn−1(Qn−1, θ)

)
, where Vn−1(Qn−1, θ) is an empirical function

that models the variance of Qn around its expected value Rn−1(Qn−1, P ), and θ an appro-
priate parameter that can contain or not the parameter P .

Statistical estimation for plant growth models that can be represented in this framework, can
be tackled with tools borrowed from the theory of Hidden Markov models (cf. [68]). One popular
solution is to perform parametric identification via maximum likelihood estimation. The observed
vector (after destruction of the plant) consists of organ masses of mature organs (those that have
completed their expansion), and of immature organs (those that have not completed their expansion
due to the censoring effects). The associated likelihood function cannot be computed in a closed
form. In order to approximate the likelihood function, there are at least two different approaches
based on iterative optimization techniques. When the state space of the hidden chain is finite,
one method is based on the expectation-maximization (EM) algorithm (see [16] and [55]) and
the other on gradient type methods (see [68] and the references therein), where direct numerical
maximization is implemented. Nevertheless, in our case the state space is continuous and no exact
implementation of the EM algorithm or the gradient methods is feasible.

Therefore, simulation based methods are in progress in order to implement proper stochastic
versions of the EM algorithm and stochastic gradient methods for state and parameter estimation.
In this direction, the class of sequential Monte-Carlo (or particle filter) algorithms, which can be
used for maximum likelihood estimation (see [17]), seems particularly adapted to our case. When
the complete likelihood function belongs to the exponential family, the EM algorithm is usually
well suited and a set of sufficient statistics simplifies the maximization step (see [51]). In our case,
the model parameterization makes the maximization step more complicated, and thus stochastic
gradient as well as stochastic EM algorithms will be developed and compared.
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When observations of different plants at different times are considered (see Equation 3.6), indi-
vidual observations can be combined by assuming that they correspond to independent realizations
of the same stochastic process. Generally, the censoring time will be different (since plants are not
necessarily measured at the same date) and based on the independence assumption, the likelihood
function in the new setting model is the sum of the individual likelihood contributions, for each of
the observed vectors. A combination of the independence assumption (among observations of dif-
ferent plants) and of the special structure of each individual observation vector allows the extension
of the estimation method to this case.

This framework is under implementation (first for unbranched plants) and open promising per-
spectives in order to control estimation uncertainty.
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[43] C. Loi, P.-H. Cournède. Generating functions of stochastic L-systems and application to mod-
els of plant development. Discrete Mathematics and Theoretical Computer Science Proceedings,
AI (2008), 325–338.
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