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Abstract

An online approach to nonlinear system identification based on binary obser-
vations is presented in this paper. This recursive method is a nonlinear extension of
the LMS-like (least-mean-squares) basic identification method using binary obser-
vations (LIMBO). It can be applied in the case of weakly nonlinear Duffing oscil-
lator coupled with a linear system characterized by a finite impulse response. It is
then possible to estimate both Duffing and impulse response coefficients knowing
only the system input and the sign of the system output. The impulse response is
identified up to a positive multiplicative constant. The proposed method is com-
pared in terms of convergence speed and estimation quality with the usual LMS
approach, which is not based on binary observations.
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1 INTRODUCTION

Microfabrication of electronic components such as micro-electro-mechanical systems

(MEMS) has known an increasing interest over the past two decades. The most notable

innovation emanating from these systems is the possibilityto massively integrate sen-

sors with self-test features on the same piece of silicon. Indeed, it is well-known that, as

characteristic dimensions become smaller, the dispersions afflicting electronic devices

tend to become larger. Typical sources of dispersions and uncertainties are variations

in the fabrication process or environmental variations such as temperature, pressure or

humidity. Consequently, it is usually impossible to guaranteea priori that a given de-

vice will work properly. Moreover, expensive tests must then be run after fabrication

to ensure that only suitable devices are commercialized. Analternative consists in im-

plementing self-test (and self-tuning) features such as parameter estimation routines,

so that devices can adapt to changing conditions.

However, traditional identification methods [1, 2] are often tricky to ‘straightfor-

wardly’ adapt from macroscopic scale to microscopic scale.Their integration requires

the implementation of a high-resolution analog-to-digital converter (ADC) which re-

sults in longer design times as well as larger silicon areas.Thus, parameter estimation

routines based on binary observations are very attractive because they only involve the

integration of a 1-bit ADC. Some important contributions that keep the added cost of

testing as small as possible are available in the literature.

In [3], Wigren has developed a least-mean-squares (LMS) approach to the problem

of online parameter estimation from quantized observations. The principle is to esti-

mate the gradient of the least-squares criterion by approximating the quantizer. Under

some hypothesis, it is then possible to guarantee the asymptotic convergence of this

method to the nominal parameters. In [4], Negreiros suggested to use a white Gaussian

input to excite the unknown linear system and to estimate thepower spectral density

(PSD) of the binary output. From this estimated PSD, the modulus of the unknown
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system transfer function can be analytically derived. However, it is not possible to ob-

tain any information concerning the phase of this transfer function. This limitation has

been overcome by deriving an analytical relationship between the coefficients of the

impulse response of the system and the cross-covariance of its binary input and output.

Although this approach is fairly simple to implement, it relies on the mixing properties

of the linear system which may not be guaranteea priori. Recently, a basic identi-

fication method using binary observations (BIMBO) has been introduced in [5]. The

theoretical framework of this offline weighted-least-squares (WLS) approach is based

on the minimization of a criterion where the parameter-dependent weights are chosen

in order to smooth out the discontinuities of the unweightedleast-squares criterion. It

is then possible to guarantee the consistency of this approach even in the presence of

measurement noise, provided that the signal at the input of the quantizer is Gaussian

and centered. Furthermore, the estimation quality of BIMBOhas been investigated

in the sense of correlation coefficient between the nominal system parameters and the

estimated system parameters. An alternative WLS criterion has also been presented in

[6] which is easier to implement than the first one in the context of microelectronics.

This approach is as efficient as the one proposed in [5] without measurement noise,

but leads to a systematic error otherwise. Finally, an online LMS-like method for es-

timating system parameters based on binary observations (LIMBO) has been derived

from the offline WLS approach presented in [6, 5]. Simulationshave provided similar

results than those obtained with the Wigren’s method in terms of convergence speed

and estimation quality, and those with a lesser computational complexity [7].

Unfortunately, the methods listed above deal with nonlinear systems. Now, in many

engineering applications, and especially in microfabricated devices, the dynamic may

significantly be affected by nonlinear effects, which must be accounted for in order to

robustly model the system. In [8], the authors have studied identification of Wiener and

Hammerstein systems, which are particular nonlinear structures, with binary-valued
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output observations. In this paper, we propose to extend theLMS-like method intro-

duced in [7] under the name of LIMBO in order to estimate online the parameters of

a nonlinear system from binary observations. We consider a weakly nonlinear Duff-

ing oscillator that is coupled with a linear system characterized by a finite impulse

response. The convergence of this recursive method is illustrated by simulations and

our results are compared with those obtained by the conventional LMS algorithm (i.e.

without quantization).

The structure of the article is the following. In section 2, the nonlinear system and

its model are introduced. In section 3, the LMS-like algorithm is derived. In section

4, the proposed method is compared with a traditional onlinemethod, which is not

based on binary observations, in terms of convergence speedand estimation quality.

Concluding remarks and perspectives are given in section 5.

2 FRAMEWORK AND NOTATIONS

Let us consider a nonlinear system illustrated in figure 1 below. The first branch corre-

Figure 1: Block diagram of the system model.

sponds to a discrete-time linear time-invariant systemH. We assume that this transfer

function has a finite impulse response of lengthL, i.e. the impulse response can be rep-

resented by a column vectorθ = (θl )
L
l=1. A cubic nonlinearity (the so-called Duffing

nonlinearity) is then introduced at the level of the negative feedback branch such that

γk = αy3
k with α ∈ R+. Obviously, the subscript indicesk denotes the discrete time.
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Let b an unknown additive noise andw = y+b the noisy output. The system output is

measured via an 1-bit analog-to-digital converter such that only the signsk = S(wk) is

known. Here, the functionSof a real numberx is defined as follows:

S(x) =











1 if x≥ 0

−1 otherwise
(1)

By supposing the system not highly nonlinear, the followingapproximation can be

done [9]:

yk = hk ∗
(

uk−αy3
k

)

= hk ∗
(

uk−α
(

hk ∗
(

uk−αy3
k

))3
)

≈ hk ∗
(

uk−α(hk ∗uk)
3
)

(2)

The new block diagram of the system model is then illustratedgraphically in figure 2.

Consequently, the scalar value of the system output at timek is given by:

Figure 2: New block diagram of the system model.

yk = θTϕk,L−αθTψk,L (3)
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In the previous relation,ϕk,L = (ul )
k−L+1
l=k is the L sample-long column regression

vector at timek andψk,L is defined in the same way by:

ψk,L =
(

(

θTϕl ,L
)3
)k−L+1

l=k
(4)

Our goal is to develop a recursive estimation method to simultaneously find good

estimates of both the parameter vectorθ and the Duffing coefficientα starting from

N observations of the binary outputs knowing the inputu. Let θ̂k be the estimated

vector of parameters and̂αk be the estimated Duffing coefficient at timek. Let us also

introduce ˆyk the estimated system output at timek andŝk = S(ŷk).

3 PROPOSED LMS APPROACH

In [7], the LIMBO method is carried out in order to estimate online the parameters of a

linear system from binary observations. Since onlysk is available at timek, the authors

judiciously defined the following instantaneous error:

εk = |sk− ŝk|ŷk (5)

This suitable formulation has been specified to ensure the derivability with respect to

θ̂k [5, 6]. Without loss of generality, we adopt this criterion to deal with nonlinear

constraints. Obviously, (5) is also differentiable with respect toα̂k. By inspiring from

the general LMS algorithm, we can write:

θ̂k+1 = θ̂k−µk
∂ε2

k

∂θ̂k
= θ̂k−2µkεk

∂εk

∂θ̂k
(6)
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In the same way, the following relation can be established:

α̂k+1 = α̂k−λk
∂ε2

k

∂α̂k
= α̂k−2λkεk

∂εk

∂α̂k
(7)

The dynamic LMS stepsµk andλk must satisfy some conditions to guarantee stability

and convergence of the algorithm. In order to determine the previous derivatives, let us

first develop the instantaneous error by introducing (3) into (5):

εk = |sk− ŝk|
(

θ̂T
kϕk,L− α̂kθ̂

T
k ψ̂k,L

)

(8)

Thus, we can express the derivative with respect toθ̂k:

∂εk

∂θ̂k
= |sk− ŝk|

(

ϕk,L− α̂k

(

ψ̂k,L + θ̂
T
k

∂ψ̂k,L

∂θ̂k

))

(9)

By using relation (4), we have:

∂ψ̂k,L

∂θ̂k
= 3

(

ϕl ,L
(

θ̂T
kϕl ,L

)2
)k−L+1

l=k
(10)

This yields:

θ̂T
k

∂ψ̂k,L

∂θ̂k
= 3

(

(

θ̂T
kϕl ,L

)3
)k−L+1

l=k
= 3ψ̂k,L (11)

We find:

θ̂k+1 = θ̂k−2µkεk|sk− ŝk|
(

ϕk,L−4α̂kψ̂k,L
)

= θ̂k−2µk (sk− ŝk)
2 ŷk
(

ϕk,L−4α̂kψ̂k,L
)

(12)
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Following the same reasoning, the derivative of the instantaneous error with respect to

α̂k is easily obtained:

∂εk

∂α̂k
= |sk− ŝk|

(

−θ̂T
k ψ̂k,L

)

(13)

And we finally have:

α̂k+1 = α̂k+2λk (sk− ŝk)
2 ŷkθ̂

T
k ψ̂k,L (14)

The algorithm 1 synthetize all the previous equations. The normalization step on line

Algorithm 1 LIMBO NL
Require: u, s, L, N

1: χ̂1←
[

1 0 · · · 0
]T

2: θ̂1←
χ̂1

‖χ̂1‖2
3: α̂1← 0
4: for k= 1 toN do
5: ϕk,L← (ul )

k−L+1
l=k

6: ψ̂k,L←
(

(

θ̂T
kϕl ,L

)3
)k−L+1

l=k

7: ŷk← θ̂T
kϕk,L− α̂kθ̂

T
k ψ̂k,L

8: ŝk← S(ŷk)

9: χ̂k+1← θ̂k−2µk (sk− ŝk)
2 ŷk
(

ϕk,L−4α̂kψ̂k,L
)

10: θ̂k+1←
χ̂k+1

‖χ̂k+1‖2
11: η̂k+1← α̂k+2λk (sk− ŝk)

2 ŷkθ̂
T
k ψ̂k,L

12: α̂k+1← η̂k+1‖χ̂k+1‖
3
2

13: end for
14: return θ̂k+1, α̂k+1

10 ensures that the norm ofθ̂k is equal to unity and the line 12 is added to guarantee

the homogeneity. Finally, the full operating model is illustrated graphically in figure 3.
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Figure 3: Block diagram of nonlinear LIMBO.

4 RESULTS AND DISCUSSION

In this section, the results obtained with nonlinear LIMBO method are compared with

those obtained by applying a typical LMS method. Let us underline that contrary to

our approach, the standard LMS is not based on quantized output measurements and is

manifestly not well adapted to the context of micro electronics. The idea is to compare

the performance in terms of convergence speed of our method with one which not

suffers from a lack ofa priori information.

The input signal is a Gaussian white noise with zero mean and unit standard devia-

tion. We consider an impulse response of lengthL = 50 and the Duffing coefficientα

is set to 0.01. In relations (12) and (14), the dynamic LMS stepsµk andλk must be cho-

sen in order to guarantee stability and convergence of the algorithm. Concretely, these

regulative coefficients can be determined by following an adaptive step size strategy.

Unfortunately, their expression is often not perfectly adjusted to the integration context

of micro devices. Hence, we prefer using constant regulative coefficients which are

empirically determined. In the present case, we imposeµ= 0.0092 andλ = 0.000079
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for LMS andµ= 0.0049 andλ = 0.0000165 for LIMBO. Obviously, the two methods

are compared on the same test case. The quality of the online estimationθ̂k is defined

as 1−νk whereνk is the cosine of the angle made byθ̂k andθ. Since both vectors are

normalized, we haveνk = θ
T θ̂k and the following equivalence relation :

lim
k→∞

(1−νk) = 0 ⇔ lim
k→∞

νk = 1 ⇔ lim
k→∞

θ̂k = θ (15)

Without measurement noise, both methods present encouraging results in terms of

estimation quality concerning the impulse response. Indeed, the fifty coefficients of

the column vectorθ have been successfully estimated. Without surprise, the Duffing

coefficient identification also yields reasonable results for both methods, in terms of

convergence speed and estimation quality, but with a notable advantage for the nonlin-

ear LMS approach in terms of convergence speed. This difference is shown in figure

4 and is an immediate consequence of the quantized data. The same behavior is dis-
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α k
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Figure 4: Comparison of nonlinear LMS and LIMBO methods for Duffing coefficient
identification.

tinctly observable in figure 5 where the nonlinear LIMBO approach stops converging
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after reaching an error level approximately equal to 10−6 and where the nonlinear LMS

approach converges to the nominal parameters within the limits of finite machine pre-

cision. In order to perturb the data we consider an additive Gaussian noise such that the
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Figure 5: Comparison of nonlinear LMS and LIMBO methods in terms of estimation
quality (SNR =∞ dB).

SNR is set to be 20 dB. The quality of the estimation is illustrated in figure 6. In this

experiment, the two approaches stop converging after reaching an error level approxi-

mately equal to 10−3 for LIMBO and 10−4 for LMS. Although measurement noise has

induced performance degradation, the estimation quality remains appreciable. Once

again, LMS method presents the best results in terms of convergence speed but the gap

is slightly reduced.

Finally, let us remember that for LIMBO, unknown parametersare updated only

if the instantaneous error defined in (5) is null,i.e. only if sk 6= ŝk. This ‘change of

sign’ has appeared 458 times in absence of noise and 3715 times with a SNR of 20

dB. Consequently, LIMBO seems to give similar performanceswith a lesser iteration

number than the LMS method, and especially with perturbed data. However, let us bear
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Figure 6: Comparison of nonlinear LMS and LIMBO methods in terms of estimation
quality (SNR = 20 dB).

in mind that contrary to LMS approach, it is not possible to obtain any information

concerning the amplitude of the impulse response coefficients in LIMBO sinceθ is

normalized.

5 CONCLUSION

In this paper, we have extended the LIMBO method introduced in [7] in order to esti-

mate online the parameters of a nonlinear system from binaryobservations. We have

studied the identification of a weakly nonlinear Duffing oscillator that is coupled with

a linear system characterized by a finite impulse response. Results obtained by sim-

ulations are admirable in terms of convergence speed and estimation quality without

measurement noise, and nearly similar to those obtained with the LMS method, which

is not based on binary observations, in the noisy case. Consequently, nonlinear LIMBO

is an inexpensive online test method easily implementable on microfabricated devices

since it only requires the integration of a 1-bit ADC.
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