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Abstract—A multi-hop relaying system is analyzed where data
sent by a multi-antenna source is relayed by successive multi-
antenna relays until it reaches a multi-antenna destination.
Assuming correlated fading at each hop, each relay receivesa
faded version of the signal from the previous level, performs
linear precoding and retransmits it to the next level. Usingfree
probability theory and assuming that the noise power at relays—
but not at destination— is negligible, the closed-form expression
of the asymptotic instantaneous end-to-end mutual information
is derived as the number of antennas at all levels grows large.
The so-obtained deterministic expression is independent from the
channel realizations while depending only on channel statistics.
This expression is also shown to be equal to the asymptotic
average end-to-end mutual information. The singular vectors of
the optimal precoding matrices, maximizing the average mutual
information with finite number of antennas at all levels, are
also obtained. It turns out that these vectors are aligned tothe
eigenvectors of the channel correlation matrices. Thus they can
be determined using only the channel statistics. As the structure
of the singular vectors of the optimal precoders is independent
from the system size, it is also optimal in the asymptotic regime.

Index Terms—asymptotic capacity, correlated channel, free
probability theory, multi-hop relay network, precoding.

I. I NTRODUCTION

Relay communication systems have recently attracted much
attention due to their potential to substantially improve the
signal reception quality when the direct communication link
between the source and the destination is not reliable. Due
to its major practical importance as well as its significant
technical challenge, deriving the capacity— or bounds on
the capacity— of various relay communication schemes is
growing to an entire field of research. Of interest is the
derivation of capacity bounds for systems in which the source,
the destination, and the relays are equipped with multiple
antennas.

Several works have focused on the capacity of two-hop relay
networks, such as [1]–[7]. Assuming fixed channel conditions,
lower and upper bounds on the capacity of the two-hop
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multiple-input multiple output (MIMO) relay channel were
derived in [1]. In the same paper, bounds on the ergodic
capacity were also obtained when the communication links
undergo i.i.d. Rayleigh fading. The capacity of a MIMO two-
hop relay system was studied in [2] in the asymptotic case
where the number of relay nodes grows large while the number
of transmit and receive antennas remain constant. The scaling
behavior of the capacity in two-hop amplify-and-forward (AF)
networks was analyzed in [3]–[5] when the numbers of single-
antenna sources, relays and destinations grow large. The
achievable rates of a two-hop code-division multiple-access
(CDMA) decode-and-forward (DF) relay system were derived
in [8] when the numbers of transmit antennas and relays
grow large. In [6], an ad hoc network with several source-
destination pairs communicating through multiple AF-relays
was studied and an upperbound on the asymptotic capacity in
the low Signal-to-Noise Ratio (SNR) regime was obtained in
the case where the numbers of source, relay and destination
nodes grow large. The scaling behavior of the capacity of a
two-hop MIMO relay channel was also studied in [7] for bi-
directional transmissions. In [9] the optimal relay precoding
matrix was derived for a two-hop relay system with perfect
knowledge of the source-relay and relay-destination channel
matrices at the relay.

Following the work in [10] on the asymptotic eigenvalue
distribution of concatenated fading channels, several anal-
yses were proposed for more general multi-hop relay net-
works, including [11]–[15]. In particular, considering multi-
hop MIMO AF networks, the tradeoffs between rate, diversity,
and network size were analyzed in [11], and the diversity-
multiplexing tradeoff was derived in [12]. The asymptotic
capacity of multi-hop MIMO AF relay systems was obtained
in [13] when all channel links experience i.i.d. Rayleigh fading
while the number of transmit and receive antennas, as well as
the number of relays at each hop grow large with the same rate.
Finally hierarchical multi-hop MIMO networks were studied
in [15] and the scaling laws of capacity were derived when
the network density increases.

In this paper, we study anN -hop MIMO relay commu-
nication system wherein data transmission fromk0 source
antennas tokN destination antennas is made possible through
N − 1 relay levels, each of which are equipped withki, i =
1, . . . , N − 1 antennas. In this transmission chain withN +1
levels it is assumed that the direct communication link is only
viable between two adjacent levels, due to large distances
between non-adjacent levels for instance: each relay receives a
faded version of the multi-dimensional signal transmittedfrom
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Fig. 1. Multi-level relaying system

the previous level and, after linear precoding, retransmits it to
the next level.

We consider the case where all communication links un-
dergo Rayleigh flat fading and the fading channels at each
hop (between two adjacent levels) may be correlated while the
fading channels of any two different hops are independent. We
assume that the channel at each hop is block-fading and that
the channel coherence-time is long enough — with respect
to codeword length — for the system to be in the non-
ergodic regime. As a consequence, the channel is a realization
of a random matrix that is fixed during a coherence block.
Therefore, the instantaneous end-to-end mutual information
between the source and the destination can be viewed as an
instance of a random variable.

Using tools from the free probability theory and assuming
that the noise power at the relay levels, but not at the
destination, is negligible, we derive a closed-form expression
of the asymptotic instantaneous end-to-end mutual information
between the source input and the destination output as the
number of antennas at all levels grows large. This asymptotic
expression is shown to be independent from the channel
realizations and to only depend on the channel statistics.
Therefore, as long as the statistical properties of the chan-
nel matrices at all hops do not change, the instantaneous
mutual information asymptotically converges to the same
deterministic expression for any arbitrary channel realization.
This property has two major consequences. First, the mutual
information in the asymptotic regime is not a random variable
any more but a deterministic value representing an achievable
rate. This means that when the channel is random but fixed
during the transmission and the system size is large enough,
the capacity in the sense of Shannon is not zero, on the
contrary to the capacity of small size systems [16, Section 5.1].
Second, given the stationarity of channel statistical properties,
the asymptotic instantaneous mutual information obtainedin
the non-ergodic regime also serves as the asymptotic value of
the average end-to-end mutual information between the source
and the destination. Note that the latter is the same as the
asymptotic ergodic end-to-end mutual information that would
be obtained if the channel was an ergodic process.

We also obtain the singular vectors of the optimal precoding
matrices that maximize the average mutual information of
the system with a finite number of antennas at all levels. It
is proven that the singular vectors of the optimal precoding

matrices are also independent from the channel realizations
and can be determined using only statistical knowledge of
channel matrices at source and relays. We show that the so-
obtained singular vectors are also optimal in the asymptotic
regime of our concern. Finally, we apply the aforementioned
results on the asymptotic mutual information and the structure
of the optimal precoding matrices to several communications
scenarios with different number of hops, and types of channel
correlation.

The rest of the paper is organized as follows. Notations and
the system model are presented in Section II. The end-to-end
instantaneous mutual information in the asymptotic regimeis
derived in Section III, while the singular vectors of the optimal
precoding matrices are obtained in Section IV. Theorems
derived in Sections III and IV are applied to several MIMO
communication scenarios in Section V. Numerical results are
provided in Section VI and concluding remarks are drawn in
Section VII.

II. SYSTEM MODEL

Notation: N is the set of non-negative integers. Letm <
n ∈ N, the set of integers greater or equal tom and less
or equal ton is denotedNn

m , {m,m + 1, . . . , n − 1, n}.
log denotes the logarithm in base2 while ln is the logarithm
in basee. u(x) is the unit-step function defined byu(x) =

0 if x < 0 ; u(x) = 1 if x ≥ 0. K(m) ,
∫ π

2

0
dθ√

1−m sin2 θ
is

the complete elliptic integral of the first kind [17]. Matrices
and vectors are represented by boldface upper and lower cases,
respectively.AT , A∗, AH stand for the transpose, the conju-
gate and the transpose conjugate ofA, respectively. The trace
and the determinant ofA are respectively denoted bytr(A)
and det(A). λA(1), . . . , λA(n) represent the eigenvalues of
an n × n matrix A. The operator norm ofA is defined by
‖A‖ ,

√

maxi λAHA(i), while the Fröbenius norm ofA is
‖A‖F ,

√

tr(AHA). The (i, j)-th entry of matrixAk is
written a

(k)
ij . IN is the identity matrix of sizeN . E[·] is the

statistical expectation operator,H(X) the entropy of a variable
X , and I(X ;Y ) the mutual information between variables
X and Y . Fn

Ω(·) is the empirical eigenvalue distribution
of an n × n square matrixΩ with real eigenvalues, while
FΩ(·) and fΩ(·) are respectively its asymptotic eigenvalue
distribution and its eigenvalue probability density function
when its sizen grows large. We denote the matrix product by
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⊗N
i=1 Ai = A1A2 . . .AN . Note that the matrix product is not

commutative, therefore the order of the indexi in the product
is important and in particular(

⊗N
i=1 Ai)

H =
⊗1

i=N AH
i .

A. Multi-hop MIMO relay network

Consider Fig. 1 that shows a multi-hop relaying system
with k0 source antennas,kN destination antennas andN − 1
relaying levels. Thei−th relaying level is equipped withki
antennas. We assume that the noise power is negligible at all
relays while at the destination the noise power is such that

E[zzH ] = σ2I =
1

η
I (1)

wherez is the circularly-symmetric zero-mean i.i.d. Gaussian
noise vector at the destination. In effect, the simplifyingnoise-
free relays assumption is made to have a white aggregate
noise at the destination and, consequently, more tractable
derivations. Note that several other authors have implicitly
used a similar noise-free relay assumption by assuming that
the noise at the destination of a MIMO multihop relay network
is white. For instance, in [12] a multi-hop AF relay network
is analyzed and it is proved that the resulting colored noiseat
the destination can be well-approximated by white noise in the
high SNR regime. In terms of practical relevance, the mutual
information expression derived in the case of noise-free relays
can be seen as an upper-bound for the case of noisy relays.
When applied to a particular communication scenario, if the
expressions obtained for perfect noise-free relays show that
no gains in terms of rate result from relaying, then a more
complex analysis with noisy relays will be irrelevant.

Throughout the paper, we assume that the correlated channel
matrix at hop i ∈ {1, . . . , N} can be represented by the
Kronecker model

Hi , C
1/2
r,i ΘiC

1/2
t,i (2)

where Ct,i,Cr,i are respectively the transmit and receive
correlation matrices,Θi are zero-mean i.i.d. Gaussian matrices
independent over indexi, with variance of the(k, l)-th entry

E[|θ(i)kl |2] =
ai

ki−1
∀i ∈ NN

1 (3)

whereai = d−β
i represents the pathloss attenuation withβ

and di denoting the pathloss exponent and the length of the
i-th hop respectively. We also assume that channels matrices
Hi, i = 1, . . . , N remain constant during a coherence block of
lengthL and vary independently from one channel coherence
block to the next.

Note that no assumption is made on the structure of the
channel correlation matrices. The particular case of i.i.d.
Rayleigh fading channel can be obtained from the above
Kronecker model when matricesCt,i and Cr,i are set to
identity. It should also be mentioned that by adapting the
correlation matrices structure, the Kronecker model can be
used to model relay-clustering. Given a total number of
antennaski at leveli, instead of considering that the relaying
level consists of a single relay equipped with many antennas
(ki), we can consider that a relaying level containsni relays
equipped with (ki/ni) antennas. Clustering has a direct impact

on the structure of correlation matrices: when theki antennas
at leveli are distributed among several relays, correlation ma-
trices become block-diagonal matrices, whose blocks represent
the correlation between antennas at a relay, while antennasat
different relays sufficiently separated in space are supposed
uncorrelated. In the limit of a relaying level containingki
relays equipped with a single antenna, we fall back to the
case of uncorrelated fading with correlation matrices equal to
identity.

Within one channel coherence block, the signal transmitted
by thek0 source antennas at timel ∈ {0, . . . , L− 1} is given
by the vectorx0(l) = P0y0(l − 1), whereP0 is the source
precoding matrix andy0 is a zero-mean random vector with

E{y0y
H
0 } = Ik0

(4)

which implies that

E{x0x
H
0 } = P0P

H
0 . (5)

Assuming that relays work in full-duplex mode, at timel ∈
{0, . . . , L−1} the relay at leveli uses a precoding matrixPi to
linearly precode its received signalyi(l− 1) = Hixi−1(l− 1)
and form its transmitted signal

xi(l) = Piyi(l − 1) ∀i ∈ NN−1
0 . (6)

The precoding matrices at source and relaysPi, i ∈ NN−1
0 are

subject to the per-node long-term average power constraints

tr(E[xix
H
i ]) ≤ kiPi ∀i ∈ NN−1

0 . (7)

The fact that yi = Hixi−1, along with the variance
E[|θ(i)kl |2] = ai

ki−1
of Hi elements and with the power con-

straint tr(E[xi−1x
H
i−1]) ≤ ki−1Pi−1 on xi−1, render the

system of our concern equivalent to a system whose random
channel elementsθ(i)kl would be i.i.d. with varianceai and
whose power constraint on transmitted signalxi−1 would be
finite and equal toPi−1. Having finite transmit power at each
level, this equivalent system shows that adding antennas, i.e.
increasing the system dimension, does not imply increasingthe
transmit power. Nonetheless, in order to use random matrix
theory tools to derive the asymptotic instantaneous mutual
information in Section III, the variance of random channel
elements is required to be normalized by the size of the
channel matrix. That is why the normalized model— channel
variance (3) and power constraint (7)— was adopted.

It should also be noticed that choosing diagonal precoding
matrices would reduce the above scheme to the simpler AF
relaying strategy. Note that the proposed linear precoding
relaying technique is adapted for high SNR regimes, but not
for low SNR regimes. In the low SNR regime, known to be
noise-limited, linear precoding performs poorly because power
is wasted on forwarding noise, and other relaying strategies
such as decode-and-forward are more appropriate [18], [19].
On the contrary in the high SNR regime, linear precoding
techniques such as amplify-and-forward perform well [11],
[20]. Finally, from a practical point of view, limited channel
knowledge and simple linear precoding techniques at relays
are particularly relevant for systems where relays have limited
processing capabilities.
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As can be observed from Fig. 1, the signal received at the
destination at timel is given by

yN (l)=HNPN−1HN−1PN−2 . . .H2P1H1P0y0(l −N)+z

=GNy0(l −N) + z (8)

where the end-to-end equivalent channel is

GN ,HNPN−1HN−1PN−2 . . .H2P1H1P0

=C
1/2
r,NΘNC

1/2
t,NPN−1C

1/2
r,N−1ΘN−1C

1/2
t,N−1PN−2 . . .

. . .C
1/2
r,2 Θ2C

1/2
t,2 P1C

1/2
r,1 Θ1C

1/2
t,1 P0. (9)

Let us introduce the matrices

M0 = C
1/2
t,1 P0

Mi = C
1/2
t,i+1PiC

1/2
r,i ∀i ∈ NN−1

1

MN = C
1/2
r,N . (10)

Then (9) can be rewritten as

GN = MNΘNMN−1ΘN−1 . . .M2Θ2M1Θ1M0. (11)

For the sake of clarity, the dimensions of the matri-
ces/vectors involved in our analysis are given below.

xi : ki × 1 yi : ki × 1 Pi : ki × ki
Hi : ki × ki−1 Cr,i : ki × ki Ct,i : ki−1 × ki−1

Θi : ki × ki−1 Mi : ki × ki

In the sequel, we assume that the channel coherence time
is large enough to consider the non-ergodic case and conse-
quently, time indexl can be dropped. Finally, we define three
channel-knowledge assumptions:

• AssumptionAs, local statistical knowledge at source:
the source has only statistical channel state information
(CSI) of its forward channelH1, i.e. the source knows
the transmit correlation matrixCt,1.

• AssumptionAr, local statistical knowledge at relay: at
the ith relaying level,i ∈ NN−1

1 , only statistical CSI of
the backward channelHi and forward channelHi+1 are
available, i.e. relayi knows the receive correlation matrix
Cr,i and the transmit correlation matrixCt,i+1.

• AssumptionAd, end-to-end perfect knowledge at des-
tination: the destination perfectly knows the end-to-end
equivalent channelGN .

Throughout the paper, assumptionAd is always made. As-
sumptionAd is the single assumption on channel-knowledge
necessary to derive the asymptotic mutual information in
Section III, while the two extra assumptionsAs andAr are
also necessary in Section IV to obtain the singular vectors of
the optimal precoding matrices.

B. Mutual Information

Consider the channel realizationGN in one channel cohe-
rence block. Under AssumptionAd, the instantaneous end-to-
end mutual information between channel inputy0 and channel
output(yN ,GN ) in this channel coherence block is [16]

I(y0; yN |GN = GN )

= H(yN |GN = GN )−H(yN |y0, GN = GN )
︸ ︷︷ ︸

H(z)

= H(yN |GN = GN )−H(z)

(12)

The entropy of the noise vector is known to beH(z) =
log det(πeη IkN

). Besides, y0 is zero-mean with variance
E[y0y

H
0 ] = Ik0

, thus given GN , the received signal
yN is zero-mean with varianceGNGH

N + 1
η IkN

. By [16,
Lemma 2], we have the inequalityH(yN |GN = GN ) ≤
log det(πeGNGH

N + πe
η IkN

), and the entropy is maximized
when the latter inequality holds with equality. This occurs
if yN is circularly-symmetric complex Gaussian, which is
the case wheny0 is circularly-symmetric complex Gaussian.
Therefore throughout the rest of the paper we considery0 to
be a zero-mean circularly-symmetric complex Gaussian vector.
As such, the instantaneous mutual information (12) can be
rewritten as

I(y0; yN |GN = GN ) = log det(IkN
+ ηGNGH

N ). (13)

Under AssumptionAd, the average end-to-end mutual
information between channel inputy0 and channel output
(yN ,GN ) is

I(y0; (yN , GN )) = I(y0; yN |GN ) + I(y0;GN )
︸ ︷︷ ︸

0

= I(y0; yN |GN )

= EGN
[I(y0; yN |GN = GN )]

= EGN
[log det(IkN

+ ηGNGH
N )].

(14)

To optimize the system, we are left with finding the precoders
Pi that maximize the end-to-end mutual information (14)
subject to power constraints (7). In other words, we need to
find the maximum average end-to-end mutual information

C , max
{Pi/tr(E[xix

H
i
])≤kiPi}

i∈N
N−1
0

EGN

[
log det(IkN

+ η GNGH
N )
]
.

(15)
In Section IV, the problem of finding the singular vectors
of the optimal precoders that maximize the average mutual
information (15) is addressed under channel knowledge As-
sumptionsAs, Ar, andAd. Note that the non-ergodic regime
is considered, therefore (14) represents only an average mutual
information over channel realizations, and the solution to
(15) does not necessarily represent the channel capacity in
the Shannon sense— the supremum of achievable rates with
arbitrary small probability of error— when the system size is
small.

III. A SYMPTOTIC MUTUAL INFORMATION

In this section, we consider the instantaneous mutual in-
formation per source antenna between the source and the
destination

I ,
1

k0
log det(IkN

+ ηGNGH
N ) (16)

and derive its asymptotic value as the number of antennas
k0, k1, . . . , kN grow large. The following theorem holds.

Theorem 1: For the system described in section II, assume
that

• channel knowledge assumptionAd holds;
• k0, k1, . . . , kN → ∞ while ki

kN
→ ρi for all i ∈ NN

0 ;
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• for all i ∈ N
N
0 , as ki → ∞, MH

i Mi has a limit
eigenvalue distribution with a compact support.

Then the instantaneous mutual information per source antenna
I converges almost surely to

I∞ =
1

ρ0

N∑

i=0

ρiE

[

log

(

1 + η
ai+1

ρi
hN
i Λi

)]

−N
log e

ρ0
η

N∏

i=0

hi

(17)
where aN+1 = 1 by convention,h0, h1, . . . , hN are the
solutions of the system ofN + 1 equations

N∏

j=0

hj = ρiE

[

hN
i Λi

ρi

ai+1
+ ηhN

i Λi

]

∀i ∈ NN
0 (18)

and the expectationE[·] in (17) and (18) is overΛi whose
distribution is given by the asymptotic eigenvalue distribution
FMH

i
Mi

(λ) of MH
i Mi.

The detailed proof ofTheorem 1 is presented in Appendix B.
We would like to stress that (17) holds for any arbitrary set

of precoding matricesPi, i = 0, . . . , N − 1, if MH
i Mi has a

compactly supported asymptotic eigenvalue distribution when
the system dimensions grow large. We would like to point out
that the power constraints on signals transmitted by the source
or relays are not sufficient to guarantee the boundedness of the
eigenvalues ofMH

i Mi. In fact, it is proved in Appendix C that
these power constraints can be written as

1

k0
tr(P0P

H
0 ) ≤ P0,

ai
ki
tr(PiCr,iP

H
i )

i−1∏

k=0

ak
kk

tr(Ct,k+1PkCr,kP
H
k )≤Pi,∀i∈NN−1

1 .

(19)

In the asymptotic regime,limki→∞
1
ki
tr(PiCr,iP

H
i ) =

E[λPiCr,iP
H
i
] and limkk→∞

1
kk
tr(Ct,k+1PkCr,kP

H
k ) =

E[Λk]. Therefore, the power constraints impose upper-bounds
(19) on the product of the first-order moments of the eigen-
values of matricesPiCr,iP

H
i andMH

k Mk in the asymptotic
regime. Unfortunately, these upper-bounds do not prevent the
eigenvalue distribution ofMH

i Mi from having an unbounded
support, and thus the power constraints are a priori not
sufficient to guarantee the compactness of the support of the
asymptotic eigenvalue distribution of matricesMH

i Mi. The
assumption that matricesMH

i Mi have a compactly supported
asymptotic eigenvalue distribution is a priori not an intrinsic
property of the system model, but it was necessary to make
that assumption in order to useLemma 2 to proveTheorem 1.

Given a set of precoding matrices, it can be observed from
(17) and (18) that the asymptotic expression is a deterministic
value that depends only on channel statistics and not on a
particular channel realization. In other words, for a givenset
of precoding matrices, as long as the statistical properties
of the channel matrices do not change, the instantaneous
mutual information always converges to the same deterministic
achievable rate, regardless of the channel realization. From this
observation, three results follow:

• Result 1: As the numbers of antennas at all levels grow
large, the instantaneous mutual information is not a ran-
dom variable anymore and the precoding matrices maxi-
mizing the asymptotic instantaneous mutual information
can be found based only on knowledge of the channel
statistics, without requiring any information regarding the
instantaneous channel realizations.

• Result 2: When the channel is random but fixed during
the transmission and the system size grows large enough,
the Shannon capacity is not zero any more, on the
contrary to the capacity of small-size non-ergodic systems
[16, Section 5.1].

• Result 3: The asymptotic instantaneous mutual infor-
mation (17) obtained in the non-ergodic regime also
represents the asymptotic value of the average mutual
information, whose expression is the same as the asymp-
totic ergodic end-to-end mutual information that would
be obtained if the channel was an ergodic process.

It should also be mentioned that, according to the expe-
rimental results illustrated in Section VI, the system under
consideration behaves like in the asymptotic regime even when
it is equipped with a reasonable finite number of antennas
at each level. Therefore, (17) can also be efficiently used to
evaluate the instantaneous mutual information of a finite-size
system.

IV. OPTIMAL TRANSMISSION STRATEGY AT SOURCE AND

RELAYS

In previous section, the asymptotic instantaneous mutual in-
formation (17), (18) was derived considering arbitrary precod-
ing matricesPi, i ∈ {0, . . . , N−1}. In this section, we analyze
the optimal linear precoding strategiesPi, i ∈ {0, . . . , N − 1}
at source and relays that allow to maximize the average mutual
information. We characterize the optimal transmit directions
determined by the singular vectors of the precoding matrices
at source and relays, for a system with finitek0, k1, . . . , kN .
It turns out that those transmit direction are also the ones
that maximize the asymptotic average mutual information.
Moreover, fromResult 3 in Section III, it can be inferred that
the singular vectors of the precoding matrices maximizing the
asymptotic average mutual information are also optimal for
the asymptotic instantaneous mutual information (17).

In future work, using the results on the optimal directions
of transmission (singular vectors ofPi) and the asymptotic
mutual information (17)–(18), we intend to derive the opti-
mal power allocation (singular values ofPi) that maximize
the asymptotic instantaneous/average mutual information(17)
using only statistical knowledge of the channel at transmitting
nodes.

The main result of this section is given by the following
theorem:

Theorem 2: Consider the system described in Section II.
For i ∈ {1, . . . , N} let Ct,i = Ut,iΛt,iU

H
t,i and Cr,i =

Ur,iΛr,iU
H
r,i be the eigenvalue decompositions of the cor-

relation matricesCt,i and Cr,i, where Ut,i and Ur,i are
unitary andΛt,i andΛr,i are diagonal, with their respective
eigenvalues ordered in decreasing order. Then, under channel-
knowledge assumptionsAs, Ar andAd, the optimal linear
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precoding matrices that maximize the average mutual infor-
mation under power constraints (7) can be written as

P0 = Ut,1ΛP0

Pi = Ut,i+1ΛPi
UH

r,i ∀i ∈ NN−1
1

(20)

whereΛPi
are diagonal matrices with non-negative real diag-

onal elements. Moreover, the singular vectors of the precoding
matrices (20) are also the ones that maximize the asymptotic
average mutual information. Since the asymptotic average
mutual information has the same value as the asymptotic
instantaneous mutual information, the singular vectors ofthe
precoding matrices (20) are also optimal for the asymptotic
instantaneous mutual information.

For the proof of Theorem 2, the reader is referred to
Appendix C.

Theorem 2 indicates that to maximize the average mutual
information

• the source should align the eigenvectors of the transmit
covariance matrixQ = P0P

H
0 to the eigenvectors of

the transmit correlation matrixCt,1 of the first-hop
channelH1. This alignment requires only local statistical
channel knowledgeAs. Note that similar results were
previously obtained for both single-user [21] and multi-
user [22] single-hop (without relays) MIMO system with
covariance knowledge at the source.

• relay i should align the right singular vectors of its
precoding matrixPi to the eigenvectors of the receive
correlation matrixCr,i, and the left singular vectors of
Pi to the eigenvectors of the transmit correlation matrix
Ct,i+1. These alignments require only local statistical
knowledgeAr.

As power is non-negative, aligning the singular vectors of the
precoders to the eigenvectors of channel correlation matri-
ces allows to avoid wasting power on non-eigen directions.
Moreover, it follows fromTheorem 2 that the optimization of
Pi can be divided into two decoupled problems: optimizing
the transmit directions—singular vectors— on one hand, and
optimizing the transmit powers—singular values— on the
other hand.

We would like to draw the reader’s attention to the fact
that the proof of this theorem does not rely on the expression
of the asymptotic mutual information given in (17). In fact,
Theorem 2 is first proved in the non-asymptotic regime for an
arbitrary set of{ki}i∈NN

0
. As such, regardless of the system

size, the singular vectors of the precoding matrices should
always be aligned to the eigenvectors of the channel corre-
lation matrices to maximize the average mutual information.
In particular, the singular vectors of the precoding matrices
that maximize the asymptotic average mutual information
are also aligned to the eigenvectors of channel correlation
matrices as in (20). Furthermore, fromResult 3 in Section III,
we can conclude that the singular vectors given in (20) are
also those that maximize the asymptotic instantaneous mutual
information.

Finally, we would like to point out that a result similar to
Theorem 2 was proved in [9] for a two-hop system with a
single noisy relay, uncorrelated channelsH1 andH2, and full

channel knowledge at source, relay and destination: the left
and right singular vectors of the optimal relay precoder were
shown to be aligned to the eigenvectors of matricesH1H

H
1

andH2H
H
2 , respectively. This result encourages us to believe

that in the case of noisy relays,Theorem 2 may still hold
for correlated channels, and statistical channel knowledge at
source and relays.

V. A PPLICATION TO MIMO COMMUNICATION SCENARIOS

In this section,Theorem 1 andTheorem 2 are applied to four
different communication scenarios. In the first two scenarios,
the special case of non-relay assisted MIMO (N=1) without
path-loss (a1 = 1) is considered, and we show how (17)
boils down to known results for the MIMO channel with or
without correlation. In the third and fourth scenarios, a multi-
hop MIMO system is considered and the asymptotic mutual
information is developed in the uncorrelated and exponential
correlation cases respectively. The application ofTheorem 1
and Theorem 2 to these scenarios will also serve as a base
for simulations in Section VI, which validate the asymptotic
expression inTheorem 1, and show the impact of relaying on
the communication rate in presence or absence of correlation.

A. Single-hop MIMO with statistical CSI at source

Consider a simple single-hop uncorrelated MIMO system
with the same number of antennas at source and destination
i.e. ρ0 = ρ1 = 1.

Assuming an i.i.d. Rayleigh fading channel i.e.Ct,1 =
Cr,1 = I and equal power allocation at source antennas, the
source precoder isP0 =

√
P0I. Under these assumptions, the

asymptotic mutual information (17) can easily be shown to be

I∞ = 2 log

(
1 +

√
1 + 4ηP0

2

)

− log e

4ηP0

(√

1 + 4ηP0 − 1
)2

.

(21)
It can be observed that the deterministic expression (21)
depends only on the system characteristics and is independent
from the channel realizations. Moreover, equal power alloca-
tion is known to be the capacity-achieving power allocationfor
a MIMO i.i.d. Rayleigh channel with statistical CSI at source
[23, Section 3.3.2], [16]. As such, the asymptotic mutual
information (21) also represents the asymptotic capacity of
the system. We should also mention that (21) is similar to
the expression of the asymptotic capacity per dimension pre-
viously derived in [23, Section 3.3.2] for the MIMO Rayleigh
channel with equal number of transmit and receive antennas
and statistical CSI at the transmitter.

In the more general case of correlated MIMO channel with
separable correlation we haveH1 = C

1/2
r,1 Θ1C

1/2
t,1 . Let us

denote the eigenvalue decomposition ofCt,1 = Ut,1Λt,1U
H
t,1,

whereΛt,1 is a diagonal matrix whose diagonal entries are the
eigenvalues ofCt,1 in the non-increasing order and the unitary
matrixUt,1 contains the corresponding eigenvectors. Defining
the transmit covariance matrixQ , E

[
x0x

H
0

]
= P0P

H
0 , it

has been shown [21] that the capacity-achieving matrixQ⋆ is
given by

Q⋆ = Ut,1ΛQ⋆UH
t,1 (22)
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where ΛQ⋆ is a diagonal matrix containing the capacity-
achieving power allocation. Under these assumptions, the
asymptotic mutual information (17) becomes equivalent to the
expression1 obtained in [23, Theorem 3.7] for the capacity of
the correlated MIMO channel with statistical CSI at transmit-
ter.

B. Uncorrelated multi-hop MIMO with statistical CSI at
source and relays

In this example, we consider an uncorrelated multi-hop
MIMO system, i.e. all correlation matrices are equal to iden-
tity. Then byTheorem 2 the optimal precoding matrices should
be diagonal. Assuming equal power allocation at source and
relays, the precoding matrices are of the formPi = αiIki

,
where αi is real positive and chosen to respect the power
constraints.

Using the power constraint expression (19) in Appendix C,
it can be shown by induction oni that the coefficientsαi in
the uncorrelated case are given by

α0 =
√

P0

αi =

√

Pi

aiPi−1
∀i ∈ NN−1

1

αN = 1.

(23)

Then the asymptotic mutual information for the uncorrelated
multi-hop MIMO system with equal power allocation is given
by

I∞ =

N∑

i=0

ρi
ρ0

log

(

1 +
ηhN

i ai+1α
2
i

ρi

)

−N
log e

ρ0
η

N∏

i=0

hi (24)

whereh0, h1, . . . , hN are the solutions of the system ofN+1
multivariate polynomial equations

N∏

j=0

hj =
hN
i α2

i ai+1

1 +
ηhN

i
ai+1α2

i

ρi

∀i ∈ NN
0 . (25)

Note that the asymptotic mutual information is a deterministic
value depending only on a few system characteristics: signal
powerPi, noise power1/η, pathlossai, number of hopsN
and ratio of the number of antennasρi.

C. Exponentially correlated multi-hop MIMO with statistical
CSI at source and relays

In this example, the asymptotic mutual information (17) is
developed in the case of exponential correlation matrices and
precoding matrices with singular vectors as inTheorem 2.
Exponential correlation matrices are a common model of
correlation in uniform linear antenna array (ULA) [24]–[26].

Exponential Correlation Model: We assume that Leveli
is equipped with a uniform linear array (ULA) of length
Li, characterized by its antenna spacingli = Li/ki and its

1The small differences between the expression derived from (17) and the
capacity expression in [23, Theorem 3.7] are due to different normalization
assumptions in [23]. In particular (17) is the mutual information per source
antenna while the expression in [23] is the capacity per receive antenna.

characteristic distances∆t,i and∆r,i proportional to transmit
and receive spatial coherences respectively. Then the receive
and transmit correlation matrices at Leveli can respectively
be modeled by the following Hermitian Wiener-class2 Toeplitz
matrices [24]–[26]:

Cr,i =













1 rr,i r2r,i . . . rki−1
r,i

rr,i 1
. . .

. . .
...

r2r,i
. . .

. . .
. . . r2r,i

...
. . .

. . . 1 rr,i
rki−1
r,i . . . r2r,i rr,i 1













ki×ki

and

Ct,i+1 =













1 rt,i+1 r2t,i+1 . . . rki−1
t,i+1

rt,i+1 1
. . .

. . .
...

r2t,i+1

. . .
. . .

. . . r2t,i+1
...

. . .
. . . 1 rt,i+1

rki−1
t,i+1 . . . r2t,i+1 rt,i+1 1













ki×ki

(26)
where the antenna correlation at receive (resp. transmit) side

rr,i = e
− li

∆r,i ∈ [0, 1) (resp.rt,i+1 = e
− li

∆t,i ∈ [0, 1)) is an
exponential function of antenna spacingli and characteristic
distance∆r,i (resp.∆t,i ) at relaying Leveli.

Equal power allocation over optimal precoding directions:
We further assume equal power allocation over the optimal
directions, i.e. the singular values ofPi are chosen to be all
equal:ΛPi

= αiIki
, whereαi is real positive and chosen

to respect the power constraint (7). Equal power allocation
may not be the optimal power allocation scheme, but it is
considered in this example for simplicity.

Using the power constraint expression for general correla-
tion models (19) and considering precoding matricesPi =
UH

r,i(αiIki
)Ut,i+1 with singular vectors as inTheorem 2 and

equal singular valuesαi, we can show by induction oni that
the coefficientsαi respecting the power constraints for any
correlation model are given by

α0 =
√

P0

αi =

√

Pi

aiPi−1

tr(Λr,i−1)

tr(Λr,i)

ki
tr(Λt,iΛr,i−1)

, ∀i ∈ NN−1
1

αN = 1.
(27)

We would like to point out that (27) is a general expression that
holds not only for the exponential correlation model, but also
for any correlation model as long as the singular vectors of
the precoding matrices are chosen as inTheorem 2. Applying

2A sequence ofn×n Toeplitz MatricesTn = [tk−j ]n×n is said to be in
the Wiener class [27, Section 4.4] if the sequence{tk} of first-column and
first-row elements is absolutely summable, i.e.limn→+∞

∑n
k=−n |tk| <

+∞.
If |rr,i| < 1, thenlimki→+∞(

∑ki−1

k=0
rkr,i+

∑
−1

k=−ki−1
r
−k
r,i ) =

1

1−rr,i
+

1/rr,i
1−1/rr,i

< ∞, and consequentlyCr,i is in the Wiener class.Ct,i is

obviously also in the Wiener class if|rt,i| < 1.



8

I∞ =

N∑

i=0

ρi
ρ0π2

∫ +∞

t=−∞

∫ +∞

u=−∞
log

(

1 + cr,ict,i+1
ηhN

i ai+1α
2
i

ρi

(1 + t2)

(c2r,i + t2)

(1 + u2)

(c2t,i+1 + u2)

)

dt

1 + t2
du

1 + u2
−N

log e

ρ0
η

N∏

i=0

hi

(28)

N∏

j=0

hj =
2

π

hN
i ai+1α

2
i

√

cr,ict,i+1 +
ηhN

i
ai+1α2

i

ρi

√
1

cr,ict,i+1
+

ηhN
i
ai+1α2

i

ρi

K(mi) ∀i ∈ NN
0 (29)

the exponential correlation model to (27) and making the
dimensions of the system grow large, it can be shown that in
the asymptotic regime, theαi respecting the power constraint
for the exponentially correlated system converge to the same
value (23) as for the uncorrelated system.

Asymptotic Mutual Information : Under the assumptions
of exponential channel correlation matrices, precoders with
singular vectors as inTheorem 2, and equal power allocation
over these precoding directions, we show in Appendix D that
the asymptotic mutual information is given by (28) at the
top of the page, whereh0, h1, . . . , hN are the solutions of the
system ofN + 1 equations (29), and for alli ∈ NN

0

cr,i =
1− rr,i
1 + rr,i

ct,i+1 =
1− rt,i+1

1 + rt,i+1

mi = 1−

(
ct,i+1

cr,i
+

ηhN
i ai+1α

2
i

ρi

)(
cr,i

ct,i+1
+

ηhN
i ai+1α

2
i

ρi

)

(
1

cr,ict,i+1
+

ηhN
i
ai+1α2

i

ρi

)(

cr,ict,i+1 +
ηhN

i
ai+1α2

i

ρi

) ,

(30)

(with the conventionrr,0 = rt,N+1 = 0). Those expressions
show that only a few relevant parameters affect the perfor-
mance of this complex system: signal powerPi, noise power
1/η, pathlossai, number of hopsN , ratio of the number of
antennasρi, and correlation ratioscr,i andct,i.

VI. N UMERICAL RESULTS

In this section, we present numerical results to validate
Theorem 1 and to show that even with smallki, for all
i ∈ NN

0 , the behavior of the system is close to its behavior
in the asymptotic regime, makingTheorem 1 a useful tool for
optimization of finite-size systems as well as large networks.

A. Uncorrelated multi-hop MIMO

The uncorrelated system described in Section V-B is first
considered.

Fig. 2(a) plots the asymptotic mutual information from
Theorem 1 as well as the instantaneous mutual information
obtained for an arbitrary channel realization (shown as ex-
perimental curves in the figure) in the case of one, two or
three hops. Experimental curves are drawn for systems with10
antennas at source, destination and each relay, or100 antennas
at each level. When increasing the number of hopsN , the
distance between source and destinationd is kept constant and
N −1 relays are inserted between source and destination with

equal spacingdi = d/N between each relaying level. In both
examples, whose main purpose is not to optimize the system,
but to validate the asymptotic formula inTheorem 1, matrices
Pi are taken proportional to the identity matrix to simulate
equal power allocation. The channel correlation matrices are
also equal to the identity matrix to mimic the uncorrelated
channel. Moreover, the pathloss exponentβ = 2 is considered.
We would like to point out that the experimental curves
for different channel realizations produced similar results. As
such, the experimental curve corresponding to a single channel
realization is shown for the sake of clarity and conciseness.

Fig. 2(a) shows the perfect match between the instantaneous
mutual information for an arbitrary channel realization with
100 antennas at each level and the asymptotic mutual informa-
tion, validatingTheorem 1 for large network dimensions. On
the other hand, with10 antennas at each level, it appears that
the instantaneous mutual information of a system with a small
number of antennas behaves very closely to the asymptotic
regime, justifying the usefulness of the asymptotic formula
even when evaluating the end-to-end mutual information of a
system with small size.

Finally, Fig. 2(b) plots the asymptotic mutual information
for one, two, and three hops, as well as the value of the
instantaneous mutual information for random channel realiza-
tions when the number of antennas at all levels increases.
The concentration of the instantaneous mutual information
values around the asymptotic limit when the system size
increases shows the convergence of the instantaneous mutual
information towards the asymptotic limit as the number of
antennas grows large at all levels with the same rate.

B. One-sided exponentially correlated multi-hop MIMO
Based on the model discussed in Section V-C, the one-sided

exponentially correlated system is considered in this section.
In the case of one-sided correlation, e.g.rr,i = 0 andrt,i ≥ 0
for all i ∈ {0, . . . , N}, the asymptotic mutual information
(28), (29) is reduced to

I∞ =
N
∑

i=0

ρi

ρ0π

∫

+∞

−∞

log

(

1 + ct,i+1

ηhN
i ai+1α

2
i

ρi

(1 + u2)

(c2t,i+1 + u2)

)

du

1 + u2

−N
log e

ρ0
η

N
∏

i=0

hi

(31)

whereh0, h1, . . . , hN are the solutions of the system ofN+1
equations

N∏

j=0

hj =
hN
i ai+1α

2
i

√

ct,i+1 +
ηhN

i
ai+1α2

i

ρi

√
1

ct,i+1
+

ηhN
i
ai+1α2

i

ρi

. (32)
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Fig. 2. Uncorrelated case: asymptotic mutual information and instantaneous mutual information for single-hop MIMO, 2hops, and 3 hops.

One-sided correlation was considered to avoid the involved
computation of the elliptic integralK(mi) in the system of
equations (29), and therefore to simplify simulations.

Fig. 3(a) plots the asymptotic mutual information for one,
two or three hops, as well as the instantaneous mutual infor-
mation obtained for an arbitrary channel realization (shown as
experimental curves in the figure) for10 and100 antennas at
each level. As in the uncorrelated case, the perfect match of
the experimental and asymptotic curves in Fig. 3(a) with100
antennas validates the asymptotic formula inTheorem 1 in
the presence of correlation. Fig. 3(a) also shows that even for
a small number of antennas, the system behaves closely to the
asymptotic regime in the correlated case.

Finally, Fig. 3(b) plots the instantaneous mutual informa-
tion for random channel realizations against the size of the
system and shows its convergence towards the asymptotic
mutual information when the number of antennas increases.
We would like to mention that simulations for higher values
of the correlationrt,i showed that convergence towards the
asymptotic limit is slower when correlation increases.

VII. C ONCLUSION AND RESEARCHPERSPECTIVES

We studied a multi-hop MIMO relay network in the corre-
lated fading environment, where relays at each level perform
linear precoding on their received signal prior to retransmitting
it to the next level. Using free probability theory, a closed-
form expression of the instantaneous end-to-end mutual in-
formation was derived in the asymptotic regime where the
number of antennas at all levels grows large. The asymptotic
instantaneous end-to-end mutual information turns out to be a
deterministic quantity that depends only on channel statistics
and not on particular channel realizations. Moreover, it also
serves as the asymptotic value of the average end-to-end
mutual information. Simulation results verified that, evenwith
a small number of antennas at each level, multi-hop systems
behave closely to the asymptotic regime. This observation

makes the derived asymptotic mutual information a powerful
tool to optimize the instantaneous mutual information of finite-
size systems with only statistical knowledge of the channel.

We also showed that for any system size the left and
right singular vectors of the optimal precoding matrices that
maximize the average mutual information are aligned, at
each level, with the eigenvectors of the transmit and receive
correlation matrices of the forward and backward channels,re-
spectively. Thus, the singular vectors of the optimal precoding
matrices can be determined with only local statistical channel
knowledge at each level.

In the sequel, the analysis of the end-to-end mutual informa-
tion in the asymptotic regime will first be extended to the case
where noise impairs signal reception at each relaying level.
Then, combining the expression of the asymptotic mutual
information with the singular vectors of the optimal precoding
matrices, future work will focus on optimizing the power
allocation determined by the singular values of the precoding
matrices. Finally future research directions also includethe
analysis of the relay-clustering effect, and the optimal size of
clusters in correlated fading is expected to depend on the SNR
regime.

APPENDIX A
TRANSFORMS ANDLEMMAS

Transforms and lemmas used in the proofs ofTheorems 1
and 2 are provided and proved in this appendix, while the
proofs ofTheorems 1 and2 are detailed in Appendices B and
C, respectively.

A. Transforms

Let T be a square matrix of sizen with real eigenvalues
λT(1), . . . , λT(n). The empirical eigenvalue distributionFn

T



10

0 5 10 15 20 25
0

1

2

3

4

5

6

7

8

 

 
N = 1 hop, Asymptotic
N = 1 hop, Experimental, K=100
N = 1 hop, Experimental, K=10
N = 2 hops, Asymptotic
N = 2 hop, Experimental, K=100
N = 2 hop, Experimental, K=10
N = 3 hops, Asymptotic
N = 3 hops, Experimental, K=100
N = 3 hop, Experimental, K=10

Instantaneous Mutual Information vs SNR, K = 10, 100,∞ antennas,r = 0.3

In
st

a
nt

a
ne

ou
s

M
ut

ua
l

In
fo

rm
a

tio
n

[b
its

/s
/H

z/
a

nt
e

nn
a

]

SNR [dB]

(a) Mutual information versus SNR withK = 10, 100,∞ antennas.

0 20 40 60 80 100
1.5

2

2.5

3

3.5

4

4.5

 

 

N = 1 hop, Asymptotic
N = 1 hop, Experimental
N = 2 hops, Asymptotic
N = 2 hops, Experimental
N = 3 hops, Asymptotic
N = 3 hops, Experimental

1 hop

2 hops

3 hops

Instantaneous Mutual Information vs Number Antennas, SNR =10 dB,r = 0.3

In
st

a
nt

a
ne

ou
s

M
ut

ua
l

In
fo

rm
a

tio
n

[b
its

/s
/H

z/
a

nt
e

nn
a

]

K [antennas]

(b) Mutual information versusKN , at SNR = 10 dB.

Fig. 3. One-sided exponential correlation case: asymptotic mutual information and instantaneous mutual informationfor r = 0.3, and single-hop MIMO, 2
hops, and 3 hops.

of T is defined by

Fn
T(x) ,

1

n

n∑

i=1

u(x− λT(i)). (33)

We define the following transformations [10]

Stieltjes transform: GT(s) ,

∫
1

λ− s
dFT(λ) (34)

ΥT(s) ,

∫
sλ

1− sλ
dFT(λ) (35)

S-transform: ST(z) ,
z + 1

z
Υ−1

T (z) (36)

whereΥ−1(Υ(s)) = s.

B. Lemmas

We present here the lemmas used in the proofs ofTheorems
1 and2. Lemmas 1, 3, 5 and7 are proved in Appendix A-C,
while Lemmas 2, 6, and4 are taken from [28], [27], and [29]
respectively.

Lemma 1: Consider ann×p matrixA and ap×n matrixB,
such that their productAB has non-negative real eigenvalues.
Denoteξ = p

n . Then

SAB(z) =
z + 1

z + ξ
SBA

(
z

ξ

)

. (37)

Note thatLemma 1 is a more general form of the results
derived in [30, Eq. (1.2)], [10, Eq. (15)].

Lemma 2 ( [28, Prop. 4.4.9 and 4.4.11]): For n ∈ N, let
p(n) ∈ N be such thatp(n)n → ξ asn → ∞. Let

• Θ(n) be ap(n) × n complex Gaussian random matrix
with i.i.d. elements with variance1n .

• A(n) be an n × n constant matrix such that
supn ‖A(n)‖ < +∞ and (A(n),A(n)H) has the limit
eigenvalue distributionµ.

• B(n) be ap(n)× p(n) Hermitian random matrix, inde-
pendent fromΘ(n), with an empirical eigenvalue distri-
bution converging almost surely to a compactly supported
probability measureν.

Then, asn → ∞,
• the empirical eigenvalue distribution of

Θ(n)HB(n)Θ(n) converges almost surely to the
compound free Poisson distributionπν,ξ [28]

• the family ({Θ(n)HB(n)Θ(n)}, {A(n),A(n)H}) is
asymptotically free almost everywhere.

Thus the limiting eigenvalue distribution of
Θ(n)B(n)Θ(n)HA(n)A(n)H is the free convolution
πν,ξ ⊠ µ and itsS-transform is

SΘBΘHAAH (z) = SΘBΘH (z)SAAH (z). (38)

Note that if the elements ofΘ(n) had variance 1
p(n) instead

of 1
n , ({Θ(n)HB(n)Θ(n)}, {A(n),A(n)H}) would still be

asymptotically free almost everywhere, and consequently,
Equation (38) would still hold.

Lemma 3: Consider ann × p matrix A with zero-mean
i.i.d. entries with varianceap . Assume that the dimensions go
to infinity while n

p → ζ, then

SAAH (z) =
1

a

1

(1 + ζz)

SAHA(z) =
1

a

1

(z + ζ)
.

(39)

Lemma 4 ( [29, Theorem H.1.h]): Let A and B be two
positive semi-definite hermitian matrices of sizen × n. Let
λA(i) and λB(i) be their decreasingly-ordered eigenvalues
respectively. Then the following inequality holds:
n∑

i=1

λA(i)λB(n−i+1)≤tr(AB)=

n∑

i=1

λAB(i)≤
n∑

i=1

λA(i)λB(i).

(40)
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Lemma 5: For i ∈ N
N
1 , let Ai be a ni × ni−1 random

matrix. Assume that

• A1, . . . ,AN are mutually independent,
• ni goes to infinity while ni

ni−1
→ ζi,

• as ni goes to infinity, the eigenvalue distribution of
AiA

H
i converges almost surely in distribution to a com-

pactly supported measureνi,
• asn1, . . . , nN go to infinity, the eigenvalue distribution

of (
⊗1

i=N Ai)(
⊗1

i=N Ai)
H converges almost surely in

distribution to a measureµN .

ThenµN is compactly supported.

Lemma 6 ( [27, Theorem 9]): Let Tn be a sequence of
Wiener-class Toeplitz matrices, characterized by the function
f(λ) with essential infimummf and essential supremumMf .
Let λTn

(1), . . . , λTn
(n) be the eigenvalues ofTn and s be

any positive integer. Then

lim
n→∞

1

n

n∑

k=1

λs
Tn

(k) =
1

2π

∫ 2π

0

f(λ)sdλ. (41)

Furthermore, iff(λ) is real, or equivalently, the matricesTn

are all Hermitian, then for any functiong(·) continuous on
[mf ,Mf ]

lim
n→∞

1

n

n∑

k=1

g(λTn
(k)) =

1

2π

∫ 2π

0

g(f(λ))dλ. (42)

Lemma 7: For i ≥ 1, given a set of deterministic matrices
{Ak}k∈{0,...,i} and a set of independent random matrices
{Θk}k∈{1,...,i}, with i.i.d. zero-mean gaussian elements with
varianceσ2

k,

tr

(

E

[
1⊗

k=i

{AkΘk}A0A
H
0

i⊗

k=1

{ΘH
k AH

k }
] )

= tr(A0A
H
0 )

i∏

k=1

σ2
ktr(AkA

H
k ).

(43)

C. Proofs of Lemmas

The proofs ofLemmas 1, 3, 5 and7 are given hereafter.

Proof of Lemma 1
Given two complex matricesA of sizem×n, andB of size

n×m, their productsAB andBA have the samek non-zero
eigenvaluesλAB(1), . . . , λAB(k) with the same respective
multiplicitiesm1, . . . ,mk. However the multiplicitiesm0 and
m′

0 of the 0-eigenvalues ofAB and BA respectively, are
related as follows:

m0 + n = m′
0 +m. (44)

Assuming thatAB, and thereforeBA, has real eigenvalues,
we show hereafter that (37) holds.

The empirical eigenvalue distributions ofAB andBA are
defined by

Fm
AB(λ) =

m0

m
u(λ) +

1

m

k∑

i=1

miu(λ− λAB(i))

Fn
BA(λ) =

m′
0

n
u(λ) +

1

n

k∑

i=1

miu(λ− λAB(i)).

(45)

Using (44), we get

Fm
AB(λ) =

n

m
Fn
BA(λ) +

(

1− n

m

)

u(λ). (46)

From (46), it is direct to show that

GAB(z) =
n

m
GBA(z)−

(

1− n

m

) 1

z
. (47)

As Υ(s) = −1− 1
sG(1s ), from (47), we obtain

ΥAB(s) =
n

m
ΥBA(s). (48)

Finally, using{z = ΥAB(s) = n
mΥBA(s)} ⇔ {Υ−1

AB(z) =

s = Υ−1
BA

(
z

n/m

)

} and the definition of theS-transform

S(z) , z+1
z Υ−1(z) yields the desired result

SAB(z) =
z + 1

z + n
m

SBA

(
z

n/m

)

. (49)

This concludes the proof ofLemma 1. �

Proof of Lemma 3
Consider ann × p matrix A with zero-mean i.i.d. entries

with variancea
p . LetX = 1√

a
A denote the normalized version

of A with zero-mean i.i.d. entries of variance1p and define
Y = aIn and Z = XXHY = AAH . It is direct to show
that SY(z) = 1

a . Using the latter result along with [10,
Theorem 1], we obtain

SXXH (z) =
1

(1 + ζz)

SAAH (z) = SZ(z) = SXXH (z)SY(z) =
1

(1 + ζz)

1

a
.

(50)

Applying Lemma 1 to SAHA(z) yields

SAHA(z) =
z + 1

z + ζ
SAAH

(
z

ζ

)

=
1

a

1

(z + ζ)
. (51)

This completes the proof ofLemma 3. �

Proof of Lemma 5
The proof of Lemma 5 is done by induction onN . For

N = 1, Lemma 5 obviously holds. Assuming thatLemma 5
holds forN , we now show that it also holds forN + 1.

We first recall that the eigenvalues of Gramian matrices
AAH are non-negative. Thus the support ofµN+1 is lower-
bounded by0, and we are left with showing that it is also
upper-bounded.

DenotingBN = (
⊗1

i=N Ai)(
⊗1

i=N Ai)
H , we can write

BN+1 = AN+1BNAH
N+1. (52)
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For a matrixA, let λA,max denote its largest eigenvalue. The
largest eigenvalue ofBN+1 is given by

λBN+1,max

= max
x

xH BN+1 x

xHx

= max
x

xH AN+1BNAH
N+1 x

xHx

= max
x

tr(BN AH
N+1xx

HAN+1)

xHx

≤ max
x

∑nN

k=1 λBN
(k) λAH

N+1
xxHAN+1

(k)

xHx
, by Lemma 4

≤ max
x

λBN ,max

∑nN

k=1 λAH
N+1

xxHAN+1
(k)

xHx

= λBN ,max max
x

tr(AH
N+1xx

HAN+1)

xHx

= λBN ,max max
x

xHAN+1A
H
N+1x

xHx

= λBN ,max λAN+1A
H
N+1

,max.

(53)

To simplify notations, we rename the random variables as
follows:

X = λBN+1,max Y = λBN ,max Z = λAN+1A
H
N+1

,max.
(54)

Then (53) can be rewritten

X ≤ Y Z. (55)

Let a ≥ 0, by (55) we have

FX(a) = Pr{X < a} ≥ Pr{Y Z < a} = FY Z(a) (56)

which still holds for the asymptotic distributions as
n1, . . . , nN+1 → ∞, while ni

ni−1
→ ζi. Denoting the plane

regionDa = {x, y ≥ 0/xy < a}, we can write

FY Z(a)

=

∫∫

y,z∈Da

fY,Z(y, z)dydz

=

∫∫

y,z∈Da

fY (y)fZ(z)dydz, by independence ofY andZ

=

∫ +∞

y=0

(
∫ a/y

z=0

fZ(z)dz

)

fY (y)dy

=

∫ +∞

y=0

FZ

(
a

y

)

fY (y)dy.

(57)

By assumption, the distributions ofAN+1A
H
N+1 andBN

converge almost surely to compactly supported measures.
Thus, their largest eigenvalues are asymptotically upper-
bounded and the support of the asymptotic distributions of
Y andZ are upper-bounded, i.e.

∃cy ≥ 0 such that∀y ≥ cy , FY (y) = 1 (fY (y) = 0)

∃cz ≥ 0 such that∀z ≥ cz , FZ(z) = 1 (fZ(z) = 0).
(58)

Let a ≥ cy cz, then for all0 < y ≤ cy, we havea
y ≥ a

cy
≥

cz and FZ

(
a
y

)

= 1, as the dimensions go to infinity with
constant rates. Therefore, in the asymptotic regime, we have

FY Z(a) =

∫ cy

y=0

FZ

(
a

y

)

fY (y)dy

=

∫ cy

y=0

1fY (y)dy = FY (cy) = 1.

(59)

Combining (56) and (59), we getFX(a) = 1 for a > cy cz.
Thus, there exists a constantcx such that0 ≤ cx ≤ cy cz
and ∀x ≥ cx , FX(x) = 1, which means that the support
of the asymptotic distribution ofX is upper-bounded. As a
consequence, the support of the asymptotic eigenvalue distri-
bution ofBN+1 is also upper-bounded. Therefore, the support
of µN+1 is upper-bounded, which concludes the proof.�

Proof of Lemma 7
The proof ofLemma 7 is done by induction. We first prove

that Lemma 7 holds for i = 1. To that purpose, we define the
matrix B = A1Θ1A0A

H
0 ΘH

1 AH
1 . Then

tr(E[A1Θ1A0A
H
0 ΘH

1 AH
1 ]) = tr(E[B]) =

k1∑

j=1

E[bjj ] (60)

The expectation of thejth diagonal elementbjj of B is

E[bjj ] =
∑

k,l,m,n,p

E[a
(1)
jk θ

(1)
kl a

(0)
lma(0)∗nm θ(1)∗pn a

(1)∗
jp ]

=
∑

k,l,m

|a(1)jk |2|a
(0)
lm |2 E[|θ(1)kl |2]

︸ ︷︷ ︸

σ2
1

= σ2
1

∑

k

|a(1)jk |2
∑

l,m

|a(0)lm |2.

(61)

where the second equality is due to the fact thatE[θ
(1)
kl θ

(1)∗
pn ] =

σ2
1δk,pδl,n. It follows from (60) and (61) that

tr(E[B]) = σ2
1

∑

j,k

|a(1)jk |2
∑

l,m

|a(0)lm |2

= σ2
1tr(A1A

H
1 )tr(A0A

H
0 )

(62)

which shows thatLemma 7 holds for i = 1.
Now, assuming thatLemma 7 holds for i − 1, we

show it also holds fori. We define the matrixBi =
⊗1

k=i{AkΘk}A0A
H
0

⊗i
k=1{ΘH

k AH
k }. Then

tr(E[Bi]) =

k1∑

j=1

E[b
(i)
jj ] = tr(E[AiΘiBi−1Θ

H
i AH

i ]) (63)

The expectation of thejth diagonal elementb(i)jj of Bi is

E[b
(i)
jj ] =

∑

k,l,m,n

E[a
(i)
jk θ

(i)
kl b

(i−1)
lm θ(i)∗nm a

(i)∗
jn ]

=
∑

k,l

|a(i)jk |2E[b
(i−1)
ll ] E[|θ(i)kl |2]

︸ ︷︷ ︸

σ2
i

= σ2
i

∑

k

|a(i)jk |2
∑

l

E[b
(i−1)
ll ]

(64)
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where the second equality is due to the independence ofΘi

andBi−1 and to the fact thatE[θ(i)knθ
(i)∗
lm ] = σ2

i δk,pδl,n. Thus
(63) becomes

tr(E[Bi]) = σ2
i

∑

j,k

|a(i)jk |2
∑

l

E[b
(i−1)
ll ]

= σ2
i tr(AiA

H
i )tr(E[Bi−1])

= σ2
i tr(AiA

H
i )tr(A0A

H
0 )

i−1∏

k=1

σ2
ktr(AkA

H
k )

= tr(A0A
H
0 )

i∏

k=1

σ2
ktr(AkA

H
k )

(65)

which shows that ifLemma 7 holds for i − 1, then it holds
for i.

ThereforeLemma 7 holds for anyi ≥ 1, which concludes
the proof. �

APPENDIX B
PROOF OFTHEOREM 1

In this appendix, we first list the main steps of the proof of
Theorem 1 and then present the detailed proof of each step.
Note that the proof ofTheorem 1 uses tools from the free
probability theory introduced in Appendix A. The proof of
Theorem 1 consists of the following four steps.

1) ObtainSGNGH
N
(z).

2) UseSGNGH
N
(z) to find ΥGNGH

N
(z).

3) UseΥGNGH
N
(z) to obtaindI/dη.

4) IntegratedI/dη to obtainI itself.

• First Step: obtain SGNGH
N
(z)

Theorem 3: As ki, ∀i ∈ NN
0 , go to infinity with the same

rate, the S-transform ofGNGH
N is given by

S
GNG

H
N
(z) = S

M
H
N

MN
(z)

N
∏

i=1

ρi−1

ai

1

(z + ρi−1)
S
M

H
i−1

Mi−1

(

z

ρi−1

)

.

(66)

Proof: The proof is done by induction usingLemmas 1,
3, 2. First, we prove (66) forN = 1. Note that

G1G
H
1 = M1Θ1M0M

H
0 ΘH

1 MH
1 (67)

therefore
SG1G

H
1
(z)

= SΘ1M0M
H
0 ΘH

1 MH
1 M1

(z), by Lemma 1

= SΘ1M0M
H
0 ΘH

1
(z)SMH

1 M1
(z), by Lemma 2

=
z + 1

z + k0

k1

SM0M
H
0 ΘH

1 Θ1

(

z
k0

k1

)

SMH
1 M1

(z), by Lemma 1

=
z + 1

z + k0

k1

SM0M
H
0

(

z
k0

k1

)

SΘH
1 Θ1

(

z
k0

k1

)

SMH
1 M1

(z), by Lemma 2

=
z + 1

z + k0

k1

SM0M
H
0

(

z
k0

k1

)

1

a1

1
z
k0
k1

+ k1

k0

SMH
1 M1

(z), by Lemma 3

= SMH
1 M1

(z)
ρ0
a1

1

z + ρ0
SMH

0 M0

(
z

ρ0

)

, by Lemma 1.

(68)

Now, we need to prove that if (66) holds forN = q, it also
holds forN = q + 1. Note that

Gq+1G
H
q+1 =Mq+1Θq+1MqΘq . . .M1Θ1M0

×MH
0 ΘH

1 MH
1 . . .ΘH

q MH
q ΘH

q+1M
H
q+1.

(69)

Therefore,

SGq+1G
H
q+1

(z) = SMq+1...MH
q+1

(z)

= SΘq+1Mq...MH
q ΘH

q+1
MH

q+1
Mq+1

(z), (70)

by Lemma 1. The empirical eigenvalue distribution of Wishart
matricesΘiΘ

H
i converges almost surely to the Marčenko-

Pastur law whose support is compact. Moreover, by as-
sumption, the empirical eigenvalue distribution ofMH

i Mi,
i = 0, . . . , N + 1 converges to an asymptotic distribution
with a compact support. Thus, byLemma 5, the asymptotic
eigenvalue distribution ofMqΘq . . .Θ

H
q MH

q has a compact
support. ThereforeLemma 2 can be applied to (70) to show
that

SGq+1G
H
q+1

(z)

= SΘq+1...ΘH
q+1

(z)SMH
q+1

Mq+1
(z) , by Lemma 2

=
z + 1

z +
kq

kq+1

SMq...MH
q ΘH

q+1
Θq+1




z
kq

kq+1





× SMH
q+1

Mq+1
(z) , by Lemma 1

=
z + 1

z +
kq

kq+1

SMq...MH
q




z
kq

kq+1



SΘH
q+1Θq+1




z
kq

kq+1





× SMH
q+1

Mq+1
(z) , by Lemma 2

=
z + 1

z +
kq

kq+1



SMH
q Mq




z
kq

kq+1





×
q
∏

i=1

ki−1

kq

ai

1
z
kq

kq+1

+ ki−1

kq

SMH
i−1

Mi−1








(

z
kq

kq+1

)

ki−1

kq















× 1

aq+1

1
kq+1

kq
+ z

kq
kq+1

SMH
q+1

Mq+1
(z) , by Lemma 3

=
z + 1

z +
kq

kq+1

SMH
q+1

Mq+1
(z)

kq

kq+1

aq+1

1

z + 1
SMH

q Mq




z
kq

kq+1





×
q
∏

i=1

ki−1

kq+1

ai

1

z + ki−1

kq+1

SMH
i−1

Mi−1

(

z
ki−1

kq+1

)

= SMH
q+1

Mq+1
(z)

q+1
∏

i=1

ki−1

kq+1

ai

1

z + ki−1

kq+1

SMH
i−1

Mi−1

(

z
ki−1

kq+1

)

= SMH
q+1

Mq+1
(z)

q+1
∏

i=1

ρi−1

ai

1

(z + ρi−1)
SMH

i−1
Mi−1

(
z

ρi−1

)

.

(71)

The proof is complete.

• Second Step: useSGNGH
N
(z) to find ΥGNGH

N
(z)
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Theorem 4: Let us defineaN+1 = 1. We have

sΥN
GNGH

N
(s) =

N∏

i=0

ρi
ai+1

Υ−1
MH

i
Mi

(
ΥGNGH

N
(s)

ρi

)

. (72)

Proof: From (66) it follows that
z

z + 1
SGNGH

N
(z) =

z

z + 1
SMH

N
MN

(z)×
N∏

i=1

ρi−1

ai

1

z + ρi−1

z
ρi−1

+ 1
z

ρi−1

z
ρi−1

z
ρi−1

+ 1
SMH

i−1
Mi−1

(
z

ρi−1

)

.

(73)

Using (36) in (73), we obtain

Υ−1
GNGH

N

(z) =
1

zN
Υ−1

MH
N

MN
(z)

N∏

i=1

ρi−1

ai
Υ−1

MH
i−1

Mi−1

(
z

ρi−1

)

,

(74)
or equivalently,

Υ−1
GNGH

N

(z) =
1

zN

N∏

i=0

ρi
ai+1

Υ−1
MH

i
Mi

(
z

ρi

)

. (75)

Substitutingz = ΥGNGH
N
(s) in (75), Equation (72) follows.

This completes the proof.

• Third Step: use ΥGNGH
N
(z) to obtain dI/dη

Theorem 5: In the asymptotic regime, ask0, k1, . . . , kN go
to infinity while ki

kN
→ ρi, i = 0, . . . , N , the derivative of the

instantaneous mutual information is given by

dI∞
dη

=
1

ρ0 ln 2

N∏

i=0

hi (76)

whereh0, h1, . . . , hN are the solutions to the following set of
N + 1 equations

N∏

j=0

hj = ρiE

[

hN
i Λi

ρi

ai+1 + ηhN
i Λi

]

∀i ∈ NN
0 . (77)

The expectation in (77) is overΛi whose probability distribu-
tion function is given byFMH

i
Mi

(λ) (convention:aN+1 = 1).

Proof:
First, we note that

I =
1

k0
log det(I+ ηGNGH

N )

=
1

k0

kN∑

i=1

log(1 + ηλGNGH
N
(i))

=
kN
k0

1

kN

kN∑

i=1

log(1 + ηλGNGH
N
(i))

=
kN
k0

∫

log(1 + ηλ)dF kN

GNGH
N

(λ)

a.s.→ 1

ρ0

∫

log(1 + ηλ)dFGNGH
N
(λ)

=
1

ρ0 ln 2

∫

ln(1 + ηλ)dFGNGH
N
(λ) (78)

whereF kN

GNGH
N

(λ) is the (non-asymptotic) empirical eigen-

value distribution ofGNGH
N , that converges almost-surely

to the asymptotic empirical eigenvalue distributionFGNGH
N

,
whose support is compact. Indeed, the empirical eigenvalue
distribution of Wishart matricesΘiΘ

H
i converges almost

surely to the Marčenko-Pastur law whose support is compact,
and by assumption, fori ∈ NN+1

0 the empirical eigenvalue
distribution ofMH

i Mi converges to an asymptotic distribution
with a compact support. Therefore, according toLemma 5, the
asymptotic eigenvalue distribution ofGNGH

N has a compact
support. Thelog function is continuous, thus bounded on
the compact support of the asymptotic eigenvalue distribution
of GNGH

N . This enables the application of the bounded
convergence theorem to obtain the almost-sure convergence
in (78).

It follows from (78) that

dI∞
dη

=
1

ρ0 ln 2

∫
λ

1 + ηλ
dFGNGH

N
(λ)

=
1

−ρ0η ln 2

∫ −ηλ

1− (−η)λ
dFGNGH

N
(λ)

=
1

−ρ0η ln 2
ΥGNGH

N
(−η). (79)

Let us denote

t = ΥGNGH
N
(−η) (80)

gi = Υ−1
MH

i
Mi

(
t

ρi

)

∀i ∈ NN
0 (81)

and, for the sake of simplicity, letα = ρ0 ln 2. From (79), we
have

t = −ηα
dI∞
dη

. (82)

Substitutings = −η in (72) and using (80) and (81), it follows
that

−ηtN =

N∏

i=0

ρi
ai+1

gi. (83)

Finally, from (81) and the very definition ofΥ in (35), we
obtain

t = ρi

∫
giλ

1− giλ
dFMH

i
Mi

(λ) ∀i ∈ NN
0 . (84)

Substituting (82) in (83) and (84) yields

(−η)N+1

(

α
dI

dη

)N

=

N∏

i=0

ρi
ai+1

gi (85)

and

−η

(

α
dI∞
dη

)

= ρi

∫
giλ

1− giλ
dFMH

i
Mi

(λ) ∀i ∈ NN
0 .

(86)
Letting

hi =

(
ρi

ai+1

) 1
N
(

gi
−η

) 1
N

(87)

it follows from (85) that

α
dI∞
dη

=

N∏

i=0

hi. (88)
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Using (87) and (88) in (86), we obtain

−η

N∏

j=0

hj = ρi

∫ −ηhN
i

ai+1

ρi
λ

1− (−η)hN
i

ai+1

ρi
λ
dFMH

i
Mi

(λ), ∀i ∈ NN
0

(89)
or, equivalently,

N∏

j=0

hj = ρi

∫
hN
i λ

ρi

ai+1
+ ηhN

i λ
dFMH

i
Mi

(λ)

= ρiE

[

hN
i Λi

ρi

ai+1
+ ηhN

i Λi

]

, ∀i ∈ NN
0 . (90)

This, along with equation (88), complete the proof.

• Fourth Step: integrate dI/dη to obtain I itself
The last step of the proof ofTheorem 1 is accomplished by

computing the derivative ofI∞ in (17) with respect toη and
showing that the derivative matches (76). This shows that (17)
is one primitive function ofdI∞

dη . Since primitive functions of
dI∞

dη differ by a constant, the constant was chosen such that
the mutual information (17) is zero when SNRη goes to zero:
limη→0 I∞(η) = 0.

We now proceed with computing the derivative ofI∞. If
(17) holds, then we have (recallα = ρ0 ln 2)

αI∞ =

N∑

i=0

ρiE

[

ln

(

1 +
ηai+1

ρi
hN
i Λi

)]

−Nη

N∏

i=0

hi. (91)

From (91) we have

α
dI∞
dη

=

N∑

i=0

ρiE




Λi

(

hN
i +NηhN−1

i h
′

i

)

ρi

ai+1
(1 + ηai+1

ρi
hN
i Λi)





−N

N∏

i=0

hi −Nη







N∑

i=0

h
′

i

N∏

j=0
j 6=i

hj







=
N∑

i=0

ρiE

[

Λih
N
i

ρi

ai+1
+ ηhN

i Λi

]

+Nη
N∑

i=0

h
′

i

hi
ρiE

[

Λih
N
i

ρi

ai+1
+ ηhN

i Λi

]

−N

N∏

i=0

hi −Nη





N∑

i=0

h
′

i

hi

N∏

j=0

hj





=

N∑

i=0

N∏

j=0

hj +Nη





N∑

i=0

h
′

i

hi

N∏

j=0

hj





−N
N∏

i=0

hi −Nη





N∑

i=0

h
′

i

hi

N∏

j=0

hj





= (N + 1)

N∏

j=0

hj −N

N∏

j=0

hj =

N∏

j=0

hj

(92)

whereh
′

i ,
dhi

dη and the third line is due to (18). Equation (76)
immediately follows from (92). This completes the proof.�

APPENDIX C
PROOF OFTHEOREM 2

In this appendix, we provide the proof ofTheorem 2. The
proof of this theorem is based on [29, Theorem H.1.h] that
is reiterated inLemma 4. Note that, [29, Theorem H.1.h]
has been used before to characterize the source precoder
maximizing the average mutual information of single-user [21]
and multi-user [22] single-hop MIMO systems with covariance
knowledge at source, and to obtain the relay precoder max-
imizing the instantaneous mutual information of a two-hop
MIMO system with full CSI at the relay [9]. We extend the
results of [21], [22], [9] to suit the MIMO multi-hop relaying
system of our concern.

The proof consists of three following steps.

• Step 1: Use the singular value decomposition (SVD)
UiDiV

H
i = Λ

1/2
t,i+1U

H
t,i+1PiUr,iΛ

1/2
r,i and show that

unitary matricesUi andVi impact the maximization of
the average mutual information through the power con-
straints only, while diagonal matricesDi affect both the
mutual information expression and the power constraints.

• Step 2: Represent the power constraint expression as a
function of Di,Ui,Vi and channel correlation matrices
only.

• Step 3: Show that the directions minimizing the trace
in the power constraint are those given inTheorem 2,
regardless of the singular values contained inDi.

Before detailing each step, we recall that the maximum
average mutual information is given by

C , max
{Pi/tr(E[xix

H
i
])≤kiPi}

i∈N
N−1
0

E
[
log det(IkN

+ η GNGH
N )
]

(93)

and we define the conventionsa0 = 1, andCr,0 = Ik0
. Note

that the latter implies thatUr,0 = Ik0
andΛr,0 = Ik0

.

• Step 1: clarify how the average mutual information
depends on the transmit directions and the transmit
powers

For i ∈ {1, . . . , N} we define

Θ′
i = UH

r,iΘiUt,i (94)

Since Θi is zero-mean i.i.d. complex Gaussian, thus bi-
unitarily invariant, andUr,i and Ut,i are unitary matrices,
Θ′

i has the same distribution asΘi.
For i ∈ {0, . . . , N − 1}, we consider the following SVD

UiDiV
H
i = Λ

1/2
t,i+1U

H
t,i+1PiUr,iΛ

1/2
r,i (95)

whereUi, Vi are unitary matrices,Di is a real diagonal ma-
trix with non-negative diagonal elements in the non-increasing
order of amplitude.

We now rewrite the average mutual information as a
function of matricesUi, Vi and Di, in order to take the
maximization in (15) overUi, Vi and Di instead ofPi.
Using (94) and (95) the average mutual informationI can
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be expressed in terms of matricesΘ′
i, Ui, Vi andDi as

I , E
[
log det(IkN

+ η GNGH
N )
]

=E
[

log det(IkN
+ηUr,NΛ

1/2
r,NΘ′

NUN−1DN−1V
H
N−1Θ

′
N−1. . .

. . .U1D1V
H
1 Θ′

1U0D0V
H
0 V0D

H
0 UH

0 Θ
′H
1 V1D

H
1 UH

1 . . .

. . .Θ
′H
N−1VN−1D

H
N−1U

H
N−1Θ

′H
N Λ

1/2
r,NUH

r,N )
]

(96)

Θ′
i being zero-mean i.i.d. complex Gaussian, multiplying it by

unitary matrices does not change its distribution. Therefore,
Θ′′

i = VH
i Θ′

iUi−1 has the same distribution asΘ′
i and the

average mutual information can be rewritten

I = E
[

log det(IkN
+ η Λ

1/2
r,NΘ

′′

NDN−1Θ
′′

N−1 . . .D1Θ
′′

1D0

×D
H
0 Θ

′′H
1 D

H
1 . . .Θ

′′H
N−1D

H
N−1Θ

′′H
N Λ

1/2
r,N )

]

=E

[

log det(IkN
+ηΛ

1/2
r,N

1
⊗

i=N

{Θ′′

i Di−1}
N
⊗

i=1

{DH
i−1Θ

′′H
i }Λ

1/2
r,N )

]

.

(97)

Therefore, the maximum average mutual information can then
be represented as

C = max
{Di,Ui,Vi/tr(E[xix

H
i
])≤kiPi}

i∈N
N−1
0

E

[

log det(IkN
+ηΛ

1/2
r,N

1⊗

i=N

{Θ′′
i Di−1}

N⊗

i=1

{DH
i−1Θ

′′H
i }Λ1/2

r,N)

]

.

(98)

Expression (97) shows that the average mutual informationI
does not depend on the matricesUi andVi, which determine
the transmit directions at source and relays, but only depends
on the singular values contained in matricesDi. Nevertheless,
as shown by (98), the maximum average mutual information
C depends on the matricesUi,Vi—and thus on the transmit
directions— through the power constraints.

• Step 2: give the expression of the power constraints
in function of Di,Ui,Vi and channel correlation
matrices

We show hereunder that the average power of transmitted
signalxi at i-th relaying level is given by

tr(E[xix
H
i ]) = aitr(PiCr,iP

H
i )

i−1∏

k=0

ak
kk

tr(Ct,k+1PkCr,kP
H
k ).

(99)

Proof: The average power of transmitted signalxi can be
written as

tr(E[xix
H
i ]) = tr(E[

1⊗

k=i

{AkΘk}A0A
H
0

i⊗

k=1

{ΘH
k AH

k }])

with

Ai = PiC
1/2
r,i

Ak = Mk = C
1/2
t,k+1PkC

1/2
r,k ∀k ∈ Ni−1

0

σ2
k =

ak
kk−1

(100)

Applying Lemma 7 to tr(E{xix
H
i }) yields

tr(E[xix
H
i ]) =tr(Ct,1P0Cr,0P

H
0 )

i−1
∏

k=1

ak

kk−1

tr(Ct,k+1PkCr,kP
H
k )

×
ai

ki−1

tr(PiCr,iP
H
i )

=aitr(PiCr,iP
H
i )

i−1
∏

k=0

ak

kk
tr(Ct,k+1PkCr,kP

H
k )

(101)

which concludes the proof.
Using (99) in the power constraints (7), those constraints

can be rewritten as a product of trace-factors as in (19). In
order to express (19) in function of matricesUi, Vi andDi,
we first rewrite (95) as

Pi = Ut,i+1Λ
−1/2
t,i+1UiDiV

H
i Λ

−1/2
r,i UH

r,i (102)

and use (102) in (19) to obtain

tr(PiCr,iP
H
i )

= tr(Ut,i+1Λ
−1/2
t,i+1UiDiV

H
i Λ

−1/2
r,i UH

r,i Ur,iΛr,iU
H
r,i

×Ur,iΛ
−1/2
r,i ViD

H
i UH

i Λ
−1/2
t,i+1U

H
t,i+1)

= tr(Λ−1
t,i+1UiD

2
iU

H
i ),

(103)

and

tr(Ct,k+1PkCr,kP
H
k ) = tr(DkD

H
k ) = tr(D2

k), (104)

where D2
i = DiD

H
i is a real diagonal matrix with non-

negative diagonal elements in non-increasing order. This leads
to the following expression of the power constraints in function
of Ui,Di

tr(Λ−1
t,1U0D

2
0U

H
0 ) ≤ k0P0

aitr(Λ
−1
t,i+1UiD

2
iU

H
i ) ≤ kiPi

∏i−1
k=0

ak

kk
tr(D2

k)
, ∀i ∈ NN−1

2 .

(105)

It was shown in Step 1 that matricesVi do not have an impact
on the expression of the average mutual informationI (97),
and surprisingly (105) now shows that matricesVi do not
have an impact on the power constraints either. In fact, as can
be observed from (105), the power constraints depend only on
matricesUi andDi. It should also be noticed that matrixUi

has an impact on the power constraint of thei-th relay only.

• Step 3: give the optimal transmit directions

To determine the optimal directions of transmission at
source, we applyLemma 4 to the source power constraint (105)
tr(Λ−1

t,1U0D
2
0U

H
0 ) ≤ k0P0, and conclude that for all choices

of diagonal elements ofD2
0, the matrixU0 that minimizes the

tracetr(Λ−1
t,1U0D

2
0U

H
0 ) is U0 = Ik0

. Therefore, the source
precoder becomes

P0 = Ut,1Λ
−1/2
t,1 D0V

H
0 Λ

−1/2
r,0 UH

r,0 = Ut,1Λ
−1/2
t,1 D0V

H
0

= Ut,1ΛP0
VH

0 .
(106)
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This recalls the known result (22) in the single-hop MIMO
case, where the optimal precoding covariance matrix at source
was shown [21], [22] to be

Q⋆ , E[x0x
H
0 ] = P0P

H
0 = Ut,1ΛQ⋆UH

t,1. (107)

Similarly, to determine the optimal direction of transmission
at i-th relaying level, we applyLemma 4 to the i-th power
constraint: for all choices of diagonal elements ofD2

i , the
matrix Ui that minimizes the tracetr(Λ−1

t,i+1UiD
2
iU

H
i ) is

Ui = Iki
. This leads to the precoding matrix at leveli

Pi = Ut,i+1Λ
−1/2
t,i+1DiV

H
i Λ

−1/2
r,i UH

r,i. (108)

Now since matricesVi, i ∈ {0, . . . , N − 1} have an impact
neither on the expression of the average mutual information
nor on the power constraints, they can be chosen to be equal
to identity: Vi = I, i ∈ {0, . . . , N − 1} . This leads to the
(non-unique but simple) optimal precoding matrices

P0 = Ut,1ΛP0

Pi = Ut,i+1ΛPi
UH

r,i

(109)

with the diagonal matricesΛPi
= Λ

−1/2
t,i+1DiΛ

−1/2
r,i containing

the singular values ofPi.
This completes the proof ofTheorem 2. �

APPENDIX D
PROOF OF THEASYMPTOTIC MUTUAL INFORMATION WITH

EXPONENTIAL CORRELATIONS

In this appendix, we provide the proof of the asymptotic
mutual information (28), obtained under the assumptions of
exponential channel correlations, precoding matrices with sin-
gular vectors as inTheorem 2, and optimal power allocation
over these directions.

Optimal precoding directions: For i ∈ NN
1 , the eigenvalue

decompositions of channel correlation matricesCt,i andCr,i

can be written as

Ct,i = Ut,iΛt,iU
H
t,i

Cr,i = Ur,iΛr,iU
H
r,i

(110)

whereUt,i andUr,i are unitary, andΛt,i andΛr,i are diagonal
with their respective eigenvalues ordered in decreasing order.
Following Theorem 2, we consider precoding matrices of the
form Pi = Ut,i+1ΛPi

UH
r,i, i.e. the singular vectors ofPi are

optimally aligned to the eigenvectors of channel correlation
matrices. Consequently, we can rewrite matricesMH

i Mi (10)
as

MH
0 M0 = UH

t,1Λ
2
P0
Λt,1Ut,1

MH
i Mi = UH

r,iΛr,iΛ
2
Pi
Λt,i+1Ur,i ∀i ∈ NN−1

1

MH
NMN = UH

r,NΛr,NUr,N .

(111)

Thus, the eigenvalues of matricesMH
i Mi are contained in the

following diagonal matrices

Λ0 = Λ2
P0
Λt,1

Λi = Λr,iΛ
2
Pi
Λt,i+1 ∀i ∈ NN−1

1

ΛN = Λr,N .

(112)

The asymptotic mutual information, given by (17) and (18),
involves expectations of functions ofΛi whose distribution is
given by the asymptotic eigenvalue distributionFMH

i
Mi

(λ) of
MH

i Mi. Equation (112) shows that a functiong1(Λi) can be
written as a functiong2(Λ2

Pi
, Λr,i, Λt,i+1), where the variables

Λ2
Pi

, Λr,i, and Λt,i+1 are characterized by the asymptotic
eigenvalue distributionsFPH

i
Pi
(λ), FCr,i

(λ), andFCt,i+1
(λ)

of matricesPH
i Pi , Cr,i andCt,i+1, respectively. Therefore

expectations in (17) and (18) can be computed using the
asymptotic joint distribution of(Λ2

Pi
, Λr,i, Λt,i+1) instead of

the distributionFMH
i
Mi

(λ). To simplify notations, we rename
the variables as follows

X = Λ2
Pi

Y = Λr,i Z = Λt,i+1. (113)

Then, the expectation of a functiong1(Λi) can be written

E[g1(Λi)] = E[g2(X,Y, Z)]

=

∫

z

∫

y

∫

x

g2(x, y, z)fX,Y,Z(x, y, z) dx dy dz

=

∫

z

∫

y

∫

x

g2(x, y, z)fX|Y,Z(x|y, z)fY |Z(y|z)fZ(z)dx dy dz.

(114)

Exponential Correlation Model: So far, general correlation
matrices were considered. We now introduce the exponential
correlation model (26) and further develop (114) for the dis-
tributionsfY |Z(y|z) andfZ(z) resulting from that particular
correlation model.

As ki grows large, the sequence of Toeplitz matricesCr,i

of size ki × ki, defined in (26), is fully characterized by the
continuous real functionfr,i, defined forλ ∈ [0, 2π) by [27,
Section 4.1]

fr,i(λ) = lim
ki→+∞





ki−1∑

k=0

rkr,ie
jkλ +

−1∑

k=−(ki−1)

r−k
r,i e

jkλ





=
1

1− rr,iejλ
+

rr,ie
−jλ

1− rr,ie−jλ

=
1− r2r,i

|1− rr,iejλ|2
.

(115)

We also denote the essential infimum and supremum of
fr,i by mfr,i and Mfr,i respectively [27, Section 4.1]. In a
similar way, we can define the continuous real functionft,i+1

characterizing the sequence of Toeplitz matricesCt,i+1 by
replacingrr,i in (115) by rt,i+1, and we denote bymft,i+1

andMft,i+1
its essential infimum and supremum respectively.

By Szegö Theorem [27, Theorem 9], recalled inLemma 6,
for any real function g(·) (resp. h(·)) continuous on
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I∞ =

N∑

i=0

ρi
ρ0(2π)2

∫ 2π

λ=0

∫ 2π

ν=0

log

(

1 + hN
i

ηai+1α
2
i (1− r2r,i)(1− r2t,i+1)

ρi|1− rr,iejλ|2|1− rt,i+1ejν |2

)

dλ dν −N
log e

ρ0
η

N∏

i=0

hi (120)

N∏

j=0

hj =
ρi

(2π)2

∫ 2π

λ=0

∫ 2π

ν=0

hN
i ai+1α

2
i (1− r2r,i)(1− r2t,i+1)

ρi|1− rr,iejλ|2|1− rt,i+1ejν |2 + ηhN
i ai+1α2

i (1− r2r,i)(1 − r2t,i+1)
dλ dν , ∀i ∈ NN

0 (121)

[mfr,i ,Mfr,i ] (resp.[mft,i+1
,Mft,i+1

]), we have

∫

y

g(y)fY (y) dy , lim
ki→+∞

1

ki

ki∑

k=1

g
(
λCr,i

(k)
)

=
1

2π

∫ 2π

0

g (fr,i(λ)) dλ

∫

z

h(z)fZ(z) dz , lim
ki→+∞

1

ki

ki∑

k=1

h
(
λCt,i+1

(k)
)

=
1

2π

∫ 2π

0

h (ft,i+1(ν)) dν.

(116)

Assuming that variablesY = Λr,i and Z = Λt,i+1 are
independent, and applying Szegö Theorem to (114), we can
write

E[g1(Λi)]

=

∫

z

∫

y

(∫

x

g2(x, y, z)fX|Y,Z(x|y, z) dx
)

︸ ︷︷ ︸

g3(y,z)

fY (y)fZ(z)dy dz

=

∫

z

(∫

y

g3(y, z)fY (y) dy

)

fZ(z) dz

=

∫

z

(
1

2π

∫ 2π

λ=0

g3 (fr,i(λ), z) dλ

)

fZ(z) dz , by (116)

=
1

2π

∫ 2π

λ=0

(∫

z

g3 (fr,i(λ), z) fZ(z) dz

)

dλ

=
1

(2π)2

∫ 2π

λ=0

∫ 2π

ν=0

g3 (fr,i(λ), ft,i+1(ν)) dλ dν , by (116).

(117)

Equal power allocation over optimal precoding directions:
We now evaluate (117) in the case of equal power allocation
over the optimal directions given in (27). From (27) it can be
seen thatX = Λ2

Pi
= α2

i is independent fromY andZ, thus
fX|Y,Z(x|y, z) = fX(x) = δ(x− α2

i ). Consequently,

g3(y, z) =

∫

x

g2(x, y, z)δ(x− α2
i ) dx = g2(α

2
i , y, z) (118)

and (117) becomes

E[g1(Λi)] =

1

(2π)2

∫

2π

λ=0

∫

2π

ν=0

g2

(

α
2
i ,

1− r2r,i

|1− rr,iejλ|2
,

1− r2t,i+1

|1− rt,i+1ejν |2

)

dλ dν.

(119)

Asymptotic Mutual Information : Using (119) in (17) with
g2(x, y, z) = log

(

1 + η ai+1

ρi
hN
i xyz

)

gives the expression of
the asymptotic mutual information (120) at the top of the

page, whereh0, h1, . . . , hN are the solutions of the system
of N + 1 equations (121), obtained by using (119) in (18)
with g2(x, y, z) =

hN
i Λixyz

ρi
ai+1

+ηhN
i
xyz

(with the conventionrr,0 =

rt,N+1 = 0). Applying the changes of variables

t = tan

(
λ

2

)

, thus cos(λ) =
1− t2

1 + t2
and dλ =

2du

1 + t2

u = tan
(ν

2

)

, thus cos(ν) =
1− u2

1 + u2
and dν =

2du

1 + u2

(122)

and performing some algebraic manipulations that are skipped
for the sake of conciseness, (120) and (121) can be rewritten
as in (28). This concludes the proof.
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Concordia University, Montreal, Quebec, Canada, as a Postdoctoral Fellow.
His research interests include statistical signal processing, wireless sensor
networks, MIMO and cooperative communications, and blind estimation and
detection techniques.

In 2008, Mr. Zarifi has received Postdoctoral Fellowship from the Natural
Sciences and Engineering Research Council of Canada (NSERC).

Mérouane Debbahwas born in Madrid, Spain. He entered theÉcole Normale
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