
HAL Id: hal-00647116
https://centralesupelec.hal.science/hal-00647116v1

Submitted on 1 Dec 2011

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Information Flow Control for Intrusion Detection
derived from MAC Policy

Stéphane Geller, Christophe Hauser, Frédéric Tronel, Valérie Viet Triem Tong

To cite this version:
Stéphane Geller, Christophe Hauser, Frédéric Tronel, Valérie Viet Triem Tong. Information Flow
Control for Intrusion Detection derived from MAC Policy. 2011 IEEE International Conference on
Communications (ICC), Jun 2011, Kyoto, Japan. 6 p., �10.1109/icc.2011.5962660�. �hal-00647116�

https://centralesupelec.hal.science/hal-00647116v1
https://hal.archives-ouvertes.fr

Information Flow Control for Intrusion Detection

derived from MAC Policy

Stéphane Geller, Christophe Hauser, Frédéric Tronel, Valérie Viet Triem Tong

{firstname.lastname@supelec.fr}
SUPELEC, SSIR group (EA 4039), Rennes, FRANCE

Abstract—Most of today’s MAC implementations can be
turned into permissive mode, where no enforcement is performed
but alerts are raised instead. This behavior is very close to
an anomaly IDS except that the system is configured through
a MAC policy. MAC implementations such as SELinux and
AppArmor come with a default policy including real life and
practical rules ready to be used as is or as a basis for a custom
policy. In this paper, we first propose an extension of an IDS
based on information flow control. We address issues concerning
programs execution and improve its expressiveness in terms of
security policy. This extended model can be configured to reach
a wide variety of different security goals. Particularly, it allows
for information flow checking based on users and/or programs
dependent policy rules. Furthermore, suspicious modification of
binary programs can be detected to avoid malware execution.
We also propose an algorithm for deriving an AppArmor MAC
policy into an information flow policy, and thus get the advantage
of having a ready to use policy offering good security. We finally
show a practical example of deriving such a policy in order to
configure our IDS.

Index Terms—Intrusion detection, Information flow control,
Mandatory Access Control

I. INTRODUCTION

Over the past years, access control mechanisms in most

operating systems have been improved. While traditional

discretionary access control (DAC) remains widely used,

previous research works on mandatory access control (MAC)

have led to implementations in common operating systems,

such as Linux, FreeBSD, MacOSX and Windows. Examples

include SELinux [11], AppArmor [1], Smack [10], Tomoyo

[5]. By using those mechanisms, one can finely control the

operations each subject is allowed to perform on the objects

of the system. A significant amount of work has been spent on

defining default security policies for SELinux and Apparmor,

offering rules for a lot of applications. This makes those tools

valuable for system administrators, reducing the work needed

to set up complex security policies in real life systems.

In the same spirit, several models of information flow

control have been proposed to address one persistent weakness

of access control models, namely the possibility for users or

programs to indirectly and illegally access to pieces of infor-

mation by collaborating with users who have legal access to it.

In this article, we focus on intrusion detection and propose a

model of information flow control based on mandatory access

control. We perform information flow tracking and consider

that the detection of an illegal information flow is an intrusion

symptom. As we do not enforce the security policy, an alert is

raised in case of intrusion and illegal flows are not forbidden.

This behavior is known as permissive mode and is available

with most MAC implementations. Our model is inspired from

a previous model presented in [12], with three new major

contributions. First, our extended model supervises programs

execution. Then, policy expressiveness has been improved by

using a generic tag system. It is now possible to specify an

information flow policy based either on user rights, programs

rights, or both at the same time. Finally, in order to determine a

practical security policy for this model, we define an algorithm

to derive an information flow policy from an AppArmor MAC

policy. The paper is organized as follows. First, we briefly

present previous works in the literature, related to MAC and

information flow tracking. A formal model for representing

information flows is then introduced, and our extended model

is presented. Finally, we show how it is possible to derive

information flow control from a MAC policy.

II. BACKGROUND AND RELATED WORK

In the following, files, sockets and other resources are

referred to as objects while processes are referred to as

subjects. Any subject or object containing information is a

container of information. Discretionary access control (DAC)

is the most commonly used access control mechanism and is

the default on UNIX based systems. Access is restricted given

the identity and the group of the subject who tries to access

to an object. It is said to be discretionary because subjects are

allowed to transfer certain permissions to each other at their

own discretion. Each subject and object has a set of security

attributes, and any operation requires to test that it is conform

to the policy. Mandatory access control, at the opposite of

discretionary access control, is based on authorization rules

(policy) enforced by the operating system. The policy is cen-

trally controlled by a security policy administrator, and users

cannot modify it. Regular users cannot declassify information,

and it is then possible to verify the policy consistency against

a given set of security goals [3], [7]. Therefore, a number of

security mechanisms are based on MAC, and MAC is central

to our approach. This aspect will be further detailed later in

section V-B.

Advances in common operating systems such as Linux and

FreeBSD include the introduction of generic access control

frameworks, including LSM [14] (Linux Security Modules)

and TrustedBSD [13]. LSM has led to several implementa-

tions, among which SELinux [11], Tomoyo [5], Smack [10]

and AppArmor [1] are the most commonly used. When used

in enforcement mode, they block illegal accesses to resources

before those can be conducted. When used in permissive mode,

their behavior is comparable to a model-based IDS.

SELinux [11] is the first security module available in

Linux, and it has been designed to implement a flexible

MAC mechanism called type enforcement (TE). With type

enforcement, all subjects and objects have a type identifier.

When accessing an object, a subject must have an authorized

type of operation (read, write, etc. . .) with respect to the

object’s type, and regardless of its user identity. AppArmor

[1] is a simple MAC implementations available in the Linux

kernel as an alternative to SELinux. AppArmor aims at being

easier to use and configure than SELinux. It is used by default

by Novell in their products and comes with a predefined policy,

and a set of generic definitions to ease the creation of new

policies. AppArmor will be further detailed later in this paper

in section V-B.

Contrary to DAC or MAC systems which ensure security

in controlling access to containers of information, information

flow control ensures security in preventing illegal information

flows. Models of information flow control have been intro-

duced in the eighties by Denning, Biba, Bell and Lapadula

[4], [2], [9]. These models are the origin of the Multilevel

Security (MLS) model. In this model, subjects and objects are

labeled with a security level, which represent their sensitivity

or clearance. Any information flow from lower-level containers

to higher-level containers is illegal. Implementations of MLS

models try to precisely observe data manipulations in order

to prevent illegal information flows. Flume [8], and Histar

[15] are modern implementations of information flow control.

Flume is an implementation of distributed information flow

control (DIFC) for Linux, acting at the OS level, and using

standard OS abstractions (processes, pipes, . . .). In Flume,

processes are confined according to a flow control policy.

Histar is an operating system aiming at minimizing the amount

of code that must be trusted. It provides a secure operating

system using mostly untrusted user-level libraries (the only

fully trusted code being the kernel). It uses Asbestos labels on

six OS level object types (threads, address spaces, segments,

gates, containers and devices).

Blare [17], [12] is a policy-based intrusion detection system

aiming at providing fine grained information flow tracking.

Content and containers are distinguished, and information

flows are observed using tainting techniques. Contents are

the data and containers are physical or logical data storage.

Tags are associated to containers, independently describing

the content as well as the policy for each container in the

system. The information flow policy can either be automat-

ically constructed from a DAC policy or adjusted by an

administrator. This model has been implemented in Blare1

and has proved to be helpful to detect attacks (see [6]).

Nonetheless the model proposed in [12] is not aware of

execution of programs and processes behavior, and does not

1Blare is freely available at http://www.rennes.supelec.fr/blare/

take different users into account, which is necessary to ensure

a fine observation of information flows. Consequently, in this

model and its implementation, the authors were not able to

derive a Blare policy from a MAC policy, and illegal flows

between processes were ignored. In this article we propose to

address this problem and we present in section III an extension

of the model introduced in [12]. We also explain how we can

now derive an information flow policy from a MAC policy.

As an example, we give a general algorithm to derive a Blare

policy from an Apparmor policy.

III. EXTENDED BLARE MODEL

In our extended model, we introduce three kinds of contain-

ers : “on-disk” containers such as files are called persistent

containers (i.e. long-term storage), “in memory” containers

are called volatile containers (memory pages, shared memory,

IPC. . .). Processes are considered as a third kind of containers

(even though these are volatile) as they correspond to active

subjects as opposed to passive memory. We note C the set of

all containers, PC the set of all persistent containers, VC the

set of all volatile containers and P the set of all processes.

Hence, C = PC ∪ VC ∪ P . As multiple processes can in fact

execute the same program (e.g. multiple forks of the apache

daemon), we also define Π, the set of all classes of processes.

Two processes running the same program are in the same

class. In the same manner, we distinguish code of running

programs from other passive data. We attach meta-information

to each element of information in the system that we want to

supervise. We note I the set of all meta-information attached

to data (e.g. all the personal data of a user, or the code of

the apache daemon stored “on disk” in /usr/bin/apache), and

X the set of all meta-information attached to running code

(as the “in memory” code of the apache process). In practice,

elements of I and elements of X are integers. Finally we also

model users and we note U the set of all users.

The information flow policy is divided into three inde-

pendent parts. The first part (PPC) defines the authorized

combinations of atomic information for the set of persistent

containers that we want to supervise, the second part (PU)
defines the allowed combinations of atomic information for

the users of the system, and the third part (PΠ) defines the

authorized combinations of atomic information for the set of

all the classes of processes (each class being attached to the

code of a program).

Definition 1 (Information flow policy): An information

flow policy is a triplet P = (PPC ,PU ,PΠ) where2

PPC ⊆ PC × ℘(I ∪ X), PU ⊆ ℘(I ∪ X) × U and

PΠ ⊆ Π× ℘(I ∪ X).

• A pair (c, a) ∈ PC expresses that the container c is

allowed to contain any subset of a
• A pair (u, a) ∈ PU expresses that any subset of a can be

read or executed by the user u.

• A pair (π, a) ∈ PΠ expresses that any subset of a can be

read or executed by a class of processes π running the

2
℘ (A) denotes all the subset of a set A

same code.

Then, we introduce the three following notations PPC(c),
PU (u) and PΠ(π) whose respective values are {a ∈ ℘(I ∪
X)|(c, a) ∈ PPC}, {a ∈ ℘(I ∪ X)|(u, a) ∈ PU}, {a ∈
℘(I ∪ X)|(π, a) ∈ PΠ}.

Thus, the definition of the information flow policy is defined

for persistent containers, for users, and for classes of processes

through sets of rules accurately stating which combinations of

atomic information those can receive, and which information

are authorized to mix together.

These rules are stored in a distributed fashion : we attach

three tags to each container : an information tag, a policy

tag and an execute policy tag. Dynamic detection of illegal

information flows can then be performed at the container level.

The information tag of a container c ∈ C is a set of elements

of I ∪ X describing the content of c (i.e. which elements of

information it contains). It is updated everytime an information

flow modifies the content of c. Note that because we cannot

monitor all the information flows at the OS level without

hardware memory tagging [16], the information tag contains

an over-approximation of the actual content.

The policy tag of a container c ∈ C is a set of subsets of

I ∪X . It defines all the possible combinations of information

that are allowed to flow towards the container. This tag is

updated when a modification of the policy affects the container

c (in practice, we do not change the policy at runtime).

The execute policy tag of a container c ∈ C is a set of

subsets of I ∪ X . It defines all the possible combinations of

information that processes running the content of c as code are

allowed to read or execute. Thus, it is attached to the code of

programs, and as the information tag, it is updated everytime

an information flow modifies the content of c (i.e. changing the

code of a program changes the policy for running it). Note that

it is independent of users rights, those are taken into account

at execution time (see IV-2).

IV. INFORMATION FLOW TRACKING IN A LIVE SYSTEM

We denote 0, 1, 2, ..., n, ... the states of the system and

we note ti the transition between the states i and i + 1 .

These transitions correspond to operations requiring an update

of the tags content (fork, execution, creation of objects and

information flows).

In the following, we will use the functions itag, ptag and

xptag that respectively associate an information tag, a policy

tag and an execute policy tag to a container.

• itag : C 7→ ℘(I ∪ X), itagi(c) is the information tag

attached to the container c at state i
• ptag : C 7→ ℘(℘(I ∪ X)), ptagi(c) is the policy tag

attached to the container c at state i
• xptag : PC 7→ ℘(℘(I ∪ X)), xptagi(c) is the execute

policy tag attached to the container c at state i

The relation ⊓ is defined on the sets of sets as follows :

A⊓B = {a∩b|a ∈ A, b ∈ B}. We also introduce the notations

⊤ and ⊥ which are respectively the set of all sets of tags and

the set containing the empty set.

An information flow towards a container c is legal if and

only if the new content of c (characterized by itags(c)) is

authorized into c, i.e. it appears in ptags(c).

Definition 2 (Legality of an information flow): An

information flow towards a container c happening during

the transition ti is legal iff ∃p ∈ ptag(c)i+1 such that

itag(c)i+1 ⊆ p. We note itag(c)i+1 4 ptag(c)i+1 when this

condition is verified.

In the following subsections, we are going to detail accu-

rately the propagation of the tags for each operation.

1) fork: When a process p forks, a clone q is created. We

also clone all of its tags.

2) execution of a program: recall that we consider passive

data and running code differently. A data is considered as

running code once it is executed by a process through an

exec() system call. We note Run : I → X , where Run(d)
characterizes the running code out of the execution of a data

d at transition ti. After an exec() call, the three tags of the

calling process p running the object o on behalf of u are

initialized as follows. Its information tag becomes :

itag(p)i+1 :=
⋃

k∈itag(o)i\X

{Run(k)}

Note that elements of X from o are discarded, because

these meta-information are only used to compute the legality

of write and append operations (see IV-6).

Its execute policy tag is initialized to the execute policy tag

of o.

xptag(p)i+1 := xptagi(o)

Its policy tag is computed from its execute policy tag

and from the legal combinations of information for the user

running it :

ptag(p)i+1 = xptagi(o) ⊓ PU (u)}

3) Persistent object creation: When a process p creates a

new persistent object o on behalf of u, the new object receives

an empty information tag.

itag(o)i+1 = ∅

We associate a policy tag to the new object as follows.

The authorized flows towards the created object are the flows

composed of atomic informations that are legal for u (i.e. the

policy states that u is allowed to access this information).

ptag(o)i+1 = PU (u)}

An execute policy tag is also attached to the new object,

and it is set to ⊤ by default : there is no restrictions on code

execution as it contains no (executable) information.

xptag(o)i+1 = ⊤

4) Volatile object creation: When a new volatile object is

created, it is assigned an empty information tag as it contains

no information yet. It is then updated appropriately when

further information flows occur (as it will be detailed in the

following).

itag(o)i+1 = ∅

In the same manner, the execute policy tag is initialized to ⊤.

xptag(o)i+1 = ⊤

In this model, we consider that anything is allowed to

flow into volatile containers. The legality of information flows

involving volatile containers depend on the processes operating

on it, i.e. processes can only access to information that matches

their policy tag. Thus, the policy tag of volatile containers is

initialized to ⊤ so that anything can flow into it.

ptag(o)i+1 = ⊤

Using these tags, we are able to perform dynamic detection

of illegal information flows by checking if itag(c) 4 ptag(c)
stands everytime a flow occurs.

We classify information flows as read like, write like and

append like. When a process p reads from an object o, there

is a read like information flow between the containers o and

p. In the same way, when a process p replaces the content of

an object o, there is a write like information flow. Finally,

if the process writes without erasing the existing content

of the object, it is an append like information flow. When

an information flow occurs, we make an over-approximation

of the actual flow, considering all the data that might have

flown (i.e. all the information tag from the source). It behaves

differently whether a read like, write like or append like
information flow happends, and tags are updated accordingly

for the process and the object.

5) read like operations: When a read like flow occurs

on an object o by a process p, we update the information tag

and the execute policy tag of p. Note that, as in the case of the

execution of a program, elements of X from the information

tag of o are discarded (process execution history is not saved

in our model).

itag(p)i+1 := itag(p)i ∪ (itag(o)i \ X)
xptag(p)i+1 := xptag(p)i ⊓ (xptag(o)i)

6) write like operations: If the process p overwrites the

content of the object o, we simply replace the information tag

and the execute policy tag of the object by those of the process.

Note that the elements of X in the information tag are used

to check the legality of this write like operation performed by

this particular code being executed by p.

itag(o)i+1 := itag(p)i
xptag(o)i+1 := xptag(p)i

7) append like operations: A process p can also append

pieces of information to an object o. In this case, the new

information tag of o is the concatenation of both information

tags. As for write like operations, the elements of X are used

to check the legality of the operation. The execute policy tag

is updated so as to match both the execute policy tags of the

process and of the object.

itag(o)i+1 := itag(o)i ∪ itag(p)i
xptag(o)i+1 := xptag(p)i ⊓ xptag(o)i

The figures 1 and 2 summarize the propagations of the tags

in the different cases mentionned above.

Execution

Object Process Object

Write

I I I

X X X

xptag xptag

ptag

The part of the policy concerning users is also used in the computation.

itag

I

X

I

X

itag

xptag

itag

ptag ptag

I I

I I

X X

X X

Running

Fig. 1. Diagram with an execution and a write-like operation

ProcessObject

Read

II

XX

xptagxptag

The previous tag of the process is also used in the computation.

itag itag

ptagptag

II

II

XX

XX

Fig. 2. Diagram with a read-like operation

V. SETTING UP THE INITIAL TAGS

In previous works, the authors have presented how to

automatically derive an information flow policy starting from

a DAC policy [6] or how administrators can compute an ad-

hoc policy[12]. In this section, we will present an algorithm

to derive a Blare policy from a MAC policy.

A. Initialization of tags starting from an existing policy P =
(PPC ,PU ,PΠ)

At initialization time, i.e. the initial state of the system,

before we start to track information flows, persistent containers

are attached an information tag, a policy tag, and an execute

policy tag matching the policy.

1) Initial information tag : a unique meta-information

describing the initial content of the container is stored into

its information tags. This initial information is considered as

being atomic (atomic information are the smallest pieces of

information that we are able to distinguish in the system).

2) Initial policy tag: for any persistent container c, the

associated policy tag is the set of elements in the policy

regarding this container.

∀c ∈ PC, ptag0(c) := PPC(c)

3) Initial execute policy tag: for any persistent container

c, the associated execute policy tag is the set of elements in

the policy regarding the execution of the content of c. We

note Pclass : PC → Π the relation that associates a class of

processes to any persistent container c. Any process executing

the content of c belongs to this class.

xptag0(c) := PΠ(Pclass(c))

If the object does not contain executable code, the correspond-

ing class will not appear in PΠ and the xptag will be empty.

B. Deriving an information flow policy from an AppArmor

Policy

In the following, an information flow policy (centered on

programs) is derived from an AppArmor MAC policy. Such

a policy does not specify rules based on users, and thus (PU)

is empty. As Blare monitors information flows, we do not

take into consideration access control rules that would not be

related to any flow transition. To derive a Blare policy from

a set of AppArmor profiles, the following is performed : for

each statement in the AppArmor policy, we check whether

such a statement is related to a potential information flow,

and transform it into a Blare statement if it does. The ability

to derive such a Blare policy will be useful for future works

in comparing different models in terms of intrusion detection,

as each model would be configured with a common security

policy.

1) AppArmor: In an AppArmor profile, the permission

granted to a program π over a resource o can be one of the

following : (r,w,l,m,ix,px,Px,ux,Ux).

r read (executing also needs this permission)
w write
a append
l link mode (mediates access to symlinks and hardlinks)
m allow executables mapping (mmap)
ix inherit execute mode (the resource inherits the current

profile, even if a profile already exists for this resource)
px discrete profile execute mode (if no profile is defined for

the resource, execution is denied)
Px scrub the environment (same as px but will use kernel’s

unsafe exec routines : tells glibc to clean the environment
before executing the resource. It helps protect against e.g.
LD PRELOAD abuse)

ux unconstrained execute mode (no profile is needed)
Ux unconstrained/scrub the environment

Fig. 3. AppArmor access modes

AppArmor profiles also constrain access to network re-

sources and POSIX capabilities. However, these are access

control rules and aren’t taken into account in this paper.

Instead, possible information flows related to those accesses

are captured at another level (i.e. actual illegal flow occurs).

Such rules would add false positives and are discarded in our

derivation.

Definition 3: An AppArmor policy P is a set of profiles.

A profile p ∈ P is a set of rules of the form (o, α) where o
is an object and α is a permission. All these rules confine

a given program π ∈ Π. Such a profile is defined as :

(π, {(o1, α1), . . . , (on, αn)})
For each AppArmor policy statement, if it allows a potential

flow between a subject and an object, such as defined in

section, we update the Blare tag system accordingly.

2) Algorithm: The following algorithm transforms an Ap-

pArmor policy (a set of profiles) into an expression of a Blare

policy (set of policy labels on containers). Let P be the set of

all the AppArmor profiles in the policy. For any profile p ∈ P ,

p.container is the container associated to the binary program

constrained by p, p.canread() is the list of files on which

a read like access is authorized, p.canexec() is the list of

executable allowed to be executed, and p.canwrite() is the list

of paths where it is allowed to write. TOP represents the set of

all atomic information tags in the system (it corresponds to ⊤),

inherit(p) : bool returns true if the profile p inherits from its

parent’s profile and false otherwise. unconstrained(p) : bool
returns true if the associated program (subject) is uncon-

strained and false if not. Run(I) is defined in section III.

function tag(P)

for each p in P ; do

class = Run(itag(p.container))

if unconstrained(p)

data = TOP

code = TOP

else

for r in p.canread() ; do

data += itag(r)

end

for x in p.canexec() ; do

code += Run(x)

end

end

xptag(p.container) = data + code

for w in p.canwrite() ; do

w.ptag += data + class

end

end

end

VI. EXAMPLE

The following is an example of intrusion detected by this

model, when configured with an information flow policy de-

rived from an AppArmor policy. Here, the security is centered

on programs, with no user dependent policy rules. Consider

the following AppArmor policy example, where two programs

are confined : apache and ftpd. Both own files that the other

is not allowed to read. We consider AppArmor being setup in

permissive mode, and we compare its behavior to our IDS in

terms of detection potential.

{/usr/bin/apache,

{(/etc/apache2.conf, w),

(/etc/apache2.conf, r),

(/www/index.php,r), (/usr/bin/ftpd, px)}

}

{/usr/bin/ftpd,

{(/etc/ftpd.conf,w), (/etc/ftpd.conf,r),

(/home/ftpd/data,w)}

}

Using the previously introduced algorithm, we can derive

a Blare policy and compute its expression on the tag system

(the function Run() is written R() in the following table):

path itag ptag xptag

/usr/bin/apache {i1} {i1} {R(i1), R(i2), i3, i6}
/usr/bin/ftpd {i2} {i2} {R(i2), i4}
/etc/apache2.conf {i3} {R(i1), i3, i6} ⊤
/etc/ftpd.conf {i4} {R(i2), i4} ⊤
/home/ftpd/data {i5} {R(i2), i4, i5} ⊤
/www/index.php {i6} {R(i1), i3, i6} ⊤

Now, the following execution sequence takes place (see

figure 4). The apache process first reads its configura-

tion file /etc/apache2.conf . Then it reads and interprets

/www/index.php, containing a security flaw. Arbitrary code

is injected and executed through apache. It introduces a

malware in the binary code of /usr/bin/ftpd.

In this first part of the execution, the process running apache

is not expected to write into /usr/bin/ftpd : the policy tag

of this container is not allowed to receive information by a

process running apache. Furthermore, the information apache

previously read (and figuring in its information tag) does not

belong to the policy tag of /usr/bin/ftpd. This would trigger

an alert with both AppArmor (configured in permissive mode)

and Blare.

Then, apache runs the modified ftpd. The process running

apache is allowed to execute ftpd in the security policy, hence

AppArmor would allow this execution. But here, the informa-

tion tag of ftpd has been modified when the arbitrary code

was written into it, and meta-information have been added to

it. Those new meta-information do not figure in the policy tag

of the process running apache, thus it is not authorized to run

ftpd anymore, and this would trigger a second alert for illegal

code execution with Blare. This quite simple example reveals

one of the major goals of Blare : the security administrator

can specify a fine-grained information flow policy including

processes behavior. Many real life viruses would trigger alerts

in this model as soon as the code of a process is changed or

confidential information is moved.

VII. CONCLUSION

In this paper we have presented a model of intrusion

detection based on an information flow policy, dynamically

checking that it is respected. The policy specifies which

information may be combined together and which information

the containers are allowed to contain. This model offers high

expressiveness since we are able to assign meta-information

to any data in the system and to constrain the behavior of

programs when those data are involved. The policy expresses

restrictions on access to information regardless of where it

is located in the system by using a tag system associating

meta-information to information containers. We explain how

we maintain tags when information flows occur and how we

can check if the policy is respected. A central concept of this

model is the execution of programs. This model performs

dynamic checking at execution time, and is able to detect

executions of illegal code or illegal flows of information.

Today’s MAC implementations in the Linux kernel come

with extensive default security policies. It is possible to set

up a policy for the model we propose out of an existing

MAC policy. We show how to derive a Blare information flow

policy from an AppArmor MAC policy, and give an example

of practical use.

In our future works we will focus on an implementation

of this model in the Linux kernel as a LSM module. We

also aim to further enrich this model on two main aspects.

First, a user owning information will be able to declassify it.

Second, we will provide a high-level language to specify an

information flow policy for Blare.

REFERENCES

[1] Apparmor application security for linux.
http://www.novell.com/linux/security/ apparmor.

[2] K. Biba. Integrity considerations for secure computer systems. Technical
Report ESD-TR 76-372, MITRE Co., April 1977.

[3] Yi-Ming Chen and Yung-Wei Kao. Information flow query and verifi-
cation for security policy of security-enhanced linux. In Proceedings of

IWSEC, pages 389–404, 2006.

[4] Dorothy E. Denning. A lattice model of secure information flow.
Commun. ACM, 19(5):236–243, 1976.

[5] Toshiharu Harada, Takashi Horie, and Kazuo Tanaka. Access policy
generation system based on process execution history. Network Security

Forum, 2003.

[6] Guillaume Hiet, Valerie Viet Triem Tong, Ludovic Me, and Benjamin
Morin. Policy-based intrusion detection in web applications by monitor-
ing java information flows. Int. J. Inf. Comput. Secur., 3(3/4):265–279,
2009.

[7] Amy L. Herzog Joshua D. Guttman and John D. Ramsdell. Information
flow in operating systems : Eager formal methods. Workshop on Issues

on the Theory of Security (WITS), 2003.

[8] Maxwell Krohn, Alexander Yip, Micah Brodsky, Natan Cliffer, M. Frans
Kaashoek, Eddie Kohler, and Robert Morris. Information flow control
for standard os abstractions. In Proceedings of the 21st Symposium on

Operating Systems Principles, Stevenson, WA, October 2007.

[9] Leonard J. LaPadula and D. Elliott Bell. Secure computer systems: A
mathematical model. MTR-2547 (ESD-TR-73-278-II) Vol. 2, MITRE
Corp., Bedford, may 1973.

[10] Casey Schaufler. “the simplified mandatory access control kernel”.
“White paper”.

[11] Chris Vance Stephen Smalley. Implementing selinux as a linux security
module. Technical report, NAI Labs, 2002.

[12] Valérie Viet Triem Tong, Andrew Clark, and Ludovic Mé. Specifying
and enforcing a fine-grained information flow policy: Model and exper-
iments. In Journal of Wireless Mobile Networks, Ubiquitous Computing

and Dependable Applications, 2010.

[13] Robert Watson, Brian Feldman, Adam Migus, and Chris Vance. The
trustedbsd mac framework. In Proceedings of DISCEX (2), pages 13–,
2003.

state action itag(π1) itag(π2) itag(/usr/bin/ftpd) AppArmor Alerts Blare Alerts

0 π1 = exec(/usr/bin/apache) R(i1) i2
1 (apache,/etc/apache2.conf,r) R(i1), i3 ∅ i2
2 (apache,/www/index.php,r) R(i1), i3, i6 ∅ i2 X X
3 (apache,/usr/bin/ftpd,w) R(i1), i3, i6 ∅ i2, i3, i6, R(i1)
4 (apache,/usr/bin/ftpd,x) R(i1), i3, i6 R(i2), R(i3), R(i6) i2, i3, i6, R(i1) X

∧π2 = exec(ftpd) i2, i3, i6, R(i1)
5 (ftpd,/home/ftpd/data,w) ∅ R(i2), R(i3), R(i6) i2, i3, i6, R(i1)

Fig. 4. Execution sequence

[14] Chris Wright, Crispin Cowan, Stephen Smalley, James Morris, and Greg
Kroah-Hartman. Linux security modules: General security support for
the linux kernel. In USENIX Security Symposium, pages 17–31, 2002.

[15] Nickolai Zeldovich, Silas Boyd-Wickizer, Eddie Kohler, and David
Mazières. Making information flow explicit in histar. In OSDI ’06:

Proceedings of the 7th symposium on Operating systems design and

implementation, pages 263–278, Berkeley, CA, USA, 2006. USENIX
Association.

[16] Nickolai Zeldovich, Hari Kannan, Michael Dalton, and Christos
Kozyrakis. Hardware enforcement of application security policies using
tagged memory.

[17] Jacob Zimmermann, Ludovic Mé, and Christophe Bidan. Introducing
reference flow control for detecting intrusion symptoms at the os level.
In Andreas Wespi, Giovanni Vigna, and Luca Deri, editors, Proceedings

of the 5th International Symposium on Recent Advances in Intrusion

Detection (RAID’2002), volume 2516 of Lecture Notes in Computer

Science, pages 292–306. Springer, 2002.

