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Abstract—Digital Subtraction Rotational Angiography (DSRA)
allows reconstruction of three-dimensional vascular structures
from two spins: the contrast is acquired after injecting vessels
with a contrast medium, whereas the mask is acquired in the
absence of injection. The vessels are then detected by subtraction
of the mask from the contrast. Standard DSRA protocol samples
the same set of equiangular-spaced positions for both spins. Due
to technical limitations of C-arm systems, streak artifacts degrade
the quality of all three reconstructed volumes.

Recent developments of compressed sensing have demon-
strated that it is possible to recover a signal that is sparse in
some basis under limited sampling conditions. In this paper,
we propose to improve the reconstruction quality of non-sparse
volumes when there exists a sparse combination of these volumes.
To this purpose, we develop an extension of iterative filtered
backprojection that jointly reconstructs the mask and contrast
volumes via `1-minimization of sparse priors. A dedicated proto-
col based upon interleaving both spins is shown to further benefit
from the sparsity assumptions, while using the same total number
of measurements.

Our approach is evaluated in parallel geometry on simulated
phantom data.

Index Terms—Digital Subtraction Angiography, Rotational
angiography, Compressed sensing, `1-minimization, Iterative re-
construction

I. INTRODUCTION

In interventional radiology, one of the main purposes is
the visualization of vascular structures. Since vessels inherit
contrast comparable to the one of encompassing tissues, they
are imaged by injecting a radio-opaque contrast medium into
the blood.

In rotational angiography, a tomographic acquisition (spin)
of two-dimensional (2D) X-Ray projection views is used to
reconstruct a three-dimensional (3D) model of the injected
vessels in their environment. However, it might be difficult
to separate the vascular structures from surrounding bones
or dense devices such as coils. This can be circumvented
by performing two acquisitions in a single protocol, simi-
larly to 2D Digital Subtracted Angiography (DSA) [1]. The
first acquisition, called mask, is performed without injection,
while the second acquisition, called contrast, is performed
after vessel opacification. All structures but the vessels are
removed by digital subtraction of the mask volume from the
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contrast volume. One can thus visualize either the vessels
alone (subtracted volume), or the vessels and their context
(contrast volume) or the context alone (mask volume of bones,
tissues and devices).

DSRA is more challenging than DSA, because the injection
must be such that all vessels located inside the field of view
are fully opacified from the beginning to the end of the
contrast spin. The contrast medium is however rapidly flushed
in the blood flow. To minimize contrast use, the rotation of
the C-arm has to be as fast as possible, while its acquisition
frame rate is limited, which significantly restricts the angular
sampling. Subsampling has little incidence on visualization of
highly contrasted structures, but it generates streak artifacts
that hide weakly contrasted structures such as soft tissues.
To reconstruct a satisfying subtracted volume, the mask and
contrast spins are traditionnally acquired with identical param-
eters, which allows the straightforward removal of redundant
background structures and their associated streaks.

Standard reconstruction of the mask and contrast volumes
is obtained independently. Each volume suffers from the same
undersampling artifacts and the same noise level. They cannot
be combined a posteriori to either reduce noise or artifacts
because vessel streaks would then propagate into the mask
volume.

In the following, we propose to use recent compressed
sensing results to jointly reconstruct the mask and contrast
volumes. Based on the assumption that vessels are sparse, we
show how improved image quality can be obtained for the
non-sparse background structures as well. Through a temporal
interpretation of the subtraction problem, we define a coupling
between the mask and contrast volumes that allows for their
joint reconstruction via imposing sparse priors. We extend
the iterative filtered backprojection so that vessel sparsity
can be applied and promote redundance of the non-opacified
structures captured in both spins. We show that adopting
interleaved spins rather than identical spins allows for increas-
ing the angular sampling of the mask and contrast volumes.
Two sparsity constraints and two acquisition protocols are
combined and evaluated in a numerical simulation phantom
study. Potential applications of this work are finally discussed.

II. METHOD

Let f =

(
fC
fM

)
be the vector containing the contrast

volume (fC ∈ RJ ) and the mask volume (fM ∈ RJ ),



where J is the number of voxels. Let p =

(
pC
pM

)
be

the vector containing the injected projections (pC ∈ RI )
and the mask projections (pM ∈ RI ), where I is the total
number of measurements. Let R = diag{RC , RM} with RC ,
RM ∈ RI×J be the block-diagonal matrix describing the
trajectory of the contrast and mask spins respectively. The
reconstruction problem consists in recovering f given that
p = Rf .

A. Least-squares approach

The reconstruction used in practice consists in a discretiza-
tion of the analytical inverse of the system, i.e. backprojection
of the filtered projections: f = RTDp, where D refers to the
ramp filter. This method is known as filtered backprojection
(FBP).

There exists an iterative version of FBP (iFBP), which
comes round to use the euclidian norm as measure of the
distance between p and the filtered projections of f :{

f∗ = argmin
f

Q(f)

Q(f) = 1
2‖D

1/2 (Rf − p) ‖22
(1)

iFBP scheme is a standard gradient descent with step τ > 0:{
f (0) = 0

f (n+1) = f (n) − τ∇Q(f (n))

FBP and iFBP provide valid solutions if the system is
well-determined. When the system is underdetermined (i.e.
I << J), typically when the number of projections is low,
these methods set to zero the Fourier components that are
unobservable given the measures, which is not justified from
a physical point of view, and results in a volume that is
deteriorated by streak artifacts.

In a general way, if f̃ is the solution of the fully sampled
problem, it can be expressed as:

f̃ = f∗ + f⊥ where
{
f∗ is the iFBP solution
f⊥ ∈ Ker(R)

To reduce the magnitude of f⊥, which is the error image
made of complementary streak artifacts, it is necessary to
constrain f̃ by introducing additional regularization terms to
the quadratic functional.

B. Compressed sensing approach

In [2] [3] notably, it is demonstrated that it is possible
to recover a signal from a small number of measurements
if it is sparse in some basis, that is, if most of the signal
energy is concentrated in a few coefficients only. In practice,
minimization of the `1-norm promotes sparsity [4] and is
applied for generating sparse approximations of undersampled
signals.

We define a functional J as the sum of a quadratic data
fidelity term Q and a sparsity penalty ϕ, i.e J(f) = Q(f) +
ϕ(f). The function Q is convex and differentiable, whereas
ϕ is convex and non-differentiable due to the singularity of
the `1-norm. This excludes the use of conventional smooth
optimization techniques.

Combettes and Pesquet [5] have shown that it is possible to
reach convergence with a simple implementation that consists
in an explicit gradient step for minimizing Q (in our case
iFBP) and an implicit step applying the constraint ϕ:{

f (n+1/2) = f (n) − τ∇Q(f (n))
f (n+1) = proxτ,ϕ

(
f (n+1/2)

) (2)

where the penalization is applied via its proximity operator
defined as:

∀x ∈ RJ , proxγ,ϕ : x→ argmin
y∈RJ

[
ϕ(y) +

1

2γ
‖x− y‖22

]
where γ > 0 and is set equal to the gradient step τ in (2).

Several accelerated implementations of (2) have been pro-
posed. In practice, we used the Fast Iterative Shrinkage
Thresholding Algorithm (FISTA) [6].

C. Temporal interpretation

DSRA can be viewed as a temporal acquisition with two
time points tO and tM , such that fC = f(tC) and fM =
f(tM ). It is possible to define an invertible temporal transform
Ht such that at least one of the components of Htf is sparse.

Here Ht is the operator associated with the one-dimensional
(1D) Haar wavelet transform:

Ht =

[
1 1
1 −1

]
Define w by w =

(
w1

w2

)
= Htf =

(
fC + fM
fC − fM

)
. The

vector w2 corresponds to the subtracted volume which contains
vascular structures only, and as such, is intrinsically sparse.
The use of Ht thus allows for isolating the sparse structures
induced by contrast injection.

1) Soft-thresholded (ST) reconstruction: `1 penalization
through ‖w2‖1 has already been successfully applied to the
dynamic reconstruction of naturally sparse volumes such as
the coronary arteries [7]. In our case of DSRA, we expect that
the sparsity constraint on w2 will promote in f the redundance
of the non-opacified structures captured in both spins. We thus
minimize the following functional:

JST (f) = Q(f) + λ‖w2‖1 (3)

where λ is the regularization parameter that allows for con-
trolling the strength of the `1-penalization. In this case, the
proximal operator corresponds to soft-thresholding: Sλτ (w2)
of threshold λτ where τ is the step defined in (2). By
minimizing JST , the maximal sampling that can be achieved
for w1 cannot exceed the addition of the mask and the contrast
sampling.

2) Total Variation (TV) reconstruction: The addition of the
mask and the contrast sampling may still result in an under-
sampled problem. Since w1 is not naturally sparse, an efficient
method consists in promoting sparsity of TV (w1) = ‖∇w1‖1
[2]. The corresponding solution is a piece-wise constant ap-
proximation of w1. Furthermore, the subtracted volume often
contains not only vessels, but also perfused structures such as
parenchyma that can be approximated by piecewise constant



distributions. Thus, we propose to minimize TV (w2) as well.
The corresponding functional is:

JTV (f) = Q(f) + λ1‖∇w1‖1 + λ2‖∇w2‖1 (4)

To minimize (4), the digital TV filter [8] is used as proximal
operator of ‖∇ · ‖1. This filter is applied to w1 with strength
λ1τ and to w2 with strength λ2τ . In order to minimize bias
in the estimation of w1, we set λ1 << λ2.

3) Data acquisition: We consider N equiangular-spaced
views of the contrast and mask volumes with two protocols:
• Homogeneous protocol: this is the standard DSRA ac-

quisition where the trajectories of each spin samples the
same set of angular positions:

AC = AM = {αn =
n

N − 1
·αrange | n = 0 · · ·N−1}

• Heterogeneous protocol: alternatively each spin samples
two sets of interleaved angular positions defined by:{
AM = {αn = n

N−1 · αrange | n = 0 · · ·N − 1}
AC = {αn = n+δ

N−1 · αrange | n = 0 · · ·N − 1}

where δ =]0, 1[ is the angular shift.
Standard DSRA uses redundance of the non-opacified struc-

tures in the mask and contrast views to obtain the vessels
without background streaks, which is only possible using the
homogeneous protocol.

Introduction of sparsity assumptions based on the minimiza-
tion of JST or JTV will also remove background streaks
in the subtracted volume, whatever the acquisition protocol.
However, when interleaving the contrast and mask spins, the
angular sampling of the non-opacified structures is increased.
In particular, with δ = 0.5, background structures are sampled
with 2N equiangular-spaced views, whereas the vessels are
sampled with N equiangular-spaced views.

III. RESULTS

Minimization of JST and JTV was evaluated for each
acquisition protocol in parallel geometry on a 2D numerical
simulation phantom.

A. Simulations

In order to simulate a realistic anatomy, we used a true
abdominal CT cross-section (Fig. 1(a) and Fig. 1(b)) as mask
image. We obtained the contrast image by adding to the mask
four intense disks (Fig. 1(c)) that represent strongly opacified
arteries. Intensities are given in Hounsfield Unit (HU). The
value of simulated injected vessels is about 3000 HU, while
values of soft tissues are those of the original CT slice, around
0 HU. Acquisitions were simulated with 150 views over 180◦.
The angular shift δ = 0.5 was used for the heterogeneous
protocol.

FISTA for iFBP was run for 100 iterations with step τ =
0.1. We set λ = 10 in JST and λ2 = 10 in JTV . λ1 in JTV
was set to 1, i.e. one tenth of the penalization strength applied
on w2.

(a) (b)

(c)

Fig. 1. Numerical simulation phantom. (a) Mask image; (b) Details of (a);
(c) Simulated vessels.

(a) (b)

Fig. 2. FBP reconstruction from 150 views. (a) Details of the vessels; (b)
Details of the mask image. WC = 60 HU and WW = 75 HU.

B. Evaluation

Images are visualized with a windowing of window center
(WC) 60 HU and window width (WW) 75 HU.

FBP reconstruction from 150 views, which is the current
level of image quality in clinical routine, is displayed in Fig.
2. Fig. 2(a) shows details of the vessel streaks that actually
degrade the entire field of view, while Fig. 2(b) shows details
of the background streaks.

Both JST and JTV perfectly restored the vessels, since
they verify the sparsity constraints, by setting to zero all non-
vessel pixels. Consequently mask and contrast reconstructions
shared the same background. Artifact level in the background
depended on both acquisition protocol and sparsity constraint.
This level was quantified by computing over the Jb pixels
of the background structures the root mean square devia-
tion (RMSD) between the reconstruction and the reference

d =

√
1
Jb

∑Jb
j=1

(
fj − f̃j

)2
.

Fig. 3(a) and Fig. 3(b) show that the minimization of JST
from homogeneous spins did not improve the quality of the
background over FBP. RMSD values are equivalent in these
two cases: d = 18 HU. On the opposite, Fig. 3(c) and Fig. 3(d)
show that the heterogeneous protocol allowed for reducing
streak artifacts and benefited from a sampling of twice as many
views. The RMSD d was reduced to 11 HU.

Fig. 4 shows that the use of TV resulted in less streaks in
the homogeneous protocol (Fig. 4(a)) as well as in the het-
erogeneous protocol (Fig. 4(c)). The RMSD was d = 13 HU
in the homogeneous case and was reduced to d = 11 HU
in the heterogeneous case. Figure details (Fig. 4(b) and Fig.



(a) (b)

(c) (d)

Fig. 3. Reconstruction by minimization of JST from 150 views. WC =
60 HU and WW = 75 HU. (a) Reconstruction of the contrast from homo-
geneous spins; (b) Details of (a); (c) Reconstruction of the contrast from
heterogeneous spins; (d) Details of (c).

(a) (b)

(c) (d)

Fig. 4. Reconstruction by minimization of JTV from 150 views. WC =
60 HU and WW = 75 HU. (a) Reconstruction of the contrast from homo-
geneous spins; (b) Details of (a); (c) Reconstruction of the contrast from
heterogeneous spins; (d) Details of (c).

4(d)) also highlight that the piecewise-constant approximation
implied by TV affected the overall texture of the background.

IV. DISCUSSION

Soft-thresholded reconstruction did not improve the image
quality when spins are homogeneous, even though the simu-
lated vessels verified the sparsity hypothesis. In this latter case,
the use of an heterogeneous protocol was required to raise
image quality without introducing a bias. However, natural
sparsity does not generalize to contrast distributions that may
be found in perfused tissues. Reconstruction penalized by
TV gave decreased artifact levels, whatever the acquisition
protocol, at the expense of a change in the overall texture of the
background that may not be clinically acceptable. Still, these
results suggest dose reduction strategies. On the one hand, it
should be possible to reduce the noise (simultaneously to the
reduction of the streaks) and raise image quality, at constant
dose level. On the other hand, one could reduce the dose by
half without deteriorating image quality.

Confirmation of the applicability of the proposed algorithms
in cone-beam geometry and on clinical data is on-going.

Compressed sensing penalties were selected in this work
according to the acquisition pattern at hand. An alternative
sparsity penalty has been proposed in PICCS [9], which relies
on a prior image. If the mask image is taken as the prior image,
the redundant background structures will be set to the mask
and will not be improved further. The sum of the mask and
contrast volumes cannot be taken as prior, since it is degraded
by vessel streaks. The PICCS approach rather suggests an
unbalanced acquisition protocol where many views would be
dedicated to sampling the mask, while the contrast volume
would be estimated from very few contrast projections and a
prior image equal to the mask.

V. CONCLUSION

Extension of iterative filtered backprojection with `1-
minimization has been presented for X-ray Digital Subtraction
Rotational Angiography. Evaluation on a simulated phantom in
parallel geometry showed that sparsity constraints on vessels
allowed to generate streak-free vessel images. More interest-
ingly, the non-sparse non-injected structures were estimated
from both mask and contrast acquisition, thus benefiting from
an increased angular sampling that reduced the streak level.
Overall image quality depended on the selected penalties and
acquisition protocols. A simple angular shift between the
mask and the contrast acquisition resulted in artifact reduction,
whatever the sparsity constraint. This suggests strategies for
either reducing the dose or improving the image quality of
current clinical X-ray DSRA exams.
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