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Abstract—Multiple Input Double Output (MIDO) asymmetric

space-time codes for 4 transmit antennas and 2 receive antennas
can be employed in the downlink from base stations to portable
devices. Previous MIDO code constructions with low Maximum
Likelihood (ML) decoding complexity, full diversity and the non-
vanishing determinant (NVD) property are mostly based on cyclic
division algebras.
In this paper, a new family of MIDO codes with the NVD
property based on crossed-product algebras over Q is introduced.
Fast decodability follows naturally from the structure of the
codewords which consist of four generalized Alamouti blocks.
The associated ML complexity order is the lowest known for
full-rate MIDO codes (O(M'°) instead of O(M ') with respect
to the real constellation size )/). Numerical simulations show
that these codes have a performance from comparable up to 1dB
gain compared to the best known MIDO code with the same
complexity.

I. INTRODUCTION

There are many wireless channel scenarios where the

number of antennas is asymmetric, in particular, where the
transmitter has many antennas, while the receiver, for example
being a portable device, has few of them. MIDO channels,
which stands for Multiple Inputs Double Outputs, refer to such
systems. The model we will consider in this paper is a MIDO
coherent Rayleigh fading channel, with 4 antennas at the
transmitter and 2 antennas at the receiver, which furthermore
has perfect channel state information at the receiver.
Since the computing power available at the receiver is typically
very limited, the design of MIDO codes must take into account
the decoding complexity order. A code is called fast-decodable
if the research tree in the sphere decoding algorithm [10]
can be simplified. In general, the complexity order of the
real sphere decoding algorithm for a system with m transmit
antennas and n receive antennas employing a space-time code
and real signal constellations of size M is O(M?>™").

A. Related work

The first low ML complexity MIDO code was proposed
in [2]. This code has complexity order O(M1'?) instead of
O(M19); it is not full-rank but still achieves good performance
for moderate values of SNR. A full-rank MIDO code with
O(M*'?) complexity and high coding gain which is conjec-
tured to have the non-vanishing determinant (NVD) property
was presented in [9]. Recently, MIDO codes with the NVD
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property based on cyclic division algebras with complexity
order up to O(M*°) were also constructed in [7, 6, 11].

In this paper, we consider an alternative approach and intro-
duce a new family of O(M'?) decoding complexity MIDO
codes with the NVD property based on crossed-product alge-
bras over Q. Crossed-product algebras were already used to
construct one example of fast-decodable MIDO code in [7];
however, this example is based on puncturing a 4 x 4 full-rate
space-time code and its performance is not very good. The
constructions presented here are tailored for the 4 x 2 case
and do not require any puncturing.

B. Alamouti-like structures

Let ()* denote the complex conjugation for a scalar, and
the Hermitian transpose for a vector or a matrix. Recall that
an Alamouti block code is given by

<y1 —?J;)
y2 Y1 )’

with y1,y2 € C. It has the property that its columns are
orthonormal. This property allows fast decoding, and con-
sequently many of the attempts to construct fast decodable
space-time codes have tried to mimic it. In this paper we will
consider generalized Alamouti codewords of the form

( o ‘“5’2), aeC (1)
a Y2 Y1

which will make the columns orthogonal (furthermore or-
thonormal if |«| = 1). Note that this definition is different

from the one in [2]. Note also that if we have a matrix of the
form

(yl ‘0‘3/2> L, a€eR, a>0, 2)
Y2 Y1

then by multiplying the second column by 1/y/a, and the
second row by /a, we get, without changing the matrix

determinant,

Vay oyl )7
a particular case of (1) when « is real. As far as decoding
is concerned, it is enough to ask for the columns to be
orthogonal; the orthonormality does not improve the decoding



complexity, but rather the performance by ensuring that the
energy is balanced across time and antennas.

Our goal in this paper is to construct a code carrying 8
complex information symbols of the form

A C
(B D), )

where the 2 x 2 blocks A and D are generalized Alamouti
codes of the form (1) (it will be discussed in Section IV why
the focus is on the blocks A and D), preferably with columns
as close to orthonormal as possible. This means that the energy
of the symbols might not be balanced, as in (3).

II. THE FRAMEWORK OF CROSSED PRODUCT ALGEBRAS

The incentive to consider biquadratic crossed product al-
gebras as underlying algebraic structure to construct fast
decodable MIDO codes is two-fold: first, we will see below
that the representation of these algebras naturally gives rise
to codewords of the form (4), and furthermore, as is the case
with traditional space-time coding using division algebras, a
codebook with full diversity is obtained from division crossed
product algebras.

A. Crossed product algebras of degree 4

We will consider as in [1] a crossed product algebra A =
(L/K,a,b,u) over the biquadratic extension L/ K, where L =
K(\/ﬁ, \/E), and

(o) = Gal(K(Vd')/K), (r) = Gal(K (Vd)/K).
Such an algebra is of the form A = L@ el @ fLdef L, where
e? =ac K(\Vd), f>=be K(Vd), ze = ec(z) Yz € L,
xf = fr(x) Vo € L, and fe = efu for u a non-zero element

of L such that uo(u) = a/7(a), ur(u) = o(b)/b. Elements
of A admit the following matrix representation:

xg ao(x1) br(z2) abr(u)oT(zs)

X o(xg) br(xs)  br(u)or(ze) 5)
xo T(a)uo(xs) 7(xe) 7(a)or(xq) ’

x3 uo(x2) T(z1) o1 (xo)

with Xo,T1,%2,x3 € L.
As shown in [1], u is such that N,k (u) = 1, and suitable @
and b are determined by the choice of u in the following way:

o= kvd ifus(u) =-1, ke K; ©
B I(1+uo(u)) otherwise, | € K.
Similarly,
SRV ifur(u) = -1 K e K -
B Hlfi;'(u) otherwise, I’ € K.

Moreover, checking whether the resulting crossed product
algebra A is a division algebra only depends on the choice
of u:

Theorem 1. [I] Let K be a number field, and let A =
(L/K,a,b,u) be a crossed product algebra. Then A is a
division algebra if and only if

D (_Clléd/) is a division algebra and uo(u) = —1,

2 d’,2+TrK<\/E)/K(uJ(u))
) K

uo(u) # —1.

There is a similar equivalent formulation depending on
whether ur(u) = —1. Since we need 8 complex symbols,
it is enough to consider a crossed product algebra A over a
biquadratic extension L of K = Q. Such an algebra is of index
4, thus we can encode 16 real symbols, that is 8 complex ones.
In order to obtain a matrix of the form (4) from (5),

. @T a0($1)> . D- (:Ei?% T(a)aT(x1)>

o(xo) o1(zo)
should be generalized Alamouti blocks. Alternatively, by
swapping the second and third rows and the second and third

columns in (5), we get
D= (0’(.130)
uo(x)

e @0 br(x2)> |

7(20)
Finally, by swapping the second and fourth rows and

columns, we obtain
T(a)ua(x3)>

e (ii abr(uo(xg))) b <T(xo> o .

o1 (xo) br(x3)
There are three possible choices for K(v/d) = Q(v/d) and
K(Wd')=Q(Wd):
« both are imaginary quadratic fields,
« both are real quadratic fields,
e one is a real quadratic field, the other is an imaginary
quadratic field.

is a division algebra and

bT(u)aT(x2)> _

o7 (o)

Since typical signal constellations such as QAM are encoded
using Q(¢), we will assume that one of the two quadratic fields
is Q(4) and will thus not consider the case of two real quadratic
fields. Due to the lack of space, we will focus on the case of
two imaginary quadratic fields, where o7 acts as the complex
conjugation, and choose codewords of the form (8).

B. Crossed product algebras over imaginary fields

Consider now the case where d = —c < 0,d' = —¢ < 0,
that is L = Q(v/—c,v/—¢’). We are mostly interested in the
case when ¢’ = 1, but nevertheless will show later that the
construction is also possible for other values of ¢’.

Q(i, v=c)
VRN
Q) Q(v=c)

ANNE
Q

The Galois group of Q(7)/Q, resp. Q(v/—c)/Q is denoted
by (o), resp. (1) with (i) = —i, 7(v/—c) = —v/—c. Every
element of L is of the form x = a1 +asi+asv/—c+aqiv/—c,



ai,as,az,aq € Q, and we extend o and 7 to L so as to get

o(x) = a1 — agi + azvV/—c — aqgiv/ —c,
7(x) = a1 + azi — azgv/ —c — aqgiv/—c,
or(x) = a1 — azi — agv/—c + agiv/—c = x*.

We need to obtain two properties:

o the Alamouti-like block structure for fast-decodability,
« the algebra should preferably be a division algebra to
guarantee a good behaviour at high SNR.

Let us first exploit the property o7(z) = x* to construct
a code with an Alamouti block structure by swapping the
second and fourth row and the second and fourth column of
the representation (5), as already mentioned in (8):

xo abr(uw)or(xs) br(za) ao(x1)
X3 o7 (xo) 7(21) uo(x)
xo  T(a)or(x1) T(x0) T(@)uo(xs)
x1  br(u)or(ze) br(zs) o(xo)

Since complex conjugation commutes with ¢ and 7, we can
rewrite it as

Zo ab7(g)x§ bT((xQ)) aTExliz
o T(agaz’f T(z0) T(a)ur(zz)* ®
z1  br(u)xy  br(x3) 7(20)”

We are now left with the choice of a,b and u. From (2), we
have as condition on these parameters that

abr(u) € R, abr(u) < 0. (10)

To obtain a suitable crossed product algebra A, we need to
choose the element u (with Ny, x(u) = 1), and take a.,b such
that

0 kv—c, ke Q if uo(u) = —1; (11
© (1 +uo(u), L€Q  otherwise.
and
ki, k' € Q if ur(u) = —1;
b= { Y y h ( ) 12)
TFur@)y U € Q otherwise.

For such an algebra to be a division algebra, when uo(u) =
—1, we have by Theorem 1 that it is enough to check whether

(C’@ 1) is. This in turn is equivalent to see whether ¢ =

Ng(iy/o(s) for some s € Q(i). Since Ngi)/q(s) = sT + s3
for s = s1+1is2, 51, 52 € Q, we finally need to check whether
c can be written as a sum of two squares. We also consider
the case where ¢/ = 2, which is the next smallest ¢’ after
¢’ = 1. Similarly in this case when uo(u) = —1, we need to

check whether

c = s} +2s3, s1,52 € Q. Recall that ¢ can be written as the
sum of two rational squares if and only if all its odd prime
factors which are congruent to 3 (mod 4) occur to an even
exponent; similarly, ¢ can be written in the form s? + 2s2 if
and only if its odd prime factors which are congruent to 5
or 7 (mod 8) occur to an even exponent. The first smallest

(C’é 2) is a division algebra, that is, whether

possible values for ¢ are listed below, for both ¢/ = 1 and
cd =2[5].

(¢c,—c) division algebra | (¢, —¢’) division algebra
2-) nEC=1+1 ] 22) n@=0+2)
@3.,-1) yes 3-2) no@B=1+2)
(5,-1) no (5=1+4) (5,-2) yes
(6,-1) yes (6,-2) no (6 =4+2)
(7,-1) yes (7,-2) yes
(10,-1) no (10=9+1) | (10,-2) yes
(11,-1) yes (11,2) no (11=9+2)
(13,-1) no (13=9+4) | (13,-2) yes

The condition when uo(u) # —1 is a priori less systematic
to check, since it relies on the trace of uo(u), though we can
look for an element u such that the trace of uo(u) is ¢ — 2,
where c is such that (¢, —c’) is a division algebra.

We finally discuss briefly how to find u with Ny, /i (u) = 1. A
natural choice is to start by taking « a unit in L. Recall that by
Dirichlet’s unit theorem, the units of an algebraic number field
L are a multiplicative group generated by a set of fundamental
units. The number of fundamental units is 71 +7r2— 1, where ¢
is the number of real embeddings of L, and r, is the number
of pairs of complex embeddings.

In the case L = Q(v/—¢,v/—¢), we have r; = 0 and 75 = 2,
therefore there is only one fundamental unit.

ITII. CODE CONSTRUCTIONS
A. A generic construction

Suppose that there exists v in L with Nz /x(u) = 1, and
that the corresponding a and b as defined by (11) and (12)
satisfy the following conditions:

uo(u) = =1, ur(u) =¢ € {-1,i, —i},

abr(u) € R, abr(u) < 0. (13)

We now set
a = —abr(u) > 0.

Observe that the first condition implies that a = i+/ck, and
take k = 1. Since b € K(v/—c’) = Q(3), o(b) = b* and the
second condition, with I’ = 1, implies that € = ut(u) = %

We then have

e eab _ ebiye  iyeb”
7(u) a a a
cbe cb*

T(a)u = —iveu = —— = ——,

(&% «

where the second equality uses the expression computed for
7(u) above. Replacing in the expression (9), we find that a
codeword is of the form

xog —axi  b7(z2) ier(xg)*
3 xg 7(z1) —“/jf* T(x2)*
o —z\ﬁz’{ 7(x0) —%T(xg)*
1 ’70‘5:5; br(z3) T(z0)*



Dividing the first row by v/« and multiplying the first column

by /v, and further multiplying the fourth column by ‘F and
dividing the fourth row by \\/[:, yields:
xo  —ouxl %T(l‘g) iT(x1)*
Vaxs x T(21) —bibﬁT({EQ)* a4
Vaxrs —ivext  1(mg) — \/‘&Er(sc3)*
Vexry o i/ax b\f (x3) 7(20)*

We have thus obtained a codeword composed of four gener-
alized Alamouti blocks:

21— zs 1%
Zo 2 2 —i%
z3  —izy 27 —Z§

za 123 zZ3 2%

We now provide examples of such code constructions, with
values of ¢ which give a division algebra, namely ¢’ = 1 and
¢ = 3,6 and 11. In the following, the fundamental units have
been computed using the KASH software [4].

Example 1 (L = Q(i,v/3)). Let ¢ = 1, ¢ = 3. Then
L = Q(i,+/3) = Q((12). The fundamental unit of L is v =

() (V3—1). We will choose u = 7(v) = (1“) (—V/3-1).
We have uo(u) = —1, ur(u) = —i. Then a = /=3 and
b = % We have abr(u) = \/5(1_2—‘/5) < 0, so the
conditions (13) are satisfied.

Example 2 (L = Q(i,/6)). Let ¢ = 1, ¢ = 6. We can choose

as u the fundamental unit © = (1 + 4) ( % 1) We have
uo(u) = —1, ur(u) = —i. Therefore a = iV/6, b = 1. As
in the previous case, abr(u) = -6 (Lg’ 1) < 0.

Example 3 (L = Q(i,V11)). Let ¢ = 1, ¢ = 11. We can
choose as u the unit u = (1) (=3—+/11). We have uo(u) =
—1, ur(u) = —i. Therefore a = iv/11, b = L. Again, we

have abr(u) = /11 (%ﬁ) <0.

We conclude by giving an example with ¢ = 2 instead of
¢ =1, with ¢ =5 to get a division algebra.

Example 4 (I = Q(iv/2,iV/5)). Let ¢ = 2, ¢ = 5. The
fundamental unit is v = 3 — v/10. We have uo(u) = —1,
ur(u) = —1, a = iv/5, b = iv/2, and abr(u) = —/10(3 +
V10) < 0.

Remark 1. Ideally, the parameters u, a and b ought to be
of complex norm 1 in order to have good energy efficiency
[1]. Unfortunately, this does not seem to be possible. Indeed,
in the case of two imaginary quadratic subfields K (1/—c) and
K(v/—¢), if a and b have complex norm 1, since the automor-
phisms o and 7 act as the complex conjugation respectively
on K(v/—¢) and K(v/—¢'), we have ar(a) = |a|* = 1 and
bo(b) = |b|” = 1. As a consequence, the condition in Theorem
1 cannot hold and the crossed-product algebra is not a division

is never

algebra, since Vg € Q, the quaternion algebra (1@‘1)

a division algebra. Clearly, the case of real quadratic subfields
is also hopeless because they do not contain any non-trivial
roots of unity.

We finally give an example of a crossed product algebra
which is not a division algebra, but provides good shaping:

Example 5 (L = Q(i,v/3)). Let ¢ = 1, ¢ = 3 as in
Example 1, and choose u = ¢ = (j2. We have uo(u) = (8,
ur(u) = —1. Then a = 1+ ¢® = ¢'° and b = i. We have
abr(u) = —1, so the conditions (13) are satisfied. Since u, a
and b have complex norm 1, this code provides a very good
shaping, although unfortunately it is not full-diversity.

B. Code optimization

As we have seen, in order to obtain an Alamouti-like
structure, the price to pay is to unbalance the energy in the
codewords. We now consider the code C' in Example 1, and
discuss some changes to improve its performance.

Choice of the basis of L: Recall that an element of L
is of the form = = a; 4+ asv/—¢ + asv/—c + asv/—c'/—c,
ai,as,az,aq € Q. Thus Examples 1-3 and 5 allow QAM
encoding, since:

x = a1+tagitazy/—ctaszv—ci = (a1+agi)+v—c(az+iayg)

where both a1 + asi and a3 + iag are in Q(3).
In particular, to encode QAM symbols, we can choose any
basis of L as a vector space over Q(¢). We will consider two
bases, which may not coincide: the basis B; of the ring of
integers O, over Z(i), and the basis By = {1,/—c}. By
corresponds to a denser lattice, but we will see that By is
more convenient for fast decodability, since it is composed by
one purely real and one purely imaginary element.
Let C5 be the version of the code C' employing the basis
By = {1,4/3i}. Its drawback is that the basis vectors have
unbalanced norms. In order to improve the shaping, we also
consider the code C3 with basis By = {2,/3i}.
Renormalization of the parameters a and b: Since a and
b are only defined up to a rational constant in (6) and (7), we
can choose the normalization in such a way that their complex
norm is close to 1, for example we can choose k =1’ = 7 in
Example 1 (code C4). However, this renormalization affects
the minimum determinant of the code; indeed, if £ and [ are
not integers, the code is not contained in the natural order
of the crossed-product algebra. A further improvement can be
obtained by multipllying the block C' and dividing the block

B by in (4) by |a|?; this does not affect the determinant.

IV. FAST DECODABILITY

In this section we briefly review some facts about decoding
complexity. Consider a linear dispersion code encoding K
real symbols a1,...,ax in a constellation S such that each
codeword is of the form X = Zfil A,a; with generator
matrices Ay, ..., Ag. The code is called conditionally g-group
decodable [8] if there exists a partition of {1, ..., K} into g+1
disjoint subsets I'y, ..., I'y, T'C such that

by = |AIAL + An AT, =0 VIeTl;,VmeTy,i#j.
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Figure 1. Performance comparison of the proposed codes using 4-QAM

constellations with the version of the A4 code with M 10 decoding complexity.

In this case, the sphere decoding complexity order reduces to
Ml maxi<i<gllil \where M is the size of S.

For codes of the form (14), using the basis B2, one can check
that the Hurwitz-Radon matrix B = (b;;) [3] has the shape

SO OO OO =+ =+
SO OO OO =+ o+
OO OO + =+ OO
COO0OO =+ +0OO
QSO+ +O OO0
OO+ +O OO0

S+ FFFFOOOOOO
+ o+ S+ FAFFFAFOOOOOO

OO OO OO o+ o o o o o o R ook ok
O OO O OO+ o o o o o o
COOO + &+ OO o+ o+ o o o o o
COOO + &+ OO o+ o+ o o ok o+
OO+ +* OO OO o+ o+ o o ok o
OO+ + OO OO ™+ o ok o+ o ok
+ S+ OO OO OO ™ ™ TR TR R R T
+ S+ OO OO OO ™ ™ TR Th SRR T

ook ok ok ok ok oh oh
ook ok ok ok o oh oh
ook ok ok ok ok oh b
ook ok ok ok o oh b
ook ok ok ok ok oh b
ook ok ok ok ok oh b

where ¢ denotes any possibly nonzero symbol. Clearly, this
code is conditionally 4-group decodable and has complexity
order 10. In fact, in order to decode one can list all the possible
values for the variables {xg, z10, ..., Z16} and then minimize
separately the Euclidean distance over the pairs of variables
{z1, 22}, {23,724}, {25,276} and {x7, x5}

When using the basis By, one can see that the complexity
order is 12 (details are omitted for lack of space).

V. SIMULATIONS

Figure 1 shows the performance of the proposed codes
using 4-QAM, compared to the O(M'?) decoding complexity
version of the “A4 code” in [12] at the same spectral efficiency.
The code C5 loses about 1.6 dB with respect to the A4 code
at the WER of 10~%. Thanks to its more balanced basis,
the code C'5 improves the performance by 1dB. Finally, the
renormalized version Cy has better performance than the Ay
code in the low SNR regime (up to SNR=18) but does not work
so well at high SNR due to its small minimum determinant.

Due to its excellent shaping, the code C5 from Example
5 performs surprisingly well at low SNR, and in fact it
outperforms the A4 code by 0.9 dB at the WER of 10~4, even
though the error rate will eventually be worse in the high SNR
regime since the code is not full rank.

VI. CONCLUSIONS

We proposed a new family of full-rate, non-vanishing de-
terminant 4 x 2 MIDO codes based on cross-product algebras
over Q with ML decoding complexity order O(M?).
Simulation results show a performance from similar up to a 1
dB gain compared to the best previously known code with the
same complexity order [12]. While the latter requires real PAM
signal constellations, our codes further have the advantage of
being suitable for QAM complex modulation.

ACKNOWLEDGMENTS

This work was partly done while L. Luzzi was visiting the

Division of Mathematical Sciences, Nanyang Technological
University, Singapore.
The research of F. Oggier is supported in part by the Sin-
gapore National Research Foundation under Research Grant
NRF-RF2009-07 and NRF-CRP2-2007-03, and in part by
the Nanyang Technological University under Research Grant
M58110049 and M58110070. The research of L. Luzzi is
supported by the Supélec Foundation and by NEWCOM++.

REFERENCES

[1] G. Berhuy, F. Oggier, “Space-time codes from crossed-product
algebras of degree 47, Proc. Applied Algebra, Algebraic algo-
rithms, and error-correcting codes, 2007.

[2] E. Biglieri, Y. Hong and E. Viterbo, “On fast-decodable space-
time block codes”, IEEE Trans. Inform. Theory, vol. 55, no. 2,
Feb 20009.

[3] G. R. lJithamitra, B. Sundar Rajan, “A quadratic form
approach to ML decoding complexity”, submitted,
http://arxiv.org/abs/1004.2844

[4] Available at http://www.math.tu-berlin.de/"kant/kash.html.

[5]1 T.Y. Lam, Introduction to quadratic forms over fields, Graduate
Studies in Mathematics, vol. 67, Amer. Math. Soc, 2005

[6] F. Oggier, C. Hollanti, R. Vehkalahti, “An algebraic MIDO-
MISO code construction”, Proc. Int. Conf. on Signal Processing
and Communications 2010, Bangalore, India, July 2010

[7]1 F. Oggier, R. Vehkalahti, C. Hollanti, “Fast-decodable MIDO
codes from crossed product algebras”, Proc. IEEE Int. Symp.
Inform. Theory, Austin, TX, June 2010

[8] L. P. Natarajan, B. S. Rajan, “Fast group-decodable STBCs
via codes over GF(4)”, Proc. IEEE Int. Symp. Inform. Theory,
Austin, TX, June 2010

[9] K.P. Srinath, B. S. Rajan, “Low ML-decoding complexity, large

coding gain, full-diversity STBCs for 2 x 2 and 4 x 2 MIMO

systems”, IEEE J. on Special Topics in Signal Processing:

managing complexity in multi-user MIMO systems, 2010

E. Viterbo, J. Boutros, “A universal lattice decoder for fading

channels”, IEEE Trans. Inf. Theory, vol 45, n. 5, 1999

R. Vehkalahti, C. Hollanti, J. Lahtonen, “A family of cyclic

division algebra-based fast-decodable 4 x 2 space-time block

codes”, Proc. 2010 Int. Symp. Inf. Theory and its Appl. (ISITA

2010), Taiwan, Oct. 2010

R. Vehkalahti, C. Hollanti, F. Oggier, “Fast-decodable asym-
metric space-time codes from division algebras”, submitted,
http://arxiv.org/abs/1010.5644

(10]

[11]

[12]



