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Asymptotic Capacity and Optimal Precoding In
MIMO Multi-Hop Relay Networks

Nadia FawazMember, IEEE, Keyvan Zarifi, Member, IEEE, Mérouane Debbatfenior Member, |EEE,
David GesbertSenior Member, |EEE

Abstract—A multi-hop relaying system is analyzed where data
sent by a multi-antenna source is relayed by successive midlt
antenna relays until it reaches a multi-antenna destinatia.
Assuming correlated fading at each hop, each relay receives
faded version of the signal from the previous level, performs
linear precoding and retransmits it to the next level. Usingfree
probability theory and assuming that the noise power at relgs—
but not at destination— is negligible, the closed-form expession
of the asymptotic instantaneous end-to-end mutual informaon
is derived as the number of antennas at all levels grows large
The so-obtained deterministic expression is independentdm the
channel realizations while depending only on channel stattics.

multiple-input multiple output (MIMO) relay channel were
derived in [1]. In the same paper, bounds on the ergodic
capacity were also obtained when the communication links
undergo i.i.d. Rayleigh fading. The capacity of a MIMO two-
hop relay system was studied in [2] in the asymptotic case
where the number of relay nodes grows large while the number
of transmit and receive antennas remain constant. Thengcali
behavior of the capacity in two-hop amplify-and-forward<)A
networks was analyzed in [3]—-[5] when the numbers of single-
antenna sources, relays and destinations grow large. The

This expression is also shown to be equal to the asymptotic achievable rates of a two-hop code-division multiple-asce

average end-to-end mutual information. The singular vectos of
the optimal precoding matrices, maximizing the average muial
information with finite number of antennas at all levels, are
also obtained. It turns out that these vectors are aligned tdhe
eigenvectors of the channel correlation matrices. Thus thecan
be determined using only the channel statistics. As the staiure
of the singular vectors of the optimal precoders is indepenent
from the system size, it is also optimal in the asymptotic reighe.

Index Terms—asymptotic capacity, correlated channel, free
probability theory, multi-hop relay network, precoding.

|. INTRODUCTION

(CDMA) decode-and-forward (DF) relay system were derived
in [8] when the numbers of transmit antennas and relays
grow large. In [6], an ad hoc network with several source-
destination pairs communicating through multiple AF-ysla
was studied and an upperbound on the asymptotic capacity in
the low Signal-to-Noise Ratio (SNR) regime was obtained in
the case where the numbers of source, relay and destination
nodes grow large. The scaling behavior of the capacity of a
two-hop MIMO relay channel was also studied in [7] for bi-
directional transmissions. In [9] the optimal relay preiood
matrix was derived for a two-hop relay system with perfect
knowledge of the source-relay and relay-destination calann

Relay communication systems have recently attracted muditrices at the relay.

attention due to their potential to substantially improhe t

Following the work in [10] on the asymptotic eigenvalue

Signa| reception qua”ty when the direct Communicatiork|indiStribUti0n of concatenated fadlng Channels, several-ana
between the source and the destination is not reliable. Dyges were proposed for more general multi-hop relay net-
to its major practical importance as well as its significatf¥orks, including [11]-[15]. In particular, considering ftiu
technical challenge, deriving the capacity— or bounds diPP MIMO AF networks, the tradeoffs between rate, diversity
the capacity— of various relay communication schemes dd network size were analyzed in [11], and the diversity-
growing to an entire field of research. Of interest is th@wultiplexing tradeoff was derived in [12]. The asymptotic
derivation of capacity bounds for systems in which the seurccapacity of multi-hop MIMO AF relay systems was obtained
the destination, and the relays are equipped with multiplé [13] when all channel links experience i.i.d. RayleigHifey
antennas. while the number of transmit and receive antennas, as well as
Several works have focused on the capacity of two-hop reltye number of relays at each hop grow large with the same rate.
networks, such as []_]_[7] Assuming fixed channel CondﬂjonFina”y hierarchical multi-hop MIMO networks were studied

lower and upper bounds on the capacity of the two-hdp [15] and the scaling laws of capacity were derived when
the network density increases.
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In this paper, we study aw-hop MIMO relay commu-
nication system wherein data transmission frém source
antennas td destination antennas is made possible through
N — 1 relay levels, each of which are equipped with i =
1,...,N —1 antennas. In this transmission chain with+ 1
levels it is assumed that the direct communication link iy on
viable between two adjacent levels, due to large distances
between non-adjacent levels for instance: each relayvesei
faded version of the multi-dimensional signal transmifredn
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Fig. 1. Multi-level relaying system

the previous level and, after linear precoding, retransihito matrices are also independent from the channel realiztion
the next level. and can be determined using only statistical knowledge of
We consider the case where all communication links ughannel matrices at source and relays. We show that the so-
dergo Rayleigh flat fading and the fading channels at eaghtained singular vectors are also optimal in the asymptoti
hop (between two adjacent levels) may be correlated while tfegime of our concern. Finally, we apply the aforementioned
fading channels of any two different hops are independeat. esults on the asymptotic mutual information and the stmect
assume that the channel at each hop is block-fading and thkthe optimal precoding matrices to several communication
the channel coherence-time is long enough — with respegenarios with different number of hops, and types of channe
to codeword length — for the system to be in the norgorrelation.
ergodic regime. As a consequence, the channel is a realizati The rest of the paper is organized as follows. Notations and
of a random matrix that is fixed during a coherence blockie system model are presented in Section Il. The end-to-end
Therefore, the instantaneous end-to-end mutual infoomatiinstantaneous mutual information in the asymptotic regisne
between the source and the destination can be viewed asdarived in Section lll, while the singular vectors of theiopl
instance of a random variable. precoding matrices are obtained in Section IV. Theorems
Using tools from the free probability theory and assumin@erived in Sections Ill and IV are applied to several MIMO
that the noise power at the relay levels, but not at tf@mmunication scenarios in Section V. Numerical resulés ar
destination, is negligible, we derive a closed-form exgi@s Provided in Section VI and concluding remarks are drawn in
of the asymptotic instantaneous end-to-end mutual inftiona Section VII.
between the source input and the destination output as the
number of antennas at all levels grows large. This asymptoti Il. SYSTEM MODEL
expression is shown to be independent from the channeh R oo
realizations and to only depend on the channel statistics. otation: IN'is th? set of non-negative integers. Lt <
Therefore, as long as the statistical properties of the chdh € NN, the S_et of mtegerns gAreater or equalso and less
nel matrices at all hops do not change, the instantanen(f.[sequal ton is denotedNy,, = {m,m +1,...,n - L,n}.
mutual information asymptotically converges to the samjg® denotes the. '09""“”‘”.‘ n ba@ewhﬂe In |s-the logarithm
deterministic expression for any arbitrary channel regian. 1 Pasee- u(z) is the unit-step func'qun dgflneddgry(x) =
This property has two major consequences. First, the mutddf © < 0 u(z) = 1if 2 > 0. K(m) = Iy mene
information in the asymptotic regime is not a random vagabthe complete elliptic integral of the first kind [17]. Mateis
any more but a deterministic value representing an achievabnd vectors are represented by boldface upper and lowes,case
rate. This means that when the channel is random but fixeespectivelyA”, A*, A stand for the transpose, the conju-
during the transmission and the system size is large enoughte and the transpose conjugateAgfrespectively. The trace
the capacity in the sense of Shannon is not zero, on thed the determinant oA are respectively denoted hy(A)
contrary to the capacity of small size systems [16, Sectith 5 and det(A). Aa(1),...,Aa(n) represent the eigenvalues of
Second, given the stationarity of channel statistical progs, ann x n matrix A. The operator norm oA is defined by
the asymptotic instantaneous mutual information obtained ||A|| £ \/max; Ap# 4 (i), while the Frobenius norm oA is
the non-ergodic regime also serves as the asymptotic vélud|d | £ /tr(AZA). The (i,j)-th entry of matrixAy is
the average end-to-end mutual information between theceouyritten az(.;?), Iy is the identity matrix of sizeV. E[] is the
and the destination. Note that the latter is the same as Higtistical expectation operat@t( X ) the entropy of a variable
asymptotic ergodic end-to-end mutual information that lfou X', and Z(X;Y") the mutual information between variables
be obtained if the channel was an ergodic process. X and Y. F3()) is the empirical eigenvalue distribution
We also obtain the singular vectors of the optimal precodirm§ an n x n square matrixQ2 with real eigenvalues, while
matrices that maximize the average mutual information & (-) and fq(-) are respectively its asymptotic eigenvalue
the system with a finite number of antennas at all levels. distribution and its eigenvalue probability density fuoaot
is proven that the singular vectors of the optimal precodinghen its sizen grows large. We denote the matrix product by



®ij\;1 A; = A;A, ... Ay. Note that the matrix product is noton the structure of correlation matrices: when theantennas
commutative, therefore the order of the indeix the product at leveli are distributed among several relays, correlation ma-

is important and in particuIa(r(g)f}\]:1 ANH = ®3:N Al trices become block-diagonal matrices, whose blocks semite
the correlation between antennas at a relay, while antesitnas
A. Multi-hop MIMO relay network different relays sufficiently separated in space are sugpos

Consider Fig. 1 that shows a multi-hop relaying Syster%ncorrelated. In the limit of a relaying level containirig

with kg source antennag,y destination antennas and — 1 relays equipped with a _smgle_z antenna, we fall_back to the
. _ ; . . , case of uncorrelated fading with correlation matrices étpa
relaying levels. The—th relaying level is equipped witlk;

antennas. We assume that the noise power is negligible at'%ﬁ/r\]/t'ty'

: o . . ithin one channel coherence block, the signal transmitted
relays while at the destination the noise power is such thatby the ky source antennas at tindes {0 L—1} is given
O ge ey -

E[zz!] = 0?1 = 11 1) by the .vectorxo_(l) = quo(l — 1), wherePy is the source
Ui precoding matrix angr is a zero-mean random vector with
wherez is the circularly-symmetric zero-mean i.i.d. Gaussian E{yoyl} =T 4)
noise vector at the destination. In effect, the simplifyirase- Yo¥o ko
free relays assumption is made to have a white aggregafieich implies that
noise at the destination and, consequently, more tractable H I
E{XQXO } = PQPO . (5)

derivations. Note that several other authors have implicit

used a similar noise-free relay assumption by assuming thajnssuming that relays work in full-duplex mode, at tie
the noise at the destination of a MIMO multihop relay networky . 1,1} the relay at level uses a precoding matr; to

is white. For instance, in [12] a multi-hop AF relay networkinearly precode its received signgl(i — 1) = H;x;_1 (1 — 1)
is analyzed and it is proved that the resulting colored natseangd form its transmitted signal

the destination can be well-approximated by white noiséén t

high SNR regime. In terms of practical relevance, the mutual xi(l) =Piy(1—1) VieNy " (6)

information expression derived in the case of noise-frésyse The precoding matrices at source and relBysi € ]str—l are

can be seen as an upper-bound for the case of noisy _r8|a§(fbject to the per-node long-term average power consdraint
When applied to a particular communication scenario, if the

expressions obtained for perfect noise-free relays shaw th tr(Ex;x"]) < kP Vie Ny . @)
no gains in terms of rate result from relaying, then a mo . .
complex analysis with noisy relays will be irrelevant. [ﬁqe(i)faQCt tha;” = Hix;—;, along with the variance

Throughout the paper, we assume that the correlated charﬁﬂ% w7l = it of H; elements and with the power con-
matrix at hopi € {1,...,N} can be represented by thestraint tr(E[x;_1x[1,]) < k;i_1P;—1 on x;_1, render the
Kronecker model system of our concern equivalent to a system whose random
Ca 1/20 )2 channel elementﬁ,(jl) would be i.i.d. with variance:; and

H; = C70;C} (2 whose power constraint on transmitted sigral; would be

where C,;, C,; are respectively the transmit and receivénite and equal t&P;_,. Having finite transmit power at each
correlation matrices®; are zero-mean i.i.d. Gaussian matrice!$vel, this equivalent system shows that adding antenrs, i

independent over indek with variance of the(k, {)-th entry increasing the system dimension, does notimply increabiag
transmit power. Nonetheless, in order to use random matrix

Vie NY (3) theory tools to derive the asymptotic instantaneous mutual
information in Section lll, the variance of random channel
wherea;, = d;ﬁ represents the pathloss attenuation with elements is required to be normalized by the size of the
and d; denoting the pathloss exponent and the length of tiebhannel matrix. That is why the normalized model— channel
i-th hop respectively. We also assume that channels matrizasiance (3) and power constraint (7)— was adopted.
H;, i =1,..., N remain constant during a coherence block of It should also be noticed that choosing diagonal precoding
length . and vary independently from one channel coherenagatrices would reduce the above scheme to the simpler AF
block to the next. relaying strategy. Note that the proposed linear precoding
Note that no assumption is made on the structure of thelaying technique is adapted for high SNR regimes, but not
channel correlation matrices. The particular case of.i.i.tbr low SNR regimes. In the low SNR regime, known to be
Rayleigh fading channel can be obtained from the aboweise-limited, linear precoding performs poorly becausegr
Kronecker model when matrice€;; and C,; are set to is wasted on forwarding noise, and other relaying strategie
identity. It should also be mentioned that by adapting thteuch as decode-and-forward are more appropriate [18], [19]
correlation matrices structure, the Kronecker model can Bmn the contrary in the high SNR regime, linear precoding
used to model relay-clustering. Given a total number é€chniques such as amplify-and-forward perform well [11],
antennag:; at leveli, instead of considering that the relayind20]. Finally, from a practical point of view, limited chaah
level consists of a single relay equipped with many antennlasowledge and simple linear precoding techniques at relays
(k;), we can consider that a relaying level containsrelays are particularly relevant for systems where relays havédimn
equipped with §; /n;) antennas. Clustering has a direct impagirocessing capabilities.

a;

ki*l

E[60)%) =



As can be observed from Fig. 1, the signal received at tiide entropy of the noise vector is known to Bf&z) =

destination at timé is given by 1ogdet(%IkN). Besides, yo is zero-mean with variance
yn() =HyPy_Hy_1Py_s...H,P H,Poyo(l — N)+z E[yoyéq] = I, thus giyen Gy, the received signal
B yn is zero-mean with varianc& yGE + %I;W. By [16,
=Gnyo(l = N) +2 (8) Lemma 2], we have the inequalitf{(yn|Gn = Gy) <
where the end-to-end equivalent channel is log det(reG NG + Z¢I,, ), and the entropy is maximized
Gy 2HNPy_1Hy_Py_s...H,P H P, when the latter inequality holds with equality. This occurs

a2 1/2 1/2 1/2 if yn is circularly-symmetric complex Gaussian, which is
=CNONC NPN-1C Ny 1 ON-1C v 1 PN-2-.. the case whery is circularly-symmetric complex Gaussian.
...Cl;©,C P, C O, C P (9) Therefore throughout the rest of the paper we consjgeo

be a zero-mean circularly-symmetric complex Gaussiarovect

Let us introduce the matrices As such, the instantaneous mutual information (12) can be

M, = C;// Py rewritten as
M; = C;/2PC/? vieN!

Z(yo; yn|Gn = Gy) = logdet(Ii, + nGNGY).  (13)

My = CY2. (10) _
,’ Under AssumptionAg4, the average end-to-end mutual
Then (9) can be rewritten as information between channel inpgt, and channel output
Gy =MyONMpy_1On_1...M20,M;0©:M,. (11) (yn,Gn)is

For the sake of clarity, the dimensions of the matri- 7(y: (yn,Gn)) = Z(yo; yn|Gn) + Z(yo; Gn)

ces/vectors involved in our analysis are given below. ¥

X; - ki x 1 Yi: kl x 1 Pi : ki X ki — I(y();yN|GN) (14)
H,:k xk_1 C,i kixk, Cu;ikiq1 xXkiq

: : = Eqy [Z(yo; =
O ki x ki1 Mk x ks G Z(yoiyn |Gy = Gl

: = Eg, [log det(I GyGH).
In the sequel, we assume that the channel coherence time avllogdet(lTey +nGNGy)]

is large enough to consider the non-ergodic case and conbe-optimize the system, we are left with finding the precoders
quently, time indeX can be dropped. Finally, we define thred®; that maximize the end-to-end mutual information (14)
channel-knowledge assumptions: subject to power constraints (7). In other words, we need to

« Assumption Ag, local statistical knowledge at sourcefind the maximum average end-to-end mutual information
the source has only statistical channel state informatign , "

(CSI) of its forward channeH, i.e. the source knows :{Pi/tr(E[xix?ﬁgkmi} ENEE:{V log det(Iy, +1 GNGY)] -
the transmit correlation matri€; ;.

o AssumptionA,, local statistical knowledge at relay: at,
the i*” relaying level,i € ]Nf’*l, only statistical CSI of
the backward channél; and forward channd;, are
available, i.e. relay knows the receive correlation matrix

(15)
In Section IV, the problem of finding the singular vectors
of the optimal precoders that maximize the average mutual
information (15) is addressed under channel knowledge As-
sumptionsAg, A, andA4. Note that the non-ergodic regime

C,; and the transmit correlation matri; ;1. is considered, therefore (14) represents only an averagiganu
« AssumptionAq, end-to-end perfect knowledge at desj¢qrmation over channel realizations, and the solution to

tination: the destination perfectly knows the end-t0-end sy goes not necessarily represent the channel capacity in

equivalent channeG y . S the Shannon sense— the supremum of achievable rates with
Throughout the paper, assumptidty is always made. As- grpitrary small probability of error— when the system sige i
sumptionAg4 is the single assumption on channel-knowledggy,1.

necessary to derive the asymptotic mutual information in
Section Ill, while the two extra assumptiods; and A, are

also necessary in Section IV to obtain the singular vectérs o HI. A SYMPTOTICMUTUAL INFORMATION
the optimal precoding matrices. In this section, we consider the instantaneous mutual in-
formation per source antenna between the source and the

B. Mutual Information

Consider the channel realizati@, in one channel cohe- 1
rence block. Under Assumptiof4, the instantaneous end-to- = T log det (I, +nGyGE) (16)
end mutual information between channel ingytand channel 0
output(yn, Gy) in this channel coherence block is [16] ~and derive its asymptotic value as_the number of antennas
T(yo: yn|Gy = G) ko, k1,-..,ky grow large. The following theorem holds.
;YN N N Theorem 1: For the system described in section Il, assume

destination

=H(yn|Gn = Gn) — H(y~n|yo,GN = GN) 12) that
H(z) « channel knowledge assumpticgty holds;
=H(yn|GNn = Gn) — H(2) e ko,k1,..., kn — oo while £ — p; for all i € INy;



o foralli ¢ WY, ask;, — oo, M{l’Mi has a limit o Result 1: As the numbers of antennas at all levels grow

eigenvalue distribution with a compact support. large, the instantaneous mutual information is not a ran-
Then the instantaneous mutual information per source aaten ~ dom variable anymore and the precoding matrices maxi-
I converges almost surely to mizing the asymptotic instantaneous mutual information

can be found based only on knowledge of the channel
aiv, vy \] log e N _statlsucs, without requiring any_lnformatlon regardihg t
A N WH i instantaneous channel realizations.
pi PO iz » Result 2: When the channel is random but fixed during

1
I,=— piE {1og<1+n

. (17) the transmission and the system size grows large enough,
where ay.1 = 1 by convention, hg, hy,...,hy are the L
. . the Shannon capacity is not zero any more, on the
solutions of the system oW + 1 equations . . )
contrary to the capacity of small-size non-ergodic systems
N BN A [16, Section 5.1].
th =p;E piilN Vi e INY (18) o Result 3: The asymptotic instantaneous mutual infor-
§=0 m+”hi A; mation (17) obtained in the non-ergodic regime also
. . ) represents the asymptotic value of the average mutual
and the expectatioi[-] in (17) and (18) is over\; whose information, whose expression is the same as the asymp-
distribution is given by the asymptotic eigenvalue disttion totic ergodic end-to-end mutual information that would
Fyrng, () of M M. be obtained if the channel was an ergodic process.

The detailed proof oTheorem 1 is presented in Appendix B. . It should also_be mentlo_ned th"?‘t’ according to the expe-
. . rkmental results illustrated in Section VI, the system unde
We would like to stress that (17) holds for any arbitrary SZonsideration behaves like in the asymptotic regime evesrwh
of precoding matrice®;, i =0,...,N — 1, if MZM, has a ymp 9

T Lo it is equipped with a reasonable finite nhumber of antennas
compactly supported asymptotic eigenvalue distributidrerv .
. i ; . t each level. Therefore, (17) can also be efficiently used to
the system dimensions grow large. We would like to point ou ; . . -
. . . evaluate the instantaneous mutual information of a firite-s
that the power constraints on signals transmitted by theceou stem
or relays are not sufficient to guarantee the boundednesgof ’

eigenvalues oM/"M;. In fact, it is proved in Appendix C that |y, OpTiMAL TRANSMISSION STRATEGY AT SOURCE AND
these power constraints can be written as RELAYS

In previous section, the asymptotic instantaneous mutual i

1 H
k—otr(POPo ) < Po, formation (17), (18) was derived considering arbitraryqoie

i—1 ing matrices;, i € {0,..., N—1}. In this section, we analyze
%tr(PiCr,in)H%tr(ct,kJrlPkCr,kPkH) <P;,VicINy L. the optimal linear precoding strategiBs, € {0,..., N —1}
i ek at source and relays that allow to maximize the average rhutua

(19) information. We characterize the optimal transmit direacs
determined by the singular vectors of the precoding madrice
In the asymptotic regimelimy, oo 7-tr(P;C,.;P) = at source and relays, for a system with finkig k1, . . ., k.
Ep ¢, pr] and limg, oo 5-tr(Crr1PrCryPfT) = It turns out that those transmit direction are also the ones
E[A]. Therefore, the power constraints impose upper-boungigét maximize the asymptotic average mutual information.
(19) on the product of the first-order moments of the eigeMoreover, fromResult 3in Section Ill, it can be inferred that
values of matrice®;C,.;P/" and M,/ M, in the asymptotic the singular vectors of the precoding matrices maximizirey t
regime. Unfortunately, these upper-bounds do not prevent tasymptotic average mutual information are also optimal for
eigenvalue distribution M/’ M; from having an unboundedthe asymptotic instantaneous mutual information (17).
support, and thus the power constraints are a priori notin future work, using the results on the optimal directions
sufficient to guarantee the compactness of the support of @fetransmission (singular vectors &;) and the asymptotic
asymptotic eigenvalue distribution of matricAd’M;. The mutual information (17)-(18), we intend to derive the opti-
assumption that matricerIMi have a compactly supportedmal power allocation (singular values &;) that maximize
asymptotic eigenvalue distribution is a priori not an im$ic  the asymptotic instantaneous/average mutual informgfigh
property of the system model, but it was necessary to malsing only statistical knowledge of the channel at trantngjt
that assumption in order to usemma 2 to proveTheorem 1. nodes.
Given a set of precoding matrices, it can be observed fromThe main result of this section is given by the following
(17) and (18) that the asymptotic expression is a detertignistheorem:
value that depends only on channel statistics and not on arheorem 2: Consider the system described in Section II.
particular channel realization. In other words, for a gieet Fori € {1,...,N} let C;; = Um-Am-Ufi and C,; =
of precoding matrices, as long as the statistical properti¥, ;A, ;U be the eigenvalue decompositions of the cor-
of the channel matrices do not change, the instantanesaktion matricesCtyi and C,;, whereU,, and U,.,; are
mutual information always converges to the same detertignisunitary andA; ; and A, ; are diagonal, with their respective
achievable rate, regardless of the channel realizati@mFfnis eigenvalues ordered in decreasing order. Then, under ekann
observation, three results follow: knowledge assumptionAg, A, and Ag4, the optimal linear



precoding matrices that maximize the average mutual infahannel knowledge at source, relay and destination: the lef

mation under power constraints (7) can be written as and right singular vectors of the optimal relay precoderewer
Po = U, Ap, shown to be aligne.d to the_ eigenvectors of matritBdH _

" " ) N1 (20) andH,HZ, respectively. This result encourages us to believe
P; = Ui Ar Uy Vi€ INy that in the case of noisy relay3heorem 2 may still hold

whereA p, are diagonal matrices with non-negative real diadgor correlated channels, and statistical channel knovéealy

onal elements. Moreover, the singular vectors of the priegod source and relays.

matrices (20) are also the ones that maximize the asymptotic

average mutual information. Since the asymptotic average AppLICATION TOMIMO COMMUNICATION SCENARIOS

mutual information has the same value as the asymptotic . . .
: . . . YMPOUC 1 this section;Theorem 1 andTheorem 2 are applied to four
instantaneous mutual information, the singular vectorthef

. . : different communication scenarios. In the first two scevsri
precoding matrices (20) are also optimal for the asymptotic . . .
. . . he special case of non-relay assisted MIMO (N=1) without
instantaneous mutual information. . .

path-loss ¢; = 1) is considered, and we show how (17)

For the proof of Theorem 2, the reader is referred to boils down to known results for the MIMO channel with or

Appendix C. without correlation. In the third and fourth scenarios, dtmu
Theorem 2 indicates that to maximize the average mutudlop MIMO system is considered and the asymptotic mutual
information information is developed in the uncorrelated and expoaénti

. the source should align the eigenvectors of the transrfiRfrelation cases respectively. The applicatioriTbéorem 1
covariance matrixQ = PoPX to the eigenvectors of and Theorem 2 to these scenarios will also serve as a base

the transmit correlation matrixC,; of the first-hop for simulations in Section VI, which validate the asymptoti

channelH;. This alignment requires only local statisticaF*Pression inrheorem 1, and show the impact of relaying on
channel knowledgeA,. Note that similar results were the communication rate in presence or absence of correlatio

previously obtained for both single-user [21] and multi-

user [22] single-hop (without relays) MIMO system witha, Single-hop MIMO with statistical CSl at source

covarlgnce knowh_—edge at the source. .. Consider a simple single-hop uncorrelated MIMO system
o relay i should align the right singular vectors of its

. . . . “with the same number of antennas at source and destination
precoding matrixP; to the eigenvectors of the receive €. po=p =1
. 0 — 1 — .

correlation matrixC, ;, and the left singular vectors of Assuming an iid. Rayleigh fading channel i€, —

P; to the eigenvectors of the transmit correlation matri .
Cyi These alignments require only local statistica?"1 = I and eqqal power allocation at source antgnnas, the
b+l source precoder iRy, = +/Pyl. Under these assumptions, the

knowlgdgeAr. . L , asymptotic mutual information (17) can easily be shown to be
As power is non-negative, aligning the singular vectorshef t

precoders to the eigenvectors of channel correlation matyi 5, (1 +v1+ 4777’0) _loge (m _ 1)2.
ces allows to avoid wasting power on non-eigen directions: 2 4nPo
Moreover, it follows fromTheorem 2 that the optimization of (21)
P; can be divided into two decoupled problems: optimizinff can be observed that the deterministic expression (21)
the transmit directions—singular vectors— on one hand, adgpends only on the system characteristics and is independe
optimizing the transmit powers—singular values— on thisom the channel realizations. Moreover, equal power aloc
other hand. tion is known to be the capacity-achieving power allocafmm
We would like to draw the reader’s attention to the fac@ MIMO i.i.d. Rayleigh channel with statistical CSI at soairc
that the proof of this theorem does not rely on the expressib#3, Section 3.3.2], [16]. As such, the asymptotic mutual
of the asymptotic mutual information given in (17). In factinformation (21) also represents the asymptotic capadity o
Theorem 2 is first proved in the non-asymptotic regime for athe system. We should also mention that (21) is similar to
arbitrary set of{k;};cn~. As such, regardless of the systenthe expression of the asymptotic capacity per dimension pre
size, the singular vectors of the precoding matrices show®usly derived in [23, Section 3.3.2] for the MIMO Rayleigh
always be aligned to the eigenvectors of the channel corfdannel with equal number of transmit and receive antennas
lation matrices to maximize the average mutual informatiognd statistical CSI at the transmitter.
In particular, the singular vectors of the precoding masic In the more general case of correlated MIMO channel with
that maximize the asymptotic average mutual informaticgeparable correlation we hadd; = Ci,/12910t1,/12- Let us
are also aligned to the eigenvectors of channel correlatidanote the eigenvalue decompositiorGf; = Uy 1A, 1 U/,
matrices as in (20). Furthermore, frdResult 3in Section Ill, whereA, ; is a diagonal matrix whose diagonal entries are the
we can conclude that the singular vectors given in (20) aeéggenvalues o€, ; in the non-increasing order and the unitary
also those that maximize the asymptotic instantaneousahutmatrix U; ; contains the corresponding eigenvectors. Defining
information. the transmit covariance matriQ = E [xox{'] = PP, it
Finally, we would like to point out that a result similar tohas been shown [21] that the capacity-achieving mayixis
Theorem 2 was proved in [9] for a two-hop system with agiven by
single noisy relay, uncorrelated channEls andH,, and full Q= UMAQ*Uf_”T1 (22)




where Aq- is a diagonal matrix containing the capacitycharacteristic distances, ; and A, ; proportional to transmit
achieving power allocation. Under these assumptions, taed receive spatial coherences respectively. Then théveece
asymptotic mutual information (17) becomes equivalenht tand transmit correlation matrices at Levetan respectively
expressioh obtained in [23, Theorem 3.7] for the capacity obe modeled by the following Hermitian Wiener-cla3eeplitz
the correlated MIMO channel with statistical CSI at trartsmimatrices [24]-[26]:

ter.

B. Uncorrelated multi-hop MIMO with statistical CS  at
source and relays

In this example, we consider an uncorrelated multi-hop
MIMO system, i.e. all correlation matrices are equal to iden
tity. Then byTheorem 2 the optimal precoding matrices should

Cri

)

be diagonal. Assuming equal power allocation at source agg

relays, the precoding matrices are of the foBn = a;1;,,
where o; is real positive and chosen to respect the power
constraints.

Using the power constraint expression (19) in Appendix C,
it can be shown by induction onthat the coefficientsy; in
the uncorrelated case are given by

N
P;

Vie INY !
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1
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Then the asymptotic mutual information for the uncorralatedistanceA,.; (resp.A¢; ) at relaying Levek.
multi-hop MIMO system with equal power allocation is giverkq a1 power allocation over optimal precoding directions:

by
N N
i WNaia2\ 1
Io=3 Liog (1+ i a““ﬁ)-zv ] h 24
i—o PO pPi POy

wherehg, h1, ..., hy are the solutions of the system &f+ 1
multivariate polynomial equations

N
[1n=
j=0

N _ 2

hi' oz ai Vi e VY

N,. 2 (S 0"

1+ nh;' aiq1a;
Pi

(25)

ki xk;

1(26)

(23) where the antenna correlation at receive (resp. transidi) s
li ki .

Arioe [0,1) (resp.rir1 = e Sti € ]0,1)) is an

exponential function of antenna spacifijgand characteristic

We further assume equal power allocation over the optimal
directions, i.e. the singular values Bf; are chosen to be all
equal: Ap, = a;I;,, whereq; is real positive and chosen
to respect the power constraint (7). Equal power allocation
may not be the optimal power allocation scheme, but it is
considered in this example for simplicity.
Using the power constraint expression for general correla-
tion models (19) and considering precoding matrit®s=
Ugi(ailki)Ut,H»l with singular vectors as iftheorem 2 and
equal singular values;, we can show by induction onhthat

Note that the asymptotic mutual information is a deterntiois the coefficientsa; respecting the power constraints for any
value depending only on a few system characteristics: bigi@rrelation model are given by

power P;, noise powerl /5, pathlossa;, number of hopsV
and ratio of the number of antennas

C. Exponentially correlated multi-hop MIMO with statistical @i \/ai

CdS at source and relays

In this example, the asymptotic mutual information (17) is
developed in the case of exponential correlation matrices
precoding matrices with singular vectors as Theorem 2.
Exponential correlation matrices are a common model
correlation in uniform linear antenna array (ULA) [24]-]26

Exponential Correlation Model: We assume that Level

i

OLNZI.

g =/ P()

Pi

tr(Ar,i—l )

k;

Pic1 tr(Av;) tr(AyiAvio1)

,Vie NV

(27)

a\Ne would like to point out that (27) is a general expressiat th
Ids not only for the exponential correlation model, bisoal

r any correlation model as long as the singular vectors of
the precoding matrices are chosen aJleorem 2. Applying

is equipped with a uniform linear array (ULA) of |ength 2A sequence of x n Toeplitz MatricesT,, = [tk,j}an is said to be in

L;, characterized by its antenna spacing= L;/k; and its

—+o0.
'The small differences between the expression derived fibf &nd the If |r,.;| < 1, thenlimy, oo (37 7R 4302, mf) =
capacity expression in [23, Theorem 3.7] are due to differemrmalization 1r B ’ e b

assumptions in [23]. In particular (17) is the mutual infation per source
antenna while the expression in [23] is the capacity perivecantenna.

1-1/ry

—n

the Wiener class [27, Section 4.4] if the sequeri¢g} of first-column and
first-row elements is absolutely summable, bien, oo > 45

lte] <

I+

1=rp
< oo, and consequenthC,.; is in the Wiener classC; ; is
obviously also in the Wiener class [if; ;| < 1.
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the exponential correlation model to (27) and making thexual spacingl; = d/N between each relaying level. In both
dimensions of the system grow large, it can be shown thatémamples, whose main purpose is not to optimize the system,
the asymptotic regime, the; respecting the power constraintbut to validate the asymptotic formula ineorem 1, matrices
for the exponentially correlated system converge to theesar?, are taken proportional to the identity matrix to simulate
value (23) as for the uncorrelated system. equal power allocation. The channel correlation matrices a
also equal to the identity matrix to mimic the uncorrelated
channel. Moreover, the pathloss exponent 2 is considered.

e would like to point out that the experimental curves

Asymptotic Mutual Information : Under the assumptions
of exponential channel correlation matrices, precodeith w

singular vectors as itheorem 2, and equal power allocation

. N ; . fqr different channel realizations produced similar resuls
over these precoding directions, we show in Appendix D thauch the experimental curve corresponding to a singleredan
the asymptotic mutual information is given by (28) at thguch: P P 9 9

. realization is shown for the sake of clarity and conciseness
top of the page, wherko, hy, .. ., hy are the solutions of the ™ 2(a) shows the perfect match between the instantaneous
system of N + 1 equations (29), and for alle IN}’ 9. b

mutual information for an arbitrary channel realizatiorttwi

P L= 100 antennas at each level and the asymptotic mutual informa-
B I tion, validatingTheorem 1 for large network dimensions. On
S 1=t the other hand, with 0 antennas at each level, it appears that
Bl T Ttit1 the instantaneous mutual information of a system with alsmal

(CMH n nhﬁvamag)( i nhyai“ag) number pf a_mt_ennas behaves very closely to the_asymptotic
= ] — Cri pi Ctit1 pi regime, justifying the usefulness of the asymptotic foranul
! 1L nhlaipeg) (. nhleiie?) T even when evaluating the end-to-end mutual information of a
Cr,iCt it1 pi TyiCt it 1 pi

' (30) system with_ small size. _ _ _
Finally, Fig. 2(b) plots the asymptotic mutual information
(with the convention,.o = r, ny+1 = 0). Those expressionsfor one, two, and three hops, as well as the value of the
show that only a few relevant parameters affect the perfanstantaneous mutual information for random channel zaali
mance of this complex system: signal powr noise power tions when the number of antennas at all levels increases.
1/n, pathlossa;, number of hopsV, ratio of the number of The concentration of the instantaneous mutual information

antennag;, and correlation ratios, ; andc; ;. values around the asymptotic limit when the system size
increases shows the convergence of the instantaneousImutua
VI. NUMERICAL RESULTS information towards the asymptotic limit as the number of

In this section, we present numerical results to validagtennas grows large at all levels with the same rate.

Theorem 1 and to show that even with smakl;, for all B. One-sided exponentially correlated multi-hop MIMO

i ¢ INYV, the behavior of the system is close to its behavior : ) . .
! 0 y Based on the model discussed in Section V-C, the one-sided

n t_he_ asymptohg regime, makirigheorem 1 a useful tool for exponentially correlated system is considered in thisicect
optimization of finite-size systems as well as large network|n the case of one-sided correlation, e:g; = 0 andr,; > 0

for all i € {0,...,N}, the asymptotic mutual information

A. Uncorrelated multi-hop MIMO (28), (29) is reduced to

The uncorrelated system described in Section V-B is firgt :i ﬂ/*i’:;g(l Yo 1nh£vai+1oc? (1+u?) ) du
considered. > por J_ oo " pi (C +ud))1+u?

Fig. 2(a) plots the asymptotic mutual information from N

. . . loge

Theorem 1 as well as the instantaneous mutual information - N—thi
obtained for an arbitrary channel realization (shown as ex- Poido
perimental curves in the figure) in the case of one, two or ) (31)
three hops. Experimental curves are drawn for systemsiwith Whereho, i, ..., hy are the solutions of the system df+ 1
antennas at source, destination and each relay)®antennas €duations
at each level. When increasing the number of hdpsthe N
distance between source and destinatias kept constant and H hj =
N —1 relays are inserted between source and destination with-0 \/Ct,i+1

=0

N 2
hi 4105

+ nhﬁVaHla? \/ 1 + nhﬁVaHla?
Pi Ct,it+1 Pi

- (32)
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(a) Mutual information versus SNR with K = 10, 108 antennas. (b) Mutual information versuds<y, at SNR = 10 dB.

Fig. 2. Uncorrelated case: asymptotic mutual informatiod amstantaneous mutual information for single-hop MIMOhd&ps, and 3 hops.

One-sided correlation was considered to avoid the involvetakes the derived asymptotic mutual information a powerful
computation of the elliptic integrak’(m;) in the system of tool to optimize the instantaneous mutual information oitéin
equations (29), and therefore to simplify simulations. size systems with only statistical knowledge of the channel
Fig. 3(a) plots the asymptotic mutual information for one, We also showed that for any system size the left and
two or three hops, as well as the instantaneous mutual infaght singular vectors of the optimal precoding matriceat th
mation obtained for an arbitrary channel realization (sh@s maximize the average mutual information are aligned, at
experimental curves in the figure) faf and 100 antennas at each level, with the eigenvectors of the transmit and receiv
each level. As in the uncorrelated case, the perfect matcheofirelation matrices of the forward and backward chanmets,
the experimental and asymptotic curves in Fig. 3(a) Wwild  spectively. Thus, the singular vectors of the optimal pdiug
antennas validates the asymptotic formulaTimeorem 1 in matrices can be determined with only local statistical cien
the presence of correlation. Fig. 3(a) also shows that even knowledge at each level.
a small number of antennas, the system behaves closely to thg, the sequel, the analysis of the end-to-end mutual inferma
asymptotic regime in the correlated case. tion in the asymptotic regime will first be extended to theecas
Finally, Fig. 3(b) plots the instantaneous mutual informayhere noise impairs signal reception at each relaying level
tion for random channel realizations against the size of thgien, combining the expression of the asymptotic mutual
system and shows its convergence towards the asympt@iigrmation with the singular vectors of the optimal preicay
mutual information when the number of antennas increasegatrices, future work will focus on optimizing the power
We would like to mention that simulations for hlgher Valueﬁnocation determined by the Singu|ar values of the pre‘mc“
of the correlationr, ; showed that convergence towards thghatrices. Finally future research directions also incltice
asymptotic limit is slower when correlation increases. analysis of the relay-clustering effect, and the optimaé sif
clusters in correlated fading is expected to depend on tHe SN
VIlI. CONCLUSION AND RESEARCHPERSPECTIVES regime.
We studied a multi-hop MIMO relay network in the corre-
lated fading environment, where relays at each level perfor
linear precoding on their received signal prior to retraitisng APPENDIXA
it to the next level. Using free probability theory, a closed TRANSFORMS ANDLEMMAS

form expression of the instantaneous end-to-end mutual in- .
: . . . , Transforms and lemmas used in the proofsThéorems 1
formation was derived in the asymptotic regime where the

number of antennas at all levels grows large. The asympto?'l%d 2 are provided and proved in this appendix, while the

. X . proofs of Theorems 1 and?2 are detailed in Appendices B and
instantaneous end-to-end mutual information turns outta b C. respectivel

deterministic quantity that depends only on channel $iedis ~’ P Y-

and not on particular channel realizations. Moreover, sbal

serves as the _asym_ptonc_value of the_(_’:\verage enq'to'%dTransforms

mutual information. Simulation results verified that, ewveith

a small number of antennas at each level, multi-hop systemd et T be a square matrix of size with real eigenvalues
behave closely to the asymptotic regime. This observatiof-(1),..., Ar(n). The empirical eigenvalue distributiof}:
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of T is defined by

n

FR() £ 3 ule = (D).

i=1
We define the following transformations [10]

/ T dFr () (34)

(33)

Stieltjes transform: Gz (s

N SA
Yo (s) _/l_sAdFT()\) (35)
Stransform  Sp(z) 2 Z;rlrgl(z) (36)
where T ~1(Y(s)) = s.
B. Lemmas

We present here the lemmas used in the proofghebrems

1and2. Lemmas 1, 3, 5 and7 are proved in Appendix A-C, of

o B(n) be ap(n) x p(n) Hermitian random matrix, inde-
pendent from®(n), with an empirical eigenvalue distri-
bution converging almost surely to a compactly supported
probability measure.

Then, asn — oo,

o the empirical eigenvalue distribution of
O(n)"B(n)®(n) converges almost surely to the
compound free Poisson distributiamn ¢ [28]

o the family ({©(n)7B(n)O(n)}, {A(n),A(n)})
asymptotically free almost everywhere.

Thus  the limiting eigenvalue  distribution of
O(n)B(n)®(n)?A(n)A(n)? is the free convolution
¢ M p and itsStransform is

Sesenaan(z) = Sepen (2)Saan(2). (38)
Note that if the elements d®(n) had varianc% instead
L ({©n)"B(n)®(n)},{A(n), A(n)"}) would still be

while Lemmas 2, 6, and4 are taken from [28], [27], and [29] asymptotically free almost everywhere, and consequently,

respectively.

Lemma 1. Consider am xp matrix A and apxn matrixB,

Equation (38) would still hold.

Lemma 3. Consider ann x p matrix A with zero-mean

such that their producAB has non-negative real eigenvalued.i.d. entries with varianceé:. Assume that the dimensions go

Denote{ = £. Then

Sas(z) = (37)

z+1 z
PR (5)

Note thatLemma 1 is a more general form of the results

derived in [30, Eq. (1.2)], [10, Eq. (15)].

Lemma 2 ( [28, Prop. 4.4.9 and 4.4.11]): For n € NN, let
p(n) € IN be such that’@ — £ asn — co. Let

e ©(n) be ap(n) x n complex Gaussian random matri

with i.i.d. elements with varlancé
. A(n)

sup, | A(n)|| < +oo and (A

eigenvalue distribution.

be an n x n constant matrix such that
(n), A(n)?) has the limit

to infinity while 2 5 =G then
1 1
Saan(z) =—- ——
a (1+¢2)
1 1 (39)

Lemma 4 ( [29, Theorem H.1.h]): Let A and B be two
positive semi-definite hermitian matrices of sizex n. Let
Aa (i) and Ag (i) be their decreasingly-ordered eigenvalues

Xrespectlvely Then the following inequality holds:

Aa(i)Ap(n—i+1) <tr(AB) :Z/\AB (2) SZ/\A(i)/\B (2).
1=1 =1 1=1 (40)
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The empirical eigenvalue distributions &f(B and BA are

Lemma 5. Fori € INY, let A; be an; x n;_; random defined by
matrix. Assume that m 1
m o 0 .
« Ay, ..., Ay are mutually independent, Fi(A) = —u(}) + — ZmiU(/\ —AaB(7))
o« N goes to infinity while_"— — ¢, i=1 (45)

e as n; goes to infinity, the eigenvalue distribution of _my 1 ‘ _ .
A; Al converges almost surely in distribution to a com- Fga(A) = n * n Zmlu(A Aas(i)).
pactly supported measure,
e asni,...,ny go to infinity, the eigenvalue distribution Using (44), we get
of ((X)Z NA )(®Z1 ~ A converges almost surely in n n
distribution to a measurgy. FRs(\) = EFEA()‘) + (1 - E) u(A). (46)

Then .y is compactly supported. From (46), it is direct to show that

Lemma 6 ( [27, Theorem 9]): Let T,, be a sequence of n n 1
Wiener-class Toeplitz matrices, characterized by thetfanc GaB(z) = EGBA(Z) - (1 - E) o (47)
f(X) with essential infimumn ; and essential supremuid’. Lo )

Let Ar, (1),...,\r, (n) be the eigenvalues 6F, ands be AS T(s) =—1—{G(5), from (47), we obtain

any positive integer. Then n
; TAB(S) = ETBA(S). (48)
. 1 s _ 1 s . . _
nh—{r;oﬁ;/\"r"(k) “ 2 ), JA)?dA. (41)  Finally, using{> = Tan(s) = 2Tpa(s)} © {Tag(z) =
a 5 = TBk( )} and the definition of theS-transform

Furthermore, iff()) is real, or equivalently, the matricés,,  S5(z) £ zt17-1(2) yields the desired result
are all Hermitian, then for any functiog(-) continuous on

1
[mfvj\/[f] SaB(z) = Z+nSBA( - ) (49)
2+ n/m
n 27
lim ~ > g, (k) = i/ g(f(\)dA. (42) This concludes the proof dfemma 1. |
n—oo N — 2m 0

Proof of Lemma 3

Consider ann x p matrix A with zero-mean i.i.d. entries
Lemma 7. Fori > 1, given a set of deterministic matricesyit, variances. LetX — \}A denote the normalized version

{At}kefo,..y and a set of independent random Matrices. o \ith zero mean i.i.d. entries of vanande and define

(©] i1, with i.i.d. zero-mean gaussian elements wn@
{ k}ke{l """ '} g = al, andZ = XXHY = AA® . Itis direct to show

varianceo?, ) .
& that Sy (z) = % Using the latter result along with [10,

1 i Theorem 1], we obtain
tr (E Q) {ALOL}AAS ®{®kHAkH}] ) S 1
k=i k=1 (43) xx# (2) = m
tr(A AH)ﬁ 2tr(Ap AL 11 ©9
=1r Ojtr . Saau(z) =8 = Sxxu(2)S = -
0£%0 P k kS aan(2) z(2) xx# (2)Sy (2) 1+¢2) a
Applying Lemma 1 to Spn A (2) yields
C. Proofs of Lemmas 241 P 1 1
_ Sanal(z) = AAH <—) == : (51)
The proofs ofLemmas 1, 3, 5 and 7 are given hereafter. 24+¢ ¢ a (z+¢)
Proof of Lemma 1 This completes the proof dfemma 3. |

Given two complex matriceA of sizem xn, andB of size  Proof of Lemma 5
n x m, their productsAB andBA have the samé non-zero  The proof of Lemma 5 is done by induction onV. For

eigenvaluesiag(l),..., AaB(k) with the same respective v — 1, Lemma 5 obviously holds. Assuming thdtemma 5
multiplicities m., .. ., my. However the multiplicitiesny and  holds for N, we now show that it also holds fa¥ + 1.
m; of the 0-eigenvalues ofAB and BA respectively, are e first recall that the eigenvalues of Gramian matrices
related as follows: AAT are non-negative. Thus the supportof . is lower-
bounded by0, and we are left with showing that it is also
mo +n = mg + m. (44)  upper-bounded.

DenotingBy = ;_ A, ;_ A)H we can write
Assuming thatA B, and therefor@ A, has real eigenvalues, (@i A (@i A

we show hereafter that (37) holds. Byi1 = An1ByARL . (52)
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For a matrixA, let Ao max denote its largest eigenvalue. The Leta > ¢, c;, then for all0 < y < ¢,, we have% >+ >
. ’ . . E Y
largest eigenvalue dB 1 is given by

c, and Fy % = 1, as the dimensions go to infinity with
ABy ;1,max constant rates. Therefore, in the asymptotic regime, we hav
XH BN 1 X Cy
= max T}: Fy z(a) :/ Iz (%) Ty (y)dy
x Ay ByAl | x o (59)
- xHx :/ Lfy (y)dy = Fy(cy) = 1.
— max tI‘(BN A%_‘_IXXHA]\H_l) o y=0
e xHx Combining (56) and (59), we gdix(a) = 1 for a > ¢, c..
SN Ay (k) )\AngxHANH(k) Thus, there exists a constant such that0 < ¢, < ¢, ¢,
< max i ,byLemma 4  andvVz > ¢, , Fx(z) = 1, which means that the support
SN A an ) of the asymptotic distribution o is upper-bounded. As a
< max ABy max k=1 N+;Ixx Nt consequence, the support of the asymptotic eigenvalue-dist
x " X HX bution of By is also upper-bounded. Therefore, the support
ABy e mAX tr(ANJrl);;( Any1) of w41 is upper-bounded, which concludes the proof.l
" XHAN+)1(A?\§+1X Proof of Lemma 7 _ _ _ _
= ABy,max max 7 The proof ofLemma 7 is done by induction. We first prove
. \ XX that Lemma 7 holds fori = 1. To that purpose, we define the
T AByymax AAn AR maxe matrix B = A;©,;A¢AY©F A Then

(53)

To simplify notations, we rename the random variables asr(E[A,10;A0Af O Al)) = tr(E[B]) = ZlE[bjj] (60)
follows: o

X =ABymax Y = ABymax £ = Aay,, A%, max The expectation of thg'" diagonal element;; of B is

(54)
Then (53) can be rewritten Elbj;] = Z E[aﬁ)@&) (23 510721*9&)* 5;)*]
k,l,m,n,p
X<YZ (55) Z |a [|9 |2]
Let a > 0, by (55) we have k,lm 2 (61)
1

Fx(a) =Pr{X <a} >Pr{YZ < a} = Fyz(a) (56) =23 1al) P> lal 2.
which still holds for the asymptotic distributions as g
ni,...nyg1 — 0o, while ;- — (. Denoting the plane where the second equality is due to the fact it 65" =
regionDa = {z,y > 0/2y < a}, we can write 026101 It follows from (60) and (61) that
Fyzla = o} Z lali/ 12> lag?

// fy,z(y, z)dydz H o H (©2)

Y,2€D, = Ultf(AlAl )tI‘(AoAO )
// (2)dydz, by independence df andZ  which shows that.emma 7 holds fori = 1.
ZED“ Now, assuming thatLemma 7 holds for ¢ — 1, we
_ /+oo / F2(2)dz |y (y)dy show it also holds fori. We define the matrixB, =
0 ®llc:i{Ak®k}A0A5[ Qi1 {© A{'}. Then
o0 a
—/y_o Fz <§> Iy (y)dy. ZE | = tr(E[A:©;B,_ 07 AT]) (63)
(57)

By assumption, the distributions d{NHAﬁH andBy The expectation of thg'" diagonal elemenb@ of B; is
converge almost surely to compactly supported measures. ,
Thus, their largest eigenvalues are asymptotically upper- Eb\] = > Ela o bl D olral)]
bounded and the support of the asymptotic distributions of k.lm,n
Y and Z are upper-bounded, i.e. Z |a 2E bz(; Y] [|91(fz)|2]
h\,_/

de, > 0 such thatvy > ¢, , Fy (y) =1 (fy(y) =0)
=oP Y laf}l? ZE " ”
k

(64)

Je, >0suchthatvz > ¢, , Fz(2) =1 (fz(z) =0).
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where the second equality is due to the independend®;of Now, we need to prove that if (66) holds fo¥ = ¢, it also
andB,_; and to the fact thakE [0\ 6" = 626, ,6,.,. Thus holds for N' = ¢ + 1. Note that

(63) becomes
tr(EB]) = 07 > |l > Bl
gk l

= o7tr(AA{)tr(E[B;-1])
1—1

= ottr(A A (A AL [] odtr(AcAY)
k=1

= tr(AA{) [] oitr(ALA)
k=1
(65)
which shows that ifLemma 7 holds fori — 1, then it holds
for .
ThereforeLemma 7 holds for any: > 1, which concludes
the proof. |

APPENDIXB
PROOF OFTHEOREM 1

In this appendix, we first list the main steps of the proof of= Se, ., ,...e

Gyr1Gl =Mg110,.1 M0, ... M0, M,

xMfeiM{ ... .eliMmIel, M, .

(69)

Therefore,

(2)

= S@)qﬂMq,..MgTG){f+1

SGq+1Gf+1 (Z) - SMq+1~'MqH+1

Mf+]Mq+1(Z)v (70)
by Lemma 1. The empirical eigenvalue distribution of Wishart
matrices®;0# converges almost surely to the Mar&enko-
Pastur law whose support is compact. Moreover, by as-
sumption, the empirical eigenvalue distribution B M,

i = 0,...,N + 1 converges to an asymptotic distribution
with a compact support. Thus, Hyemma 5, the asymptotic
eigenvalue distribution oM, @, ... @M/’ has a compact
support. Thereforé.emma 2 can be applied to (70) to show
that

SGﬁ]GgIH (2)

", (Z)SM5+1Mq+1 (Z) y by Lemma 2

Theorem 1 and then present the detailed proof of each step.

Note that the proof offTheorem 1 uses tools from the free _
probability theory introduced in Appendix A. The proof of

Theorem 1 consists of the following four steps.
1) ObtainSg g (2).
2) UseSg,qu(2) tofind Tq, qu(z).
3) UseYq,qu(2) to obtaindl/dn.
4) IntegratedI /dn to obtainI itself.

« First Step: obtain Sayar (2)

Theorem 3: As k;, Vi € IN), go to infinity with the same
rate, the S-transform of y G is given by

pi 1

N
SGNGg(Z) = SM%MN (Z)H
o (66)
Proof: The proof is done by induction usirigemmas 1,
3, 2. First, we prove (66) forN = 1. Note that
G1G{ = M;0, MM} M/ (67)
therefore
Sc;lc;{f (2)
= Se,MoMze#MHM, (2), Dy Lemma 1

= Se,Mompre (2)Smim, (2), by Lemma 2

Z+1 »
= —oMmiere: | & | Smim, (2), by Lemma 1
z+ T o
41 . B
= — kO'SMOMgf o S@{fel T SM{{Ml(z)’ by Lemma 2
z + T = ko
=5 H— | ———F— S\ z), by Lemma 3
Z+£_(1, MOMO<%>G :ﬁ"’% MIMI()
1
Po 1 z
= Smirm, () a1 Z+ M0M0< O),byLemmal

e (7)
ai (z+ pi-1) ML Mi—y pi-1)

z+1 z
kq Mq...MquH+1®q+1 kq
z+ 3 Iz
q+1 q+1

X SMf+1Mq+1(Z) , by Lemma 1

z4+1 z z
a2 Sn,.my kq Sl 0,1 kq
kq+1 kq+1 kqt1
X SM;’+1Mq+1(Z) , by Lemma 2
z+1 z
=T kg MM, | Tk,
z+ : q q a - q
q+1 q+1
q ki1 ( Ifq )
X Fq ! ShpH —~Cetl 7
a; z kiy WML Moy ki1
i=1 Fq kq kq
g1
! ! S, (z) , by Lemma 3
X H z
M M ’
g Br g MM
q
kg+1
kq
z+1 (2) Fogin 1 g z
= H —_— H —
2+ kq Mq+1Mq+1 Qg1 z+1 Mq M, kq
Eqt1 Eqt1
ki_
q -1
kqt1 1 z
X H a; o+ ki—1 SMﬁlMifl ki—1
=1 kqt1 kqt1
q+1 ki—1 1
_ kqt1 z
B SM5+1MQ+1 (2) H a; z+ ki1 SMfl—lMifl (kil
i=1 kqt1 kgt
ol p 1 z
i—1
EENRVINGY | =S
M M MHE M, .
et A a4y (2 pie1) T\ pica
(71)
The proof is complete. |

« Second Step: uséSg g (z) to find Yq qu(2)
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Theorem 4. Let us defineuy 1 = 1. We have where FéfijH(/\) is the (non-asymptotic) empirical eigen-
N

N o Terat (s value distribution of G yGZ, that converges almost-surely
sTgNG%(s) - H Loyt <%> . (72) to the asymptotic empirical eigenvalue distributiék, , 1,

MH M,

i—o i+l v whose support is compact. Indeed, the empirical eigenvalue
) distribution of Wishart matrice®®,® converges almost

Proof: From (66) it follows that surely to the Mar&enko-Pastur law whose support is compact
z and by assumption, foi € ]Nf)VJr1 the empirical eigenvalue

S z) = o A
z+1 GNG%( ) distribution of M’ M; converges to an asymptotic distribution

with a compact support. Therefore, accordindg.éonma 5, the
asymptotic eigenvalue distribution €&y GZ has a compact
Pi—1 1 et S z support. Thelog function is continuous, thus bounded on
< > * the compact support of the asymptotic eigenvalue disiobut

z

mSMgMN (2)x

N

z EREY 1SM£1M«;71

a0 G 2t pier o o Pi—1 . e s
(73) of GNGE. This enables the application of the bounded
convergence theorem to obtain the almost-sure convergence
Using (36) in (73), we obtain in (78).
1 N p . It follows from (78) that
-1 _ -1 i—1~n—1
Tavay )= 8 Dy (Z)H a; st i (pz'1>7 Voo o / A _ir, ()
= (74) dn poln2 ) 1T+nx GN¥EN
or equivalently, — 1 / AT A
N —ponn2 J 1 —(=n)A exay (Y
_ 1 Pi _ z 1
1 _ 1
TGNgg(Z) - Z_NEJ Qi1 TMfMi (E) : (75) = WTGNGIHV(_W)' (79)
Substitutingz = Y, gz (s) in (75), Equation (72) follows. Let us denote
This completes the proof. [ | o= TGNGg(—n) (80)
e Thi : [ - t
Third St.ep use Tg, (-z) to F)bta|n dI /dn G o= Tk (_) vie NN (81)
Theorem 5: In the asymptotic regime, ds), k1, ..., kx QO i Mi \ p;
to infinity while ,f—N = pi,i=0,..., N, _the derivative of the gnq, for the sake of simplicity, let = poIn 2. From (79), we
instantaneous mutual information is given by have
N t= —nozdI—OO (82)
‘g—m = i 5 117 (76) dn
L Substitutings = —n in (72) and using (80) and (81), it follows
wherehg, hi, ..., hy are the solutions to the following set ofthat N
N + 1 equations _ntN _ H éz gi. (83)
N LNA imo i+l
H hj = piE W vie Ny (77)  Finally, from (81) and the very definition 6T in (35), we
=0 ait1 e obtain
The expectation in (77) is ovéY; whose probability distribu- i , N
tion function is given byFy; =, (A) (conventionay 1 = 1). t= pi/ 1= gi)\dFMf’Mi (A) vieNy. (84)
Proof: Substituting (82) in (83) and (84) yields
First, we note that N N
1 v (o) =] 25 (85)
I = o log det(I + nGnGH) dn o Qit1 ’
0 i=
kn
1 . and
= %ZIOg(l +77/\GNGJHV(2)) dl o i . N
i=1 -n ad— = Pi ﬁdFMHMT(A) Vi € NO .
kn 1 — Y f
 ky 1 ) (86)
- o () e
- k—o/log(l +INAFEY 6 (V) = lan = (87)
a.s 1 i
1 /log(l NG, (V) it follows from (85) that
Po N dI N
1 == —1lh 88
- In(1 + n\)dF, N (78 a i- (88)
s [ m W iFe,ey () (9) 1l



Using (87) and (88) in (86), we obtain

N —nhNM
_ v pi ] N
_ngohj_’”/1—<—n>hfv‘%xdFM?MfW' vi e Mo
(89)
or, equivalently,
N
KV
th = m/ i, (V)
j=0 aiy1 T
hNA;
= pB | , Vie NY. (90
P afjrl + hiVAz ? 0 ( )
This, along with equation (88), complete the proof. |

« Fourth Step: integrate dI/dn to obtain I itself

The last step of the proof dfheorem 1 is accomplished by
computing the derivative of ., in (17) with respect to; and

showing that the derivative matches (76). This shows thax (1

is one primitive function of‘g—;O. Since primitive functions of

”’5—;; differ by a constant, the constant was chosen such that

the mutual information (17) is zero when SMRyoes to zero:
limy, 0 Iso(n) = 0.

We now proceed with computing the derivative bf,. If
(17) holds, then we have (recall= pgIn 2)

N N
ale =) pE {m <1 + Lﬁ“hﬁ%)] — N ][] Q1)
1=0 1=0

3

From (91) we have

dl .
Pt
dn
XN: As (hf-v + Nph *1h;)
= il pi a1 N AL
i=0 ai+1(1 + pi h; Al)

|
=
—
&
|
=
=
]
S
—
u?
~

1=0 1=0 j=0
J#i
N N ’
= Y| N> e |
i=0 @it + nhi Ai i=0 hi ait1 + nhi A;
N N N
I (ST
1=0 1=0 7=0
N N N N
= Z h; + Nn Zh—HhJ
i=0 j=0 =0 7=0
N N N
oIl (R
1=0 =0 7=0
N N N
=N+ [[r-N]]ri=]1"
Jj=0 j=0 j=0
(92)
whereh; £ 4
immediately
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APPENDIXC
PROOF OFTHEOREM 2

In this appendix, we provide the proof @heorem 2. The
proof of this theorem is based on [29, Theorem H.1.h] that
is reiterated inLemma 4. Note that, [29, Theorem H.1.h]
has been used before to characterize the source precoder
maximizing the average mutual information of single-ugdi [
and multi-user [22] single-hop MIMO systems with covarianc
knowledge at source, and to obtain the relay precoder max-
imizing the instantaneous mutual information of a two-hop
MIMO system with full CSI at the relay [9]. We extend the
results of [21], [22], [9] to suit the MIMO multi-hop relayin
system of our concern.

The proof consists of three following steps.

o Step 1. Use the singular value decomposition (SVD)
UD,V# = A/} U P;U.,A)? and show that
unitary matricesdU; and'V,; impact the maximization of
the average mutual information through the power con-
straints only, while diagonal matricd3; affect both the
mutual information expression and the power constraints.
o Step 2: Represent the power constraint expression as a
function of D;, U;, V; and channel correlation matrices
only.
o Step 3: Show that the directions minimizing the trace
in the power constraint are those given Theorem 2,
regardless of the singular values containedin

Before detailing each step, we recall that the maximum
average mutual information is given by

c= max E [logdet(I, + 1 GNGR)]

{Pi/tr(E[Xz’Xf{])SkiPi}iEN(J)\r—l
(93)

and we define the conventions = 1, andC, o = I,,. Note
that the latter implies thal, o = I, and A, o = Ij,.

o Step 1: clarify how the average mutual information
depends on the transmit directions and the transmit
powers

Fori e {1,...,N} we define

0, =U0e,U, (94)
Since ©; is zero-mean i.i.d. complex Gaussian, thus bi-
unitarily invariant, andU,.; and U, ; are unitary matrices,
®’ has the same distribution &;.

Fori € {0,...,N — 1}, we consider the following SVD

AY? Ul

H _
UiDin‘ = i1 Yt

\PU, A2 (95)

T,
whereU;, V; are unitary matriced); is a real diagonal ma-
trix with non-negative diagonal elements in the non-insieg
order of amplitude.

We now rewrite the average mutual information as a
function of matricesU;, V; and D;, in order to take the

and the third line is due to (18). Equation (76)maximization in (15) overU;, V; and D; instead ofP;.
?ollows from (92). This completes the prodl Using (94) and (95) the average mutual informatibrecan
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be expressed in terms of matric€g, U,, V,; andD; as Applying Lemma 7 to tr(E{x;x}) yields
I £ E [logdet(Ix, +17 GNGY)] s

L tr(Efxix!")) =tr(CraPoCroP) [ | k“—’“tr(ct,kﬂpkcr,kpk’?)
_E{logdet(IkN—i-nUTNATNG’NUN Dy VE_ @) ,... i Bt
x 2 tp(P;C,.PH)
..U D, VIe,U,D,VI VDUl e v, DIul. . iy o
'H H 1/2 1—1
. ®N71VN*1DN71U 16 Ar NU )} :aitr(PiCr,inI) H %tr(ct,kJrlPkCr,kPkI-{)
(96) k=0 K
(101)
!
®’ being zero-mean i.i.d. complex Gaussian, multiplying it by lwhich concludes the proof. -

unltary matrices does not change its distribution. Themfo W ) _
©” = VHO!U,_, has the same distribution 8’ and the Using (99) in the power constraints (7), those constraints

average mutual information can be rewritten can be rewritten as a product of trace-factors as in (19). In
1/2 B order to express (19) in function of matrickg, V; andD;,
I=E [log det(Try +1 A,/NOXDN-10%_;...D1O Dy we first rewrite (95) as
'H 'H 1/2
xD§'@, " DY ... @\, DY_,0"A)})] P, - U A 2UD VI U, (102)

_E[logdet (Lny+nAL % ®{®”DL 1}®{D 10, TIAZ)| . and use (102) in (19) to obtain

(97) tr(P,C,..PH)
Therefore, the maximum average mutual information can then = tr(U; ;11 A, ZlﬁU D, VIA 1/QUH UT,iAT,iUfi
be represented as x U iA 1/2V DHUHAt jﬁUt,Hl)

C = 1 N21TH
{Di7Ui-,vi/tr(E[ir:i§])SkiPi}v MY (At H'lUlDi Ul )7
(103)

E

log det (I, +nAL 5 ®{®”Dz 1}®{D 1(9”H}A1/2)] .and
(98) tr(Ct 1 1PrCr kP = tr(DDf) = tr(D7),  (104)

Expression (97) shows that the average mutual informéafionynere D2 = D,D¥ is a real diagonal matrix with non-

does not depend on the matrides and'V;, which determine npegative d|agonal elements in non- increasing order. Haidd

the transmit directions at source and relays, but only dépeng the following expression of the power constraints in tioTc
on the singular values contained in matrié@s Nevertheless, of U, D,

as shown by (98), the maximum average mutual information I
C depends on the matricds;, V,—and thus on the transmit tr(A;; UeDGUG) < koPo

directions— through the power constraints. ki P;

aitr(Ay} UDIUY) € i —  Vie Iy 1.
o Step 2: give the expression of the power constraints k=0 Htr(Dk)
in function of D;,U;,V; and channel correlation (105)
matrices It was shown in Step 1 that matric® do not have an impact
We show hereunder that the average power of transmitted the expression of the average mutual informafio(@7),
signalx; at i-th relaying level is given by and surprisingly (105) now shows that matricés do not
i1 have an impact on the power constraints either. In fact, as ca

tr(E[x;x!]) = a;tr(P;C,.PH) H %tr(ct,kJrlPkCr,kP]}j)- be opserved from (105), the power const_raints depend only on
ke, matricesU; andD;. It should also be noticed that matiX;
(99) has an impact on the power constraint of ik relay only.

k=0

Proof: The average power of transmitted sigsalcan be « Step 3: give the optimal transmit directions

written as To determine the optimal directions of transmission at
! source, we applizemma 4 to the source power constraint (105)
tr(Bxix/"]) = tr(B[R){ArO1} A Al RQ{OF A[}]) tr(A;{ UgD2U) < koPo, and conclude that for all choices
k=i k=1 of diagonal elements db2, the matrixU, that minimizes the
with tracetr(A, { UpDZU{) is Uy = I,. Therefore, the source
1/2 precoder becomes
A; =P,C!/;

’ , . —1/2 —1/2 —1/2 H
Ap=M;=Cl2 P,C? wkeN;t (o0 Fo= U DoV’ A, o Uy = Ura Ay "DV
o2 = (95 = Ut,lAPovéf-

P ke (106)
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This recalls the known result (22) in the single-hop MIMO The asymptotic mutual information, given by (17) and (18),
case, where the optimal precoding covariance matrix atgoumvolves expectations of functions df; whose distribution is
was shown [21], [22] to be given by the asymptotic eigenvalue distributiﬁquMi (\) of
MZHM,. Equation (112) shows that a functign(A;) can be
written as a functioms (A?%-v Ay, Aviv1), where the variables

Similarly, to determine the optimal direction of transnoss A%, A..;, and A, ;;, are characterized by the asymptotic
at i-th relaying level, we applyemma 4 to thei-th power eigenvalue distributiongprp (), Fc,,(A), andFc, ., (M)
constraint: for all choices of diagonal elementsf, the of matricesP”P, , C,; andC,, 1, respectively. Therefore
matrix U; that minimizes the tracer(A;}HUinUff) is expectations in (17) and (18) can be computed using the
U, = I,. This leads to the precoding matrix at level asymptotic joint distribution o(A%i, Avi, Ay it1) instead of

the distributionFy;zq (A). To simplify notations, we rename
—1/2 —1/2 " M M; ’
P = Ut-,iJrlAt,i-f-lDinIAr,i/ Ugi' (108)  the variables as follows

Now since matrice¥;,i € {0,..., N — 1} have an impact
neither on the expression of the average mutual information X =A% Y = A, 7= Npor. (113)
nor on the power constraints, they can be chosen to be equal : ’ ’
to identity: V; = 1,4 € {0,...,N — 1} . This leads to the

Q* £ E[xox{] = PoP{! = U; 1A U/, (107)

(non-unique but simple) optimal precoding matrices Then, the expectation of a functign(A;) can be written
Py =U; 1A
0 t, 142 Py Y (109)
Pi=Uiit1ApUp; E[g1(Ai)] = E[g2(X, Y, Z)]
with the diagonal matriceA », = A, //;D,A, }/* containing = // 92(x,y, 2) fx,v,z (2, y, 2) de dy dz
the singular values aP;. zJyJz
This completes the proof dfheorem 2. o ///92(I,y72)fxw,z(x|y,Z)fy|z(y|2)fz(2)daf dy dz.
zJyJax
APPENDIX D (114)

PROOF OF THEASYMPTOTIC MUTUAL INFORMATION WITH
EXPONENTIAL CORRELATIONS

In this appendix, we provide the proof of the asymptotigxponential Correlation Model: So far, general correlation
mutual information (28), obtained under the assumptions Batrices were considered. We now introduce the exponential
exponential channel correlations, precoding matricek siit- correlation model (26) and further develop (114) for the dis
gular vectors as iTheorem 2, and optimal power allocation tributions fyz(y|z) and fz(z) resulting from that particular
over these directions. correlation model.

As k; grows large, the sequence of Toeplitz matri€gs;
of size k; x k;, defined in (26), is fully characterized by the
continuous real functiory, ;, defined for\ € [0,2x) by [27,
Section 4.1]

Optimal precoding directions: Fori € IN¥, the eigenvalue
decompositions of channel correlation matri€es; andC,. ;
can be written as

H
Cii = Uy A UL
H
C,; = U.A,, U, - B

whereU, ; andU,.; are unitary, and\; ; andA,.; are diagonal ~ f,;(\) = lim Z el 4 Z 7k edkA
with their respective eigenvalues ordered in decreasidgror Rimtee \ 10 ke (kim1)
Following Theorem 2, we consider precoding matrices of the 1 eI

formP; = Ut7i+1ApiUfi, i.e. the singular vectors @; are

optimally aligned to the eigenvectors of channel correati

matrices. Consequently, we can rewrite matrib&5 M; (10) — i
as 11— e 2

MMy = UL A% A1 Uy
MIM,; = UL A, AL AU, Vie NV (111) S
; ‘ We also denote the essential infimum and supremum of

H _ H
MyMy = U, yArnUr N fri by my,, and M, . respectively [27, Section 4.1]. In a
Thus, the eigenvalues of matrick$” M, are contained in the similar way, we can define the continuous real functfop,

(110)

(115)

following diagonal matrices characterizing the sequence of Toeplitz matri€gs; 1 by
) replacingr,; in (115) by 1, and we denote byny, .,
Ao = Ap, A and My, .., its essential infimum and supremum respectively.

Ai=ApiAp A Vie N (112) By Szegd Theorem [27, Theorem 9], recalledLiemma 6,
AN =A, N for any real function g(-) (resp. h(-)) continuous on
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N 27 2 2 N
naip1ed (=12 )(1—17,,,) loge
= log [ 1+ A d\dv — N hi 120
; 27T ‘/)‘ ‘/ Og( " 1|1_TH‘53>\| |1_Tt iv1e97 |2 . 0 ng ( )
N 2m 2w hNa;102(1—7r2,)(1 —r?,
[Ir = : +10i( BV( tg“) : ——d\dv , Vie N} (121)
A=0 Ju=0 pill = 1r i€ 2|1 — 71y i y1e9[2 + Whi aipr0; (1 =717 )1 —717,19)

7=0

[mf'r',i’Mfr,i] (resp'[mft,iJrl ) Mft,i+1])* we have

1 &
/ 50 0. (4)
y v k=1
27

g (fri(A)) dA
ki Zl h ()\Ct,i+1 (k))

T =1

lim

1
T or

JLCECr

z

g fy(y)d

(116)
lim

1 27
= ), h(feiv1(v)) dv.
7T

Assuming that variable§” = A,; and Z = A; ;41 are

page, wherehg, hi,...,hy are the solutions of the system

of N + 1 equations (121), obtained by using (119) in (18)
h Nizyz

with go(z,y,2) = 7,)1 Ty (with the conventionr, o =
re N41 = 0). Applylng the changes of variables
A 1—¢2 2du
t = tan (5) , thus cos(\) = e and d\ = e
v 1—u? 2du
u = tan (5) thus cos(v) = T2 and dv = T2
(122)

and performing some algebraic manipulations that are skipp
for the sake of conciseness, (120) and (121) can be rewritten

independent, and applying Szegd Theorem to (114), we ¢&hin (28). This concludes the proof.

write

// (/ 92(2,y,2) fx|v,z(2ly, 2) d:v) Py fz(2)dy dz

/,z(/g?’(yvz)fy(;g:@s f2(2) dz
/G

! 27
o /A N (fri(N), 2) d/\) fz(z)dz , by (116)
27

% A=0 (/93 (fri(A):2) fz(2) dZ) d\

27 27
g || s @) dvav by 11
o (117)

Equal power allocation over optimal precoding directions:
We now evaluate (117) in the case of equal power allocati

over the optimal dlrec'uons given in (27). From (27) it can be

seen thatX = A% = o? is independent fronY” and Z, thus
Ixiv,z(xly, 2) = fX( )_5(:c—a) Consequently,

93(y,2) = /gg(:v,y,z)é(:v —a?)dr = go(a?,y,z) (118)

and (117) becomes
E[g1

2 1- 1—7r7,
/ / o (6
27r A=

— €2 ’ [T —7¢,i41€77|?

2
Tr',i

) dXdv.

(119)

Asymptotic Mutual Information : Using (119) in (17) with
g2(x,y,2) = log (1 + n%hf\’xyz gives the expression of

the asymptotic mutual information (120) at the top of the
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