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Abstract

This paper introduces a unified framework for the detectioa single source with a sensor array in
the context where the noise variance and the channel betiveesource and the sensors are unknown at
the receiver. The Generalized Maximum Likelihood Test igli&td and yields the analysis of the ratio
between the maximum eigenvalue of the sampled covariand¢gxnaad its normalized trace. Using
recent results from random matrix theory, a practical wagualuate the threshold and tpevalue of
the test is provided in the asymptotic regime where the nunibeof sensors and the numbé¥ of
observations per sensor are large but have the same ordexgriitode. The theoretical performance of
the test is then analyzed in terms of Receiver Operating &tenistic (ROC) curve. It is in particular
proved that both Type | and Type Il error probabilities cageeto zero exponentially as the dimensions
increase at the same rate, and closed-form expressionsr@rielqnl for the error exponents. These
theoretical results rely on a precise description of thgdateviations of the largest eigenvalue of spiked
random matrix models, and establish that the presente@dsgsiptotically outperforms the popular test

based on the condition number of the sampled covariancexmatr
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. INTRODUCTION

The detection of a source by a sensor array is at the heart my mieless applications. It is
of particular interest in the realm of cognitive radio [13] where a multi-sensor cognitive device
(or a collaborative netwotk needs to discover or sense by itself the surrounding emviemt.
This allows the cognitive device to make relevant choiceterms of information to feed back,
bandwidth to occupy or transmission power to use. When thaitteg device is switched on, its
prior knowledge (on the noise variance for example) is vanjtéd and can rarely be estimated
prior to the reception of data. This unfortunately rules dassical techniques based on energy
detection [4], [5], [6] and requires new sophisticated teghes exploiting the space or spectrum
dimension.

In our setting, the aim of the multi-sensor cognitive detecphase is to construct and analyze

tests associated with the following hypothesis testindiam:

w(n) under H,
y(n) = for n=0:N-1, (2)
h s(n) +w(n) underH,;

wherey(n) = [y1(n),...,yx(n)]? is the observeds x 1 complex time seriesw(n) represents
a K x 1 complex circular Gaussian white noise process with unkneamances?, and N
represents the number of received samples. Vehtar CX*! is a deterministic vector and
typically represents the propagation channel between ¢thiece and theK sensors. Signal
s(n) denotes a standard scalar independent and identicallybdigtd (i.i.d.) circular complex
Gaussian process with respect to the samples0 : N — 1 and stands for the source signal to
be detected.

The standard case where the propagation channel and thevasiance are known has been
thoroughly studied in the literature in the Single Input gé&n Output case [4], [5], [6] and
Multi-Input Multi-Ouput [7] case. In this simple contextjyg most natural approach to detect the
presence of source(n) is the well-knownNeyman-PearsoiNP) procedure which consists in
rejecting the null hypothesis when the observed likelihoaiib lies above a certain threshold
[8]. Traditionally, the value of the threshold is set in suchvay that theProbability of False
Alarm (PFA) is no larger than a predefinégliel « € (0,1). Recall that the PFA (resp. the miss

The collaborative network corresponds to multiple base stations conpétte wireless or wired manner, to form a virtual

antenna system[3].
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probability) of a test is defined as the probability that theeiver decides hypothests, (resp.
Hy) when the true hypothesis iH, (resp. H;). The NP test is known to be uniformly most
powerfuli.e., for any levela € (0, 1), the NP test has the minimum achievable miss probability
(or equivalently the maximum achievable power) among a@ftst®f levela. In this paper, we
assume on the opposite that:

« the noise variance? is unknown,

« vector h is unknown.

In this context, probability density functions of the ohsdionsy(n) under bothH, and H;
are unknown, and the classical NP approach can no longer powed. As a consequence, the
construction of relevant tests for (1) together with thelysia fo their perfomances is a crucial
issue. The classical approach followed in this paper ctgigeplacing the unknown parameters
by their maximum likelihood estimates. This leads to thealed Generalized Likelihood Ratio
(GLR). TheGeneralized Likelihood Ratio Te€ELRT), which rejects the null hypothesis for large
values of the GLR, easily reduces to the statistics given byrdiio of the largest eigenvalue of
the sampled covariance matrix with its normalized trace[94f [10], [11]. Nearby statistics [12],
[13], [14], [15], with good practical properties, have alseen developed, but would not yield
a different (asymptotic) error exponent analysis.

In this paper, we analyze the performance of the GLRT in tlyenasotic regime where the
numberK of sensors and the numb@r of observations per sensor are large but have the same
order of magnitude. This assumption is relevant in manyiegipbns, among which cognitive
radio for instance, and casts the problem into a large ranahatnix framework.

Large random matrix theory has already been applied to kdgtaction [16] (see also [17]),
and recently to hypothesis testing [15], [18], [19]. In thigicle, the focus is mainly devoted to
the study of the largest eigenvalue of the sampled covaeiamairix, whose behaviour changes
under H, or H,. The fluctuations of the largest eigenvalue undgrhave been described by
Johnstone [20] by means of the celebrated Tracy-Widomiligion, and are used to study the
threshold and the-value of the GLRT.

In order to characterize the performance of the test, a alagpproach would have been to
evaluate theReceiver Operating CharacteristilROC) curve of the GLRT, that is to plot the
power of the test versus a given level of confidence. Unfartiely, the ROC curve does not

admit any simple closed-form expression for a finite numlfesemsors and snapshots. As the
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miss probability of the GLRT goes exponentially fast to zeie performance of the GLRT
is analyzed via the computation of its error exponent, witiahacterizes the speed of decrease
to zero. Its computation relies on the study of the large atemis of the largest eigenvalue
of 'spiked’ sampled covariance matrix. By 'spiked’ we referthe case where the eigenvalue
converges outside the bulk of the limiting spectral disttidn, which precisely happens under
hypothesisH;. We build upon [21] to establish the large deviation prifejpand provide a
closed-form expression for the rate function.

We also introduce the error exponent curve, and plot the exponent of the power of the
test versus the error exponent for a given level of confideibe error exponent curve can
be interpreted as an asymptotic version of the ROC curvelugdog scale and enables us to
establish that the GLRT outperforms another test based @rdhdition number, and proposed
by [22], [23], [24] in the context of cognitive radio.

Notice that the results provided here (determination ofttineshold of the GLRT test and the
computation of the error exponents) would still hold withine setting of real Gaussian random
variables instead of complex ones, with minor modificatfons

The paper is organized as follows.

Section Il introduces the GLRT. The value of the thresholdjciwv completes the definition
of the GLRT, is established in Section II-B. As the latteregirold has no simple closed-form
expression and as its practical evaluation is difficult, mteoduce in Section II-C an asymptotic
framework where it is assumed that both the number of serds@md the numbelN of available
snapshots go to infinity at the same rate. This assumptioali@ for instance in cognitive radio
contexts and yields a very simple evaluation of the threshehich is important in real-time
applications.

In Section Ill, we recall several results of large random rmatheory, among which the
asymptotic fluctuations of the largest eigenvalue of a sampVariance matrix, and the limit of
the largest eigenvalue of a spiked model.

These results are used in Section IV where an approximagshbld value is derived, which
leads to the same PFA as the optimal one in the asymptotieneeglhis analysis yields a

relevant practical method to approximate flealuesassociated with the GLRT.

%Details are provided in Remarks 4 and 9.
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Section V is devoted to the performance analysis of the GMR compute the error exponent
of the GLRT, derive its expression in closed-form by estdilig aLarge Deviation Principle
for the test statistid’y 3, and describe the error exponent curve.

Section VI introduces the test based on the condition nunthat is the statistics given by
the ratio between the largest eigenvalue and the smallgshwalue of the sampled covariance
matrix. We provide the error exponent curve associated tith test and prove that the latter
is outperformed by the GLRT.

Section VII provides further numerical illustrations ar@hclusions are drawn in Section VIII.

Mathematical details are provided in the Appendix. In gatar, a full rigorous proof of a
large deviation principle is provided in Appendix A, whilengore informal proof of a nearby
large deviation principle, maybe more accessible to thegpatialist, is provided in Appendix
B.

Notations

Fori € {0, 1}, P;(€) represents the probability of a given evéhunder hypothesig{;. For

any real random variablé' and any real numbey, notation

T,.2" 7
stands for the test function which rejects the null hypatheghenT > ~. In this case, the
probability of false alarm (PFAPf the test is given by, (7" > ), while the power of the test is
Py(T > 7). Notation%’i} stands for the almost sure (a.s.) convergence under hygpstig For
any one-to-one mapping : X — Y whereX andy are two sets, we denote By ! the inverse
of 7" w.r.t. composition. For any borel set € R, x — 1,4(z) denotes the indicator function of
set A and||«|| denotes the Euclidian norm of a given vectarlf A is a given matrix, denote
by A” its transpose-conjugate. F is a cumulative distribution function (c.d.f.), we denotge b

F is complementary c.d.f., that i$7 = 1 — F.

%Note that in recent papers [25], [14], [15], the fluctuations of the séstistics undetH;, based on large random matrix
techniques, have also been used to approximate the power of the testlié lthat the performance analysis based on the

error exponent approach, although more involved, has a wideerahgalidity.
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[I. GENERALIZED LIKELIHOOD RATIO TEST

In this section, we derive the Generalized Likelihood RatstI{section 1I-A) and compute
the associated threshold apédialue (section II-B). This exact computation raises sommu-
tational issues, which are circumvented by the introductiba relevant asymptotic framework,

well-suited for mathematical analysis (Section 1I-C).

A. Derivation of the Test
Denote byN the number of observed samples and recall that:

w(n) under H,
y(n) = ., n=0:N-1,
h s(n) +w(n) underH,

where (w(n),0 < n < N — 1) represents an independent and identically distributedl.fi.
process of x 1 vectors with circular complex Gaussian entries with meao aad covariance
matrix oI, vectorh € CK*! is deterministic, signals(n),0 < n < N — 1) denotes a
scalar i.i.d. circular complex Gaussian process with zesamand unit variance. Moreover,
(w(n),0 <n < N-—1)and(s(n),0 <n < N — 1) are assumed to be independent processes.
We stack the observed data intakax N matrix Y = [y(0),...,y(N — 1)]. Denote byR the
sampled covariance matrix: 1
R = NYYH,

and respectively, by, (Y; o%) andp,(Y; h, 0?) the likelihood functions of the observation matrix
Y indexed by the unknown parametéisand o> under hypothese#l, and H;.

As Y is a K x N matrix whose columns are i.i.d. Gaussian vectors with camae matrix

Y. defined by:

ol e under H,
Y= : (2)
hh" + 521, underH,

the likelihood functions write:
N
po(Y;0%) = (mo?) N exp (—;tr R) , 3)
pi(Y:h,o?) = (78 det(hh + 0?Ix)) ™ exp <—Ntr (R(Rh" + UQIK)—l)) L@

In the case where parametérando? are available, the celebrated Neyman-Pearson procedure
yields a uniformly most powerful test, given by the likeldwratio statistics%.
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However, in the case whete ando? are unknown, which is the problem addressed here, no
simple procedure garantees a uniformly most powerful tesd, a classical approach consists in

computing the GLR: ,
S Y:h,
Ly — UPp, 52 pi( ' 2‘7 ) ‘ (5)
sup,2 po(Y;0?)

In the GLRT procedure, one rejects hypotheKis wheneverLy > £y, Whereéy is a certain
threshold which is selected in order that the PBRALy > {y) does not exceed a given level
.

In the following proposition, which follows after straigatward computations from [26] and
[9], we derive the closed form expression of the GLR. Denote byA; > Ay > -+ > A >0

the ordered eigenvalues & (all distincts with probability one).

Proposition 1. Let Ty be defined by:

Ap
Ty = ——, 6
VS TLR (6)
then, the GLR (cf. Eq. (5)) writes:
C
Ly = K—-1)N
(@)™ (1 - 3)'

(1-K)
K)l KN.

whereC' = (1 — +

By Proposition 1,Ly = ¢y x(Ty) Wheregy i : z — CaV (1 - %)N(I_K). The GLRT
rejects the null hypothesis when inequality, > ¢y holds. AsTy € (1, K) with probability one
and aspy x is increasing on this interval, the latter inequality is eglent to 7Ty > gb]‘\,}K({N).
Otherwise stated, the GLRT reduces to the test which rejeetaull hypothesis for large values

of Ty

In = W (7)

wherevyy = ¢;V}K(§N) is a certain threshold which is such that the PFA does notezkaegiven

level a.. In the sequel, we will therefore focus on the test stassiig.

Remark 1. There exist several variants of the above statistics [12B]] [14], [15], which

merely consist in replacing the normalized trace with a mareoived estimate of the noise

August 25, 2010 DRAFT



variance. Although very important from a practical pointvaéw, these variants have no impact
on the (asymptotic) error exponent analysis. Therefore,asérict our analysis to the traditional

GLRT for the sake of simplicity.

B. Exact threshold ang-values

In order to complete the construction of the test, we musvigeoa procedure to set the
threshold~,. As usual, we propose to defingy as the value which maximizes the power
P, (T > ~n) of the test (7) while keeping the PEA (T > ) under a desired level € (0, 1).

It is well-known (see for instance [8], [27]) that the lattereshold is obtained by:

W =py (a) (8)

wherepy (t) represents the complementary c.d.f. of the statisticaunder the null hypothesis:
pN(t) = PO(TN > f}) . (9)

Note thatpy(¢) is continuous and decreasing from 1 to Oa [0, o), so that the threshold
px'(a) in (8) is always well defined. When the threshold is fixechto = p5' (), the GLRT
rejects the null hypothesis whéfy, > p,' (o) or equivalently, whemy (Ty) < «. It is usually

convenient to rewrite the GLRT under the following form:

H,
pn(Ty) = a. (10)

H,
The statisticspy(7T) represents thaignificance probabilityor p-value of the test. The null
hypothesis is rejected when thevaluepy (Ty) is below the levelv. In practice, the computation
of the p-value associated with one experiment is of prime impoegamhedeed, the»-value not
only allows to accept/reject an hypothesis by (10), but itHlermore reflects how strongly the
data contradicts the null hypothesis [8].

In order to evaluatg-values, we derive in the sequel the exact expression ofdimplementary

c.d.f.py. The crucial point is thal'y is a function of the eigenvalues, ..., A\x of the sampled

covariance matrixR. We have
pn(t) = / p(z)(,N(xh o wg ) (11)
Ayg
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where for eaclt, the domain of integratiod\, is defined by:

K Kz,
A, = {(xl,...,a:K) e R™, p—— >t} ,
andp‘}(w is the joint probability density function (p.d.f.) of thedmred eigenvalues @t under
Hy, given by:
1 K
P (T1K) = —(xlzzbszZO) I (=) [[a) e (12)
K.\N 1<i<j<K j=1

wherel,, >..>.>0) Stands for the indicator function of the Setry ... o) Xy > > >

0} and WhereZ%N is the normalization constant (see for instance [28], [2%Zér 4]).

Remark 2. For eacht, the computation opy(¢) requires the numerical evaluation of a non-
trivial integral. Despite the fact that powerful numericakthods, based on representations of
such integrals with hypergeometric functions [30], are dakle (see for instance [31], [32]),
an on line computation, requested in a number of real-time applicajanay be out of reach.
Instead, tables of the functiopy should be computedff line i.e., prior to the experiment.
As both the dimension& and N may be subject to frequent chanfjesll possible tables of
the functionpy should be available at the detector’s side, for all possiddues of the couple
(N, K). This both requires substantial computations and consioler memory space. In what

follows, we propose a way to overcome this issue.

In the sequel, we study the asymptotic behaviour of the cemehtary c.d.fpy when both
the number of sensorE” and the number of snapshaié go to infinity at the same rate. This

analysis leads to simpler testing procedure.

C. Asymptotic framework

We propose to analyze the asymptotic behaviour of the comgai¢ary c.d.fp as the number
of observations goes to infinity. More precisely, we consitie case where both the numker

of sensors and the numbér of snapshots go to infinity at the same speed, as assumed below

K :
N — 00, K — oo, cN::N—>c,Wlth0<c<1. (13)

“In cognitive radio applications for instance, the number of ugémshich are connected to the network is frequently varying.
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This asymptotic regime is relevant in cases where the sgrssistem must be able to perform
source detection in a moderate amount of tinee the numberK of sensors and the numbar

of samples being of the same order. This is in particular #e=dn cognitive radio applications
(see for instance [33]). Very often, the number of sensolewer than the number of snapshots,
hence the rati@ lower than 1.

In the sequel, we will simply denot&', K — oo to refer to the asymptotic regime (13).

Remark 3. The results related to the GLRT presented in Sections IV amemain true for

¢ > 1; in the case of the test based on the condition number ancépted in Section VI, extra-
work is needed to handle the fact that the lowest eigenvalueecges to zero, which happens
if ¢> 1.

[11. L ARGE RANDOM MATRICES- LARGEST EIGENVALUE- BEHAVIOUR OF THEGLR

STATISTICS

In this section, we recall a few facts on large random madrae the dimensiond’, K go to
infinity. We focus on the behaviour of the eigenvaluesiofwhich differs whether hypothesis
H, holds (Section IlI-A) orH; holds (Section IlI-B).

As the column vectors oY are i.i.d. complex Gaussian with covariance mahgiven by
(2), the probability density oR is given by:

-
Z(N,K, %)
where Z(N, K, ) is a normalizing constant.

ethr(Z_IR) (det R)N7K7

A. Behaviour under hypothesig,

As the behaviour of 'y does not depend ar?, we assume that?> = 1; in particular,X = I.
Under H,, matrixR is a complex Wishart matrix and it is well-known (see for arste [28]) that
the Jacobian of the transformation between the entrieseofrthtrix and the eigenvalues/angles
is given by the Vandermonde determindif_,_;_ (z; —x;)2. This yields the joint p.d.f. of the
ordered eigenvalues (12) where the normalizing constdi¥, K, 1) is denoted byZ?{yN for
simplicity.

The celebrated result from Manko and Pastur [34] states that the limit/dsK' — oo of

the c.d.f. Fy(z) = w associated to the empirical distribution of the eigenwal(d) of
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~

R is equal toPyp ((—o0, z]) wherePy,, represents the Maenko-Pastur distribution:

VO ==,

2mey

PMP(dQ) = 1(,\—,,\+)(y) Y, (14)

with A\t = (1 + /¢)?> and A\~ = (1 — /c)%. This convergence is very fast in the sense that the
probability of deviating fromPy;, decreases as V?xconst More precisely, a simple application
of the large deviations results in [35] yields that for angtdnced on the set of probability

measures ok compatible with the weak convergence and for @ny 0,

1
lim sup Nlog]P’o (d(Fy,Pyp) > 0) = —00 . (15)

N—oo

Moreover, the largest eigenvalug of R converges a.s. to the right edge of the Kéako-
Pastur distribution, that i§l + /c)?. A further result due to Johnstone [20] describes its speed
of convergence ¥ ~2/3) and its fluctuations (see also [36] for complementary tekulet A,
be defined by:

N 2
Al _ N2/3 ()\1 (1 + \/a) ) ’ (16)
by
whereby is defined by )
1 1/3
by = (1+ /cn) (\/T_N + 1) : a7

then A; converges in distribution toward a standard Tracy-Widomdoen variable with c.d.f.

Fry defined by:

Frw(x) = exp (— /oo(u — 2)¢*(u) du) Vr e R, (18)
whereq solves the Painléy 1l differential equation:

¢"(x) = 2q(z) +2¢*(x), q(x) ~Ai(z) as z — oo

and where Ajz) denotes the Airy function. In particulaf;-y is continuous. The Tracy-Widom
distribution was first introduced in [37], [38] as the asyotpt distribution of the centered and
rescaled largest eigenvalue of a matrix from the GaussiatatyrEnsemble.

Tables of the Tracy-Widom law are available for instance38][ while a practical algorithm

allowing to efficiently evaluate equation (18) can be found40].

Remark 4. In the case where the entries of matix are real Gaussian random variables, the
fluctuations of the largest eigenvalue are still describgdabTracy-Widom distribution whose

definition slightly differs from the one given in the comptase (for details, see [20]).
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B. Behaviour under hypothesi3;

In this case, the covariance matrix writds = 021, + hh* and matrixR follows asingle
spikedmodel. Since the behaviour d@fy is not affected if the entries oY are multiplied by a

given constant, we find it convenient to consider the modedre/B. = I + ‘% Denote by

b

0-2
the signal-to-noiseratio (SNR), then matrixZ admits the decomposition = UDU* whereU
is a unitary matrix andd = diag (pg, 1,...,1). With the same change of variables from the

entries of the matrix to the eigenvalues/angles with Jaeop], ., ;. , (z; — =;)*, the p.d.f. of

the ordered eigenvalues writes:

Liooon e ne (N
PN () = Z@mz-ze20) H (2 — 2;)? Hmév Ke=Naj (?BIOXK) (19)

Zl
K,N 1<i<j<K j=1

where the normalizing constadt(N, K, Ix + hh*) is denoted byZj  for simplicity, X is

the diagonal matrix with eigenvaluds,...,zx), Bx is the K x K diagonal matrix with
eigenvalueif_%,o, ...,0), and for any real diagonal matric€,, D, the spherical integral

Ix(Cg,Dg) is defined as

Ix(Cx, D) = / M (CRAPKAN i (Q), (20)

with mj the Haar measure on the unitary group of siggsee [30, Chapter 3] for details).
Whereas this rank-one perturbation does not affect the asyimpehaviour of Fy (the

convergence towart,;, and the deviations of the empirical measure given by (14) rstid

underP,), the limiting behaviour of the largest eigenvalie can change if the signal-to-noise

ratio p is large enough.
Assumption 1. The following constanp € R exists:
h 2
p= lim u <: lim pK> : (21)
We refer top as the limiting SNR. We also introduce
00 C
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Under hypothesig?;, the largest eigenvalue has the following asymptotic biglhanas N, K go
to infinity:

)\ggk pr>\/57

Ay L5 (22)
h AT otherwise,

see for instance [41] for a proof of this result. Note in pardar that\2°, is strictly larger than

spk
the right edge of the suppokt™ wheneverp > /c. Otherwise stated, if the perturbation is large

enough, the largest eigenvalue converges outside the gupfpilarcenko-Pastur distribution.

C. Limiting behaviour ofl’y under H, and H;

Gathering the results recalled in Sections IlI-A and Il obtain the following:

Proposition 2. Let Assumption 1 hold true and assume that ./c, then:

T]\,%>(1+\/E)2 and TN%(ler)(HE) as N, K — oo.
0 1 1%

V. ASYMPTOTIC THRESHOLD ANDp-VALUES
A. Computation of the asymptotic threshold gndalue

In Theorem 1 below, we take advantage of the convergencétigexthe largest eigenvalue
of R under H, in the asymptotic regimeéV, K — oo to express the threshold and thealue

of interest in terms of Tracy-Widom quantiles. Recall tay = 1 — Fryy, thatey = £, and

N’

thatby is given by (17).

Theorem 1. Consider a fixed levek € (0,1) and let~y be the threshold for which the power
of test (7) is maximumi,e. py(yn) = a Wherepy is defined by11). Then:

1) The following convergence holds true:

A N2/3 _
(v = b (v = (1 ++/en)?) —>Ffv1‘/(a)-

2) The PFA of the following test

H,
Ty 2 (14 Van) + g Frv(e) (23)
Hy

converges tav.
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3) Thep-valuepy(7Tx) associated with the GLRT can be approximated by:

) (N2/3(TN —(1+ \/@)2)> (24)

ﬁN(TN):FTW b
N

in the sense thaty (Tv) — pn(Tn) — 0.

Remark 5. Theorem 1 provides a simple approach to compute both thetibié and thep-
values of the GLRT as the dimensiéh of the observed time series and the numbérof
snapshots are large: The thresholg, associated with the level can be approximated by the
righthand side of (23). Similarly, equation (24) providegs@venient approximation for the
value associated with one experiment. These approachestdequre the tedious computation
of the exact complementary c.d.f. (11) and, instead, orijyar tables of the c.d.f’y,, which
can be found for instance in [39] along with more details on toenputational aspects (note
that function 7, does not depend on any of the problem’s characteristic, angdairticular
not onc). This is of importance in real-time applications, such agmitive radio for instance,
where the users connected to the network must quickly decidéndopresence/absence of a

source.

Proof of Theorem 1:Before proving the three points of the theorem, we first dbsctine

fluctuations of7Ty under Hy with the help of the results in Section IlI-A. Assume withdoss

of generality thatr? = 1, recall thatTy = K};trﬁ and denote by:
N2 (Ty — (1 2
o (T b( +Von)?) (25)
N

the rescaled and centered version of the statisticsA direct application of Slutsky’s lemma
(see for instance [27]) together with the fluctuations\gfas reminded in Section IlI-A yields
that T)y converges in distribution to a standard Tracy-Widom randamable with c.d.f.Fry,
which is continuous oveR. Denote byFy the c.d.f. of Ty under Hy, then a classical result,
sometimes called Polya’s theorem (see for instance [48Kerés that the convergence Bf

towards Fry is uniform overR:

sup [Fiy(z) — Frw(z)] ——— 0. (26)
z€R N7K—>OO

We are now in position to prove the theorem.
The mere definition of y implies thata = py(yn) = Fn(Cy). Due to (26),Frw (Cy) — a.
As Fry has a continuous inverse, the first point of the theorem iggato
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The second point is a direct consequence of the convergdnEg toward the Tracy-Widom
distribution: The PFA of test (23) can be written ﬁg:(TN > F;&,(a)) which readily converges
to a.

The third point is a direct consequence of (26)(Tx)—pn(Tw) = Fx(Tn)—Frw (Ty) — 0.

This completes the proof of Theorem 1.

V. ASYMPTOTIC ANALYSIS OF THE POWER OF THE TEST

In this section, we provide an asymptotic analysis of the ggoof the GLRT asV, K — oc.
As the power of the test goes exponentially to zero, its eexponent is computed with the help
of the large deviations associated to the largest eigeevaflumatrix R. The error exponent and
error exponent curve are computed in Theorem 2, Section Wéarge deviations of interest

are stated in Section V-B. Finally Theorem 2 is proved in ®ecY-C.

A. Error exponents and error exponent curve

The most natural approach to characterize the performanaeest is to evaluate its power or
equivalently its miss probabilitye., the probability undefi; that the receiver decides hypothesis

H,. For a given levek € (0,1), the miss probability writes:
5N7T(Oz) = inf {Pl (TN < ”}/)7 Y such thaﬂpg (TN > ’7) < Oz} . (27)
Y

Based on Section II-B, the infimum is achieved when the thiestmincides withy = py' («a);
otherwise statedjy (o) = Py (Ty < py'(a)) (notice that the miss probability depends on the
unknown parameterd and¢?). As Sy r(a) has no simple expression in the general case, we
again study its asymptotic behaviour in the asymptoticrnegof interest (13). It follows from
Theorem 1 thapy'(a) — A\* = (1+ /c)? for a € (0,1). On the other hand, under hypothesis
H,, Ty converges a.s. tag, which is strictly greater than™ when the ratio”;‘—'Q‘2 is large
enough. In this caseP, (TN < pjvl(oz)) goes to zero as it expresses the probability that
deviates from its limit\J5, ; moreover, one can prove that the convergence to zero isnexgial
in N:

NI} @)

Py (Ty <z)oxe for = <\¥ (28)

spk
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where I is the so-called rate function associatedltp. This observation naturally yields the

following definition of the error exponeré:

1
8T = lim _NlogﬁN,T(a) (29)

N,K —oc0
the existence of which is established in Theorem 2 belowNa& — oo). Also proved is the
fact that€, does not depend om.

The error exponent gives crucial information on the performance of the tEst provided
that the levekr is kept fixed whenV, K go to infinity. Its existence strongly relies on the study
of the large deviations associated to the statisti¢s

In practice however, one may as well take benefit from theemsing number of data not
only to decrease the miss probability, but to decrease tiAed®Fwell. As a consequence, it is
of practical interest to analyze the detection performamben both the miss probability and
the PFA go to zero at exponential speed. A coupleh) € (0,00) x (0,00) is said to be an
achievablepair of error exponents for the te$l, if there exists a sequence of levels such

that, in the asymptotic regime (13),

: 1 . 1
N}Il(rgOO N logay =a and N}}l{fgoo N log Byr(an) =0 . (30)

We denote by8; the set of achievable pairs of error exponents for Téstas N, K — oo. We
refer toS+ as theerror exponent curvef Ty.
The following notations are needed in order to describe ther eexponenté; and error

exponent curves.

f(z) = [;5Pup(dy) forz e R\ (A7, A1)

31
Ff(z) = [log(z —y)Pyp(dy) forz > A" o

Remark 6. Function f is the well-known Stieltjes transform associated to d¢ako-Pastur
distribution and admits a closed-form representation folam So does functiod*, although

this fact is perhaps less known. These results are gatherégpendix C.

Denote byA(- | A) the convex indicator functione. the function equal to zero far € A

and to infinity otherwise. Fop > /¢, define the function:

I;r(x) = :zl_:\ig)k (1 —c)log (é) —c (F*( ) — F+()\§gk)) + Az | [AF,00)) (32)
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Also define the function:

X

[J(ac):35—)\+—(1—c)10g</\Jr

) — 2 (F(x) = FT(\)) + A(x | [\, 0) . (33)
We are now in position to state the main theorem of the section

Theorem 2. Let Assumption 1 hold true, then:

1) For any fixed levek € (0, 1), the limit 7 in (29) exists asV, K — oo and satisfies:
Er = Ij(A*) (34)

if p > /c and & = 0 otherwise.

2) The error exponent curve of tegly is given by:

Sr = {(f (@), I} (2) : we (W50} (35)

» “Yspk

if p > \/c and 87 = () otherwise.

The proof of Theorem 2 heavily relies on the large deviatiohdy and is postponed to

Section V-C. Before providing the proof, it is worth makingetfollowing remarks.

Remark 7. Several variants of the GLRT have been proposed in the titexaand typically
consist in replacing the denominatq}ftrf{ (which converges toward?) by a more involved
estimate of2 in order to decrease the bias [12], [13], [14], [15]. Howevét,can be established
that the error exponents of the above variants are as wellgbye(34) and (35) in the asymptotic

regime.

Remark 8. The error exponené yields a simple approximation of the miss probability in the
sense thaBy r(a) ~ e VT as N — oo. It depends on the limiting ratie and on the value
of the SNRp through the constantZ;, . In the high SNR case, the error exponent turns out to
have a simple expression as a functiorpoff p — oo then g, tends to infinity as well, which

simplifies the expression of rate functidfi. Using F*(A\Z

spk) = lOg /\So;k + Op(l) WherGOP(l)

stands for a term which converges to zergpas: oo, it is straightforward to show that for each
x> A, [ (x) =logp —1— (1 —c)logz — cF*(x) + 0,(1). After some algebra, we finally
obtain:

Er=logp—(14++0c)—(1—c)log(l++/c)—clogc+o0,(1) .
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At high SNR, this yields the following convenient approxiorabf the miss probability:

Brr(e) = (W(c) p)™ (36)

wherev(c) = e 0HVO(1 4 /c)* e 2,

B. Large Deviations associated 0y

In order to express the error exponents of interest, a rigoformalization of (28) is needed.
Let us recall the definition of a Large Deviation Principle:skquence of random variables
(Xn)nen satisfies a Large Deviation Principle (LDP) underin the scaleN with good rate
function [ if the following properties hold true:

. [ is a nonnegative function with compact level sets, {=./(z) < t} is compact fort € R,

. for any closed set’ C R, the following upper bound holds true:

1
1imsupN10gIP>(XN eF)< —i%f] : (37)

N—oo

. for any open setG C R, the following lower bound holds true:
| :
thgloréfﬁlogP(XN €eqG) > —1IG1f] : (38)

For instance, ifA is a set such thanfiy ) I = infy ) I(= inf4 1), (Where infA) and clA)

respectively denote the interior and the closureddfthen (37) and (38) yield

lim N~'logP(Xy € A) = —inf [ . (39)

N—oo
Informally stated,
P(Xy€A) o e Ninfal asN — oo .

If, moreoverinf 4 I > 0 (which typically happens if the limit oK y -if existing- does not belong
to A), then probabilityP(X € A) goes to zero exponentially fast, hencka@e deviation(LD);
and the evenf Xy € A} can be referred to as rare event. We refer the reader to [43] for
further details on the subject.

As already mentioned above, all the probabilities of irge@e rare events a¥, K go to
infinity related to large deviations fdfy. More precisely, Theorem 2 is merely a consequence

of the following Lemma.

Lemma 1. Let Assumption 1 hold true and l&f, K — oo, then:
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1) Under H,, Ty satisfies the LDP in the scal®& with good rate function/;”, which is
increasing from 0 taxo on interval (A", co).

2) Under H, and if p > /¢, Ty satisfies the LDP in the scal® with good rate function
I7. Function I7 is decreasing from/f(A") to 0 on [A*, A%, ] and increasing from O to

00 0N [AZy, 00).

3) For any bounded sequenégy)n>o,

NN ) _ Iy (A7) ifp> /e (40)

1
lim —— logP, (TN <1+ +
N N3 0 otherwise.

N,K—0c0
4) Letz € (A", 00) and let(zy)n>o be any real sequence which converges:tdf p < /c,

then:

. 1
N,lfl(rgoo N loglPy (Ty <xy) =0 . (41)

The proof of Lemma 1 is provided in Appendix A.

Remark 9. 1) The proof of the large deviations féty relies on the fact that the denominator
K-trR of T concentrates much faster than. Therefore, the large deviations @iy
are driven by those ok, a fact that is exploited in the proof.

2) In Appendix A, we rather focus on the large deviations\ptinder H,; and skip the proof
of Lemma 1-(1), which is simpler and available (to some exien29, Theorem 2.6.6]
Indeed, the proof of the LDP relies on the joint density ofdigenvalues. Undeff,, this
joint density has an extra-term, the spherical integraldas thus harder to analyze.

3) Lemma 1-(3) is not a mere consequence of Lemma 1-(2) as itilckes¢he deviations of
Ty at the vicinity of a point of discontinuity of the rate furmeti The direct application
of the LDP would provide a trivial lower bound-co) in this case.

4) In the case where the entries of mati¥xare real Gaussian random variables, the results
stated in Lemma 1 will still hold true with minor modificatiorihe rate functions will be
slightly different. Indeed, the computation of the ratections relies on the joint density

of the eigenvalues, which differs whether the entrie¥ odre real or complex.

®see also the errata sheet for the sign error in the rate function on thesautebpage.
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Plot of rate function I}
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Figure 1. Plots of rate functiong and I, in the case where = 0.5 and p = 1db. In this case\™ = 2.9142, A, = 3,

IS (AT) =0 and I (AZ) = 0.

C. Proof of Theorem 2

In order to prove (34), we must study the asymptotic behavmfuthe miss probability

Byr(a) =P (Iy < py'(a)) @asN, K — co. Using Theorem 1-(1), we recall that

Byr(a) =P (TN < (14 an)?+ %) (42)

wherecy = % converges ta: and wherey is a deterministic sequence such that

| . 13
lim v = (14+v0) (% + 1) Fry(a).

Hence, Lemma 1-(3) yields the first point of Theorem 2. We noove the second point. Assume

N

thatp > /c. Consider any: € (A", A%, ) and for everyN, K, consider the test function which

rejects the null hypothesis whehy, > x,

Hy
Denote byay = Py(Ty > z) the PFA associated with this test. By Lemma 1-(1) togethehn wit

the continuity of the rate function at, we obtain:

1
lim —Nlog ay = inf If(y)=1I(z). (44)

N,K—>OO ye[mpo)
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The miss probability of this test is given By r(ay) = P1(Tnv < x). By Lemma 1-(2),

lim —%logﬁN,T(aN) = inf If(y)=1;(z). (45)

N,K—o00 ye(—o0,a] *
Equations (44) and (45) prove théfg(x),lj(x)) is an achievable pair of error exponents.
Therefore, the set in the righthand side of (35) is included,;. We now prove the converse.
Assume that(a,b) is an achievable pair of error exponents anddgt be a sequence such
that (30) holds. Denote byy = py'(ax) the threshold associated with level. As I (z) is
continuous and increasing from O 4o on interval(\*, 0o0), there exists a (unique) € (A, co)
such thata = I (x). We now prove thatyy converges tor as N tends to infinity. Consider a
subsequence,y) which converges to a limity € R U {oo}. Assume thaty > x. Then there
existse > 0 such thaty,v) > = + € for large V. This yields:

1 1
————log Py (T: >y > ——
o(N) 0 ( (N) sa(N)) o(N)

Taking the limit in both terms yieldg, (z) > I (z + ¢) by Lemma 1, which contradicts the

log Py (TW(N) > x+ 6) ) (46)

fact that/; is an increasing function. Now assume that: z. Similarly,
—LlogIP’o (Tw(N) > %(N)) < b log Py (T@(N) >x— e) 47)
©(N) ©(N)
for a certaine and for N large enough. Taking the limit of both terms, we obtdjn(z) <
Iy (x — €) which leads to the same contradiction. This proves that; vy = z. Recall that by
definition (30),

i 1
b= N,%gm_ﬁ IOg]Pl (TN < ’)/N) .

As ~y tends tox, Lemma 1 implies that the righthand side of the above eqguasicequal to
IF(z) > 0if z € (A", AZ,) andp > /c. Itis equal to 0 ifx > A3, or p < \/c. Now b > 0 by

» “spk
definition, therefore both conditionse (A*, A\, ) andp > +/c hold. As a conclusion, ifa, b) is

an achievable pair of error exponents, thenb) = (5 (), I 7 (x)) for a certainz € (A", AZ,),

and furthermorey > /c. This completes the proof of the second point of Theorem 2.

VI. COMPARISON WITH THE TEST BASED ON THE CONDITION NUMBER

This section is devoted to the study of the asymptotic perémces of the test/y = AA—;{
which is popular in cognitive radio [22], [23], [24]. The nmaresult of the section is Theorem
3, where it is proved that the test basedonpasymptotically outperforms the one basedign

in terms of error exponent curves.
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A. Description of the test

A different approach which has been introduced in severpéadevoted to cognitive radio
contexts consists in rejecting the null hypothesis fordarglues of the statistids, defined by:

_ M
-2

which is the ratio between the largest and the smallest eiiees ofR. Random variablé/y

Un (48)

is the so-calleccondition numbewof the sampled covariance mati. As for Ty, an important
feature of the statistic&y is that its law does not depend of the unknown parameteshich
is the level of the noise. Under hypothedis, recall that the spectral measure Bf weakly
converges to the Maenko-Pastur distribution (14) with supp@pt—, A*). In addition to the fact
that A\, converges toward* under H, and /\ggk under H,, the following result related to the
convergence of the lowest eigenvalue is of importance (@ee$tance [44], [45], [41]):

Ak 255 A7 = 02(1 — /0)? (49)

under both hypothesel, and H,. Therefore, the statistids,, admits the following limits:

a.s. AT (1 + \/E>2 a.s. )‘OOk
U =Y and U L for . 50
AT N e fores Ve G0

The test is based on the observation that the limit/gf under the alternative?; is strictly

larger than the ratio™ /\~, at least when the SNR is large enough.

B. A few remarks related to the determination of the thredtol the testl/,

The determination of the threshold for the tés¢ relies on the asymptotic independence of
A1 and A\ under Hy. As we shall prove below that tegfy is asymptotically outperformed
by testTy, such a study, rather involved, seems beyond the scope htticle. For the sake
of completeness however, we describe unformally how toleethireshold forl/. Recall the
definition of A; in (16) and letAx be defined as:

Ap = N2/3 (/\K B (1 - \/ay) R
(vew = 1) (ex* = 1)

Then bothA; and Ax converge toward Tracy-Widom random variables. Moreover,

(A, Ag) —— (XY,

N,K—o0
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where X andY are independent random variables, both distributed agwptd Fpyy,.
As a corollary of the previous convergence, a direct apptinaof the Delta method [27,
Chapter 3] yields the following convergence in distribution
A 1+ /cn)?
N2/3 <_1 _ 0t Ven ) CN)2> — (aX +bY)
)\K (1 — w/CN)

where

which enables one to set the threshold of the test, basedeoquimtiles of the random variable
aX + bY. In particular, following the same arguments as in Theoreftr), Jone can prove that
the optimal threshold (for some fixede (0, 1)), defined byPy(Uy > vy) = « , satisfies

Ey 2 N (’YN - Eiig;) . Fix iy (a) .

In particular,&y is bounded asV, K — oc.

C. Performance analysis and comparison with the GLRT

We now provide the performance analysis of the above testdbas the condition number
Uy in terms of error exponents. In accordance with the defimstiof section V-A, we define the
miss probability associated with test; asfy () = inf, Py (Uy < 7) for any levela € (0, 1),
where the infimum is taken w.r.t. all thresholgdsuch thatP, (Uy > v) < a. We denote by,
the limit of sequence-+; log Av.v () (if it exists) in the asymptotic regime (13). We denoteSpy
the error exponent curve associated with tésti.e., the set of coupleta, b) of positive numbers
for which —% log By (an) — b for a certain sequencey which satisfies—% log ay — a.

Theorem 3 below provides the error exponents associateu gt Uy. As for Ty, the
performance of the test is expressed in terms of the ratdifumof the LDPs forUy underP,
or P;. These rate functions combine the rate functions for thgektreigenvalue,, i.e. Ij and
Iy defined in Section V-B, together with the rate function assedi to the smallest eigenvalue,
1, defined below. As we shall see, the positive rank-one gdaation does not affect, whose

rate function remains the same undéy and H;.

®Such an asymptotic independence is not formally proved yeRfamder Hy, but is likely to be true as a similar result has

been established in the case of the Gaussian Unitary Ensemble [46],[40]
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We first define:

F (z) = /log(y —2)dPyp(y) forxz <A . (51)

As for Ft, functionF~ also admits a closed-form expression based,dhe Stieltjes transform
of Marcenko-Pastur distribution (see Appendix C for details).

Now, define for eachr € R:
@)=z -\ —(1—c)log (;) — 2 (F(2) = F~(A\7)) + A(z[(0,A7])  (52)

If \; and )\ were independent random variables, the contraction mie¢see e.g. [43]) would
imply that the following functions

L,(t) = (ixrg) {Jj(x) + 17 (y) : % = t} and T(t) = (ixr}yf) {Ig(:c) +17(y) : g = t}
defined for each > 0, are the rate functions associated with the LDP governing\ under
hypotheseg/, and H, respectively. Of course,; and\x are not independent, and the contraction
principle does not apply. However, a careful study of thefpsd. , and py  shows that\,

and A\, behave as if they were asymptotically independent, fronrgelaeviation perspective:

Lemma 2. Let Assumption 1 hold true and l&f, K — oo, then:

1) Under Hy, Uy satisfies the LDP in the scal® with good rate functiord’,.
2) Under H; and if p > /¢, Uy satisfies the LDP in the scal® with good rate function
r,.

3) For any bounded sequenégy)n>o,

1 1+ /cn)? r,A\t) ifp>
lim ——logP (UN<( i CN>2+ ";V/S) _ ) A e ve (53)
N, K00 (1-y/cn)? N 0 otherwise.

Moreover,I',(A*) = I7(\T).
4) Letx € (AT, 00) and let(zy)n>0 be any real sequence which converges:tdf p < /c,
then:

i 1
N,lll(IEoo —N IOg P, (TN < ZL‘N> =0 (54)

Remark 10. In the context of Lemma 1, both quantitisgsand A\ deviate at the same speed,
to the contrary of statistic§y where the denominator concentrated much faster than thesirg

eigenvalue);. Nevertheless, proof of Lemma 2 is a slight extension of tbhefmf Lemma 1,
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based on the study of the joint deviatigqns, A ), the proof of which can be performed similarly
to the proof of the deviations of . Once the large deviations established for the coyple A ),
it is a matter of routine to get the large deviations for theiga\; /\x. A proof is outlined in

Appendix B.
We now provide the main result of the section.

Theorem 3. Let Assumption 1 hold true, then:
1) For any fixed levek € (0,1) and for eachp, the error exponent exists and coincides

2) The error exponent curve of te&ty is given by:

so = @m0 e (52 (55)

if p> /c and8y = ) otherwise.
3) The error exponent curv&; of testTy uniformly dominates;; in the sense that for each
(a,b) € 8 there exitsh’ > b such that(a, V') € 8.

Proof: The proof of items (1) and (2) is merely bookkeeping from theop of Theorem 2
with Lemma 2 at hand.

Let us prove item (3). The key observation lies in the follogviwo facts:

e e (VAR D(5) = @), (56)
xr
Ve e (A1, A%, To (T—) < If(z). (57)
Recall that
B + ~(p) - Y_ T
r, ()\7) = (zr}qu){[p (u) + 1 (v) : ; )\7}

—

a

< @) +1° () = If()

N

where (a) follows from the fact that/— (A=) = 0 and by takingu = z,v = A~. Assume that
inequality (a) is strict. Due to the fact that' is decreasing, the only way to decrease the value
of I77(u) + I~ (v) under the considered constraint= ;= is to find a couple(u, v) with u > z,

but this cannot happen because this would enforce\~ so that the constrairit = = remains
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fulfilled, and this would end up witli~(v) = oo. Necessarily(a) is an equality and (56) holds
true.

Let us now give a sketch of proof for (57). Notice first tlﬁlgt lu==> 0 (which easily follows
from the fact that/;" is increasing and differentiable) whiligvl lv ~a-= 0. This equality follows

from the direct computation:

TR CO RN e P L
T A X — AT A~ dx o A
1
R A
\/_
where the last equality follows from the fact thégmi = —f together with the closed-form

expression foff as given in Appendix C. As previously, write:

FO<%> = inf {]ar(u)—l—l_(v): %:%}

(u,0)
(a)
< If(@)+I7(A) = If(x).
Consider now a small perturbatiom = x — ¢ and the related perturbation = A\~ — ¢’ so
that the constraint = = remains fulfilled. Due to the values of the derivatives/pfand /-
at respective points and A~, the decrease of) (z — &) will be larger than the increase of
I~ (A~ —¢'), and this will result in the fact that

Ty (Ai_) < IHa—0)+ I (A +8) < IFa),

which is the desired result, which in turn yields (57).

We can now prove Theorem 3-(3). Lét,b) € 8y and (a,b') € S, we shall prove that
b < V. Due to the mere definitions of the curvés and 8r, there existr € (A", AZ,) and
t € (AT/AT,A8/A7) such thate = I (z) = To(t). Eq. (57) yields that> < t. As I} is
decreasing, we have

V' = If(x) > IJ(tA\™) = T,(t) = b,

p

and the proof is completed. [ |

Remark 11. Theorem 3-(1) indicates that when the number of data inceabe powers of
testsTyy and Uy both converge to one at the same exponential sigged £, provided that

the levela is kept fixed. However, when the level goes to zero expongrfaall as a function of
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Log of the Error exponent for different values of ¢

-10
0

Figure 2. Computation of the logarithm of the error exponérassociated to the tety for different values ofc (with &,

defined forp > /c and €, |,— - = 0), and comparison with the optimal result (Neyman-Pearson) obtaindteinase where

all the parameters are perfectly known.

the number of snapshots, then the test basedooutperformsl/, in terms of error exponents:
The power ofl’y converges to one faster than the powerldf. Simulation results forV, K
fixed sustain this claim (cf. Figure 4). This proves that ie tontext of interest\, K — ),

the GLRT approach should be prefered to the tégt

VII. NUMERICAL RESULTS

In the following section, we analyze the performance of tfteppsed tests in various scenarios.

Figure 2 compares the error exponent of tEgtwith the optimal NP test (assuming that all
the parameters are known) for various values ahdp. The error exponent of the NP test can
be easily obtained using Stein’s Lemma (see for instanch.[47

In Figure 3, we compare the Error Exponent curves of botls tEgtand Uy. The analytic
expressions provided in 2 and 3 for the Error Exponent cuneee been used to plot the curves.

The asymptotic comparison clearly underlines the gain ofgugestT)y.
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Error Exponent Curves for 7 and T
T T T T T

25

15
EE curve for T

EE curve forT>

0 1 1 1 1 1 1 1
0 0.001 0.002 0.003 0.004 0.005 0.006 0.007 0.008 0.009 0.01

Figure 3. Error Exponent curves associated to the Bstg71) andUn (73) in the case where = % andp = 10dB. Each
point of the curve corresponds to a given error exponent ufitle(X axis) and its counterpart error exponent undar (Y
axis) as described in Theorem 2-(2) f0x, and Theorem 3-(2) fot/n .

Finally, we compare in Figure 4 the powers (computed by M@ddo methods) of tests
Tn and Uy for finite values of N and K. We consider the case whefé = 10, N = 50 and

p = 1 and plot the probability of error undet, versus the power of the test, thatdsversus
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Power

0.2 - R o b e R
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0 0.1 0.2 03 0.4 0.5 0.6 07 [0X] 0.9 1

False Alarm Probability Level

Figure 4. Simulated ROC curves faity (test 1) andUy (test 2) in the case whet® = 10, N = 50 andp = 10dB.

Py (T > yn) (resp.Py(Ux > vn)) Where~y is fixed by the following condition:

Po(Ty > yv) = a  (resp.Po(Uyx > y) = a) .

VIII. CONCLUSION

In this contribution, we have analyzed in detail the GLRThHe tase where the noise variance
and the channel are unknown. Unlike similar contributioms, have focused our efforts on the
analysis of the error exponent by means of large random xn#igory and large deviation
techniques. Closed-form expressions were obtained andeghab to establish that the GLRT
asymptotically outperforms the test based on the conditiamber, a fact that is supported by
finite-dimension simulations. We also believe that thedatgviations techniques introduced here

will be of interest for the engineering community, beyond firoblem addressed in this paper.
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APPENDIXA

PROOF OFLEMMA 1: LARGE DEVIATIONS FORTy

The large deviations of the largest eigenvalue of large sandnatrices have already been

investigated in various contexts, Gaussian Orthogonakibte [48] and deformed Gaussian
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ensembles [21]. As mentionned in [21, Remark 1.2], the probtbe latter can be extended to
complex Wishart matrix models, that is random matriesinder H, or H;.

In both cases, the large deviations)afrely on a close study of the density of the eigenvalues,
either given by (12) (undefiy) or by (19) for the spiked model (undéf;). The study of the
spiked model, as it involves the study of the asymptoticdhefdpherical integral (see Lemma 3
below), is more difficult. We therefore focus on the proof loé _.DP underH; (Lemma 1-(2))
and omit the proof of Lemma 1-(1). Once Lemma 1-(2) is proy@dying Lemma 1-(1) is a
matter of bookkeeping, with the spherical integral remoaee@ach step.

Recall that\; > --- > Ay are the ordered eigenvalues Bf and thatTy is the statistics
defined in (6).

In the sequel, we shall prove the upper bound of the LDP in Lairi2) (which gives also
the upper bound in Lemma 1-(3)). The proof of the lower boundemma 1-(3) requires more
precise arguments than the lower bound of the LDP. One haethtb study what happens at
the vicinity of A*, which is a point of discontinuity of the rate functidij. Thus, we skip the
proof of the lower bound of the LDP in Lemma 1-(2) to avoid répen. Note that the proof
of Lemma 1-(4) is a mere consequence of the fact Thatonverges a.s. ta™ if p < /¢, thus
P, (Ty < zx) converges to 1 whenevery converges tac > A™.

For sake of simplicity and with no loss of generality as the & Ty does not depend om,
we assume all along this appendix thdt= 1. We first recall important asymptotic results for

spherical integrals.

A. Useful facts about spherical integrals

Recall that the joint distributions of the ordered eigengalwnder hypothesi&, and H;
are respectively given by (12) and (19). In the latter, thecated spherical integral (20) is
introduced. We recall here results from [21] related to thgngptotic behaviour of the spherical
integral in the case where one diagonal matrix is of rank ame the other has the limiting

distribution Py;,. We first introduce the function defined fer> A by:

J,(x) = { £ —log () ~FOF0) TrsveandAmse <. o
P o xr .
iy — 1 —log (m) —F*(z), otherwise.
Consider aK-tuple (x,--- ,zx) and denote byix, = ﬁzij\; d., the empirical dis-
tribution associated tdz,, - - ,x); let d be a metric compatible with the topology of weak
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convergence of measures (for example the Dudley distanee fa& instance [49]). A strong
version of the convergence of the spherical integral in tkgorential scale with speed,

established in [21] can be summarized in the following Lemma

Lemma 3. Assume thatV, K — co and £ — ¢ € (0,1) and let Assumption 1 hold true. Let
x> w9 > - > x> 0andd > 0. If, for N large enough|z; — x| < § and d(7k x, Pyp) <
N—/4 then:

’—log[K( BK,XK) —CJP(JI) S(;,

where J, is given by(58), Bx = diag ( 0,... ,0) and Xy = diag(zy, -+ , k).

Tho

Recall that the spherical integrd};, defined in (20), appears in the joint density (19) of
the eigenvalues undef;. Lemma 3 provides a simple asymptotic equivalesit(z) of the
normalized integralV —!log I. Roughly speaking, this will enable us to replate by the
quantity e~ N>/ () when establishing the large deviations)af which rely on a careful study
of density (19).

B. Proof of Lemma 1-(2)

In order to establish the LDP under hypotheKisand conditionp > /¢, (that is the bounds
(37) and (38)), we first notice that intervdls, x + ) for =, € R* form a basis of the topology
of R*. The LDP will be therefore a consequence of the following rmsi

« (Exponential tightness) there exists a functipn Rt — R* going to infinity at infinity

such that for allV,
Py (A > M) < e MO0 (59)

Condition (59) is technical (see for instance [43, Lemma1B]: Instead of proving
the large deviation upper bound for every closed set, themmutial tightness (59), if
established, enables one to restrict to the compact sets.

« (Upper bound) For any, for any M such that) < = < M,

1
hmhmsup—log]P’l (r<Tn<z+6M<M) < —I(2), (60)
30 N K00 IV 8

Due to the exponential tightness, it is sufficient to essdibthe upper bound for compact
sets. As each compact can be covered by a finite number of liastherefore sufficient

to establish upper estimate (60) in order to establish theupper bound.
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« (Lower bound) For any,

1
im lim inf — <Ty < > —IF
lgﬁljlvl%l)nOENlogPl (z<Ty<z+0) > =1 (x). (61)

The fact that (61) implies the LD lower bound (38) is standardlD and can be found in
[43, Chapter 1] for instance.

As the arguments are very similar to the ones developed if {24 only prove in detail the
upper bound (60). Proofs of (59) and (61) are left to the reade

The idea is that the empirical measurge := ﬁ Zjig dy, (of all but the largest eigenvalues)
and the trace concentrate faster than the largest eigenvalihe exponential scale with speed
N, 7 and the trace can be considered as equal to their limit, césply Fyp and 1. In
particular, the deviations df’y arise from those of the largest eigenvalue and they botkfgati
the same LDP with the same rate functign. We therefore isolate the terms dependingien
and gather the others through their empirical measyg.

Recall the notations introduced in (12) and (19) and:let A™, 6 > 0. Consider the following

domain:
KSL’l

D—{(on+ o) € .M,

€ (:c,x+5)}

For N large enough:

Pz <Tn<z+4+0, i <M)= / dp}(,N(%:K)
D

1
= — [ dxrie
Zien Jo

K
N CNSE )
x I (?BK’XK) I Iz = asPemmem [ [ o™ dapn x 1z zeiz0)

1<i<j j=2

7N:E1€(N7K) log 71 62(K71)flog(zlfu)dfr;(’x(u)

(1 . i)(K*l)(N*l) ZO
_ N . K—-1,N—1 / dxlemele(NfK) logw1€2(K71)flog(aclfu)deryy(u)
Zyn D

N
X I <EBK’ XK) dp?{—l,Nfl(y%K)a

where we performed the change of variablgs:= *5z; for i = 2 : K, and the related
modifications iy x «» 7xy and Xx = diag (z1, 5 o, -+, Yy2). Note also that strictly
speaking, the domain of integratidn would express differently with theg;,’s and in particular,
we should have changed constadtwhich majorizes ther;’s into a larger constant as thg's

can theoretically be slightly abov&/ - we keep the same notation for the sake of simplicity.
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To proceed, one has to study the asymptotic behaviour of dhmatdizing constant:

(1 . %)(K—l)(]\/—l) Z?{il’Nil

1 )
ZK,N

which turns out to be difficult. Instead of establishing dihe the bounds (59)-(61), we proceed
as in [21] and establish similar bounds replacing the pribalmeasuresP; by the measures
Q, defined as:

. Zhow .
1= K-—D(N-1) 1
Z% v (1-%)

and the rate functiod} by the functionGG, defined by:

. e
1+p

G,(x) —(1—c)logx—cF+(x)+c+clog(

)
c(1+p)
for x > \*. Notice that these positive measur@s are not probability measures any more, and
as a consequence, the functiGp is not necessarily positive and its infimum might not be equal
to zero, as it is the case for a rate function.

Writing the upper bound fo€);, we obtain:

Qu(z <Ty <z 40, M < M)

N N
< / dl,le—N@(m,cNﬂrK,y)]K (?BIGXK) dp?(_le_l(yQ:K),
D

where, for any compactly supported probability measu@d any real numbey greater than
the right edge of the support of

By, cxo 1) = —y + (1 — ) logy + 2ex / log(y — A)du(A).

Let us now localise the empirical measutg , aroundPy;,” and the trace around 1. The
continuity and convergence properties of the spheric&giatl recalled in Lemma 3 yield, for

K large enough:
T+ .

QEr<ITy<r+d, M <M) < / dry /€_N@(I1’CN’”K’y)GNC(J”(“)H)dp?(_LN_l(y2;K)
T &

+4KMN+K6NM1i§K /((;C dpg{—17N—1(y2iK)7 (62)

"Notice that if 7  is close toPy;p, SO iS7xk , due to the change of variablg = @i
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with
1 1 o
& = {(y% . ’yK> c [07M]K_17 d(ﬁK,yaPMP) < W and ?ZQZ/] € [1 — 527 1+ 52:| } .
j=

The second term in (62) is easily obtained considering tobetfeat all the eigenvalues are less
than M so that forl < j < K, [z — ;| <2M, 2}~ < MYN"% and (UXxU*)11 < M. Now,

standard concentration results undéy yield that:

N,K—0c0

K
1 1
hmsupﬁlog]l% (ﬁK,A ¢ B(IP’MP,N*IM) or EZ)\j ¢ [1 — 6% 1+ 52}> — —00.

j=2
More precisely, one knows using [50] that the empirical mera% Zsz A is close enough to
its expectation and then using [51] one knows that the egpieatis close enough to its limit

Pyp. The arguments are detailed in the Wigner case in [21] and weotigive more details here.

As cy — cfor NNK — oo, ¢ — ®(y,c,pu) IS continuous angt — ®(y,c, ) is lower
semi-continuous, we obtain:
lim sup llog Qr <M <z+d, M<M) < sup (P(u,c, Pyp)+c,(u))+ 20.
N,K—o0 IV u€lz,z+0]
By continuity in« of the two involved functions, we finally get:
lgﬁlg%iu£%long(x <M<z4+0, M <M) < O(x,¢,Pyp) +¢J, () =G,(x)
and the counterpart of Eq. (60) is proved f@r and functionG,. The proof of the lower bound
is quite similar and left to the reader. It remains now to weco(60). AsP; is a probability
measure and the whole spdke is both open and closed, an application of the upper and lower

bounds forQ; immediately yields:

1 Z N
liminf — log : — P (Ty € RY)
N,K—o00 N Z?(—l,N—l (1 _ %)(K H(N-1)
1 Zien
= limsup — log : P, (Ty € RT)
KE_1)(N-1)
N, K —00 Z?(iLNil (1 — %)
= %log Z}(’]Y ®D-1)
e Zk ana(l-5)
= —fG,. (63)

This implies that the LDP holds fdP, with rate functionG, — infg+ G,,.
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It remains to check that! = G/, —infg+ G, which easily follows from the fact to be proved
that:

L Gola) = G005 (64)
We therefore study the variations 6f, over [\, 00). Note that(F*) = —f, and thus that

G(z) = (14 p)~" — (1 — ¢)z~' + of(z). Functionf being a Stieltjes transform is increasing
for z > A*, and so isG’,, whose limit at infinity is(1 + p)~". Straightforward but involved
) = 0. Therefore,G,,

is decreasing o\, A%, ] and increasing o\, oo), and (64) is proved.

computations using the explicit representation (67)ffgield that ) (A5,
This concludes the proof of the upper bound in Lemma 1-(2¢ proof of Lemma 1-(1) is

very similar and left to the reader.

C. Proof of Lemma 1-(3)

The proof of this point requires an extra argument as we sthdylarge deviations of 'y
near the point(1 + /c)> where the rate function is not continuous. In particulag timit
(53) does not follow from the LDP already established. As wallssee when considering
Py (Ty < (14 y/cn)* +nyN~-2/3), the fact that the scalgV /%) is the same as the one of the
fluctuations of the largest eigenvalue of the complex Wishaudel is crucial.

We detail the proof in the case when> /c and, as above, consider the positive measures
Q;. We need to prove that:

. 1 2 Ui +
liminf —log Q1 (TN < (1+en)?+ N2/3> > —G,(\"), neR, (65)

the other bound being a direct consequence of the LDP. Asqugly, we will carefully localize
the various quantities of interest. Denote fy(n) = (1 + /cy)? +nN~2/3 for n € R and by
hy(r) =1—rN-%3for r > 0. Notice also that\; < gy(n)hy(r) together with-— ZJK:Q Aj >

hn(r) imply that 7y < gn(n). We shall also consider the further constraints:
gN(T] — 1)hN(7’) <\ and Ay < gN(?7 — Q)hN(T’)

which enable us to properly separate from the support ofrx ». Now, with the localisation
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indicated above, we have fdy large enough,

Q (T < gv(n)) = O (gm— D () < M1 < g () (1),

K
1 - —
K—-1 Z)\j > hn(r), A < gn(n—=2)hn(r), Txx € B(Pyp, N 1/4)).
=2

As previously, we consider the variablgs= %xj for 2 < j < K and obtain, with the help

of Lemma 3:

gn (mhn(r) NG X Ne(s 510
Qi (Tnx < gn(n)) > / dxy / e~ NPLen Ficy) gNelpler)= )de—l,N—l(yQ:K)
gn(n—1)hy(r) F

with

Ngn(n—2) hN(T)} o
N -1

Y

F = {(y%'” JYK) € [0»

K
1 N R _
mzw > 7w () iy € BPyp, N 1/4)} :
j=2
Therefore:

Qi (Tn < gn(n)) > hu(r) (gn(n) — gn(n — 1)) VG20 (A, - k) € F)

(recall thatG,(z) = ®(z,c,Pyp) + ¢/, (z)). Now, ashy(r) (gn(n) —gn(n — 1)) = (1 —

rN~2/3)N—2/3 its contribution vanishes at the LD scale:

Jim - Tog ((r) (gx(n) — g(n — 1)) =0

It remains to check thaP ((A\2,- -, Ax) € F) is bounded below uniformly inV. This will
yield the convergence ojﬁlog Py (Mo, -+, Ag) € F) towards zero, hence (65). Consider:

Po (A2, -+, Ak) € F9) <Py (Fxa ¢ B(Pyp, N11))

1 < N N
+ P, (H;/\j < th(T)> + Py <>\2 > v (n = Q)hN(T)> :

We have already used the fact that the first term goes to zeem Whgrows to infinity. Recall

that the fluctuations of*~ Zsz ), are of order, therefore the second term also goes to zero
as we consider deviations of ord&t /3. Now, N?/3(\, — (1+,/cy)?) converges in distribution

to the Tracy-Widom law, therefore the last term converge$itq, (n — 2 + (1 + /¢)?) < 1.
This concludes the proof.
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APPENDIXB

SKETCH OF PROOF FORLEMMA 2: LARGE DEVIATIONS FORUy

As stated in Remark 10, we shall first study the LDP for the jajuantity (A, \x). The

purpose here is to outline the following convergence:

1
_ _ . + _ . —
N logP (A € A, Ak € B) m ;1615‘] (x) ylggl (x)

which is an illustrative way, although infornfalto state the LDP fof\;, A\x) (see (39)).

Consider the quantit® (A\; € (a1, 1), Ak € (ak, Bx)). As we are interested in the deviations
of \; and )\, the interesting scenario 5" ¢ (a1, 31) and A\~ ¢ (ax, fx) (recall that\* are
the edgepoints of the support of Manko-Pastur distribution). More precisely, the intaregt
case is when the deviations of the extreme eigenvalue oadside of the bulk; > A™ and
Bx < A7; such deviations happen at the raté"*<"s*:, The case where the deviations would
occur within the bulk is unlikely to happen because it woutdoece the whole eigenvalues to
deviate from the limiting support of Maenko-Pastur distribution, which happens at the rate
e~N*xconst. Denote byA = (ay, £1) and B = (g, fx).

P (A € A Ak € B)

1
- Zj (K—2) 1()\12"'2)‘1(20) H (371 - Ilfj)z
K,N AxR x B 1§Z<]§K
. N
X Hq;jy*Keszj]K (?BKyXK> dri.x
j=1
QZK_—llog(;tl_x.) (N—K)logz1— Nz, N
- doy €5 e Ik EBK,XK
A

% / de €QZiK:5110g(xi7xK)e(NfK) log:chNzKe2log(:U1fo)
B

—1 -1 — _ .
ZO N K K I’N Ke (N—=2)z;
0 7 7 2:K—1
xT1>x2> LK

Z} A
K,N j=2 j=2 K=2,N=2 a<icj<k-1

8All the statements, computations and approximations below can be matsepas in the proof of Lemma 1.
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We shall now perform the following approximations:

Z log(xy —z;) ~ (K —2) /log(ml — 2)Pyp(dr) = (K —2)F"(x,) ,

log(z; —xk) ~ (K — 2)/10g(w —2x)Pyp(dr) = (K —2)F (vk) ,

j=2
K—-1
oy~ (K =2) [aPyp(dn) = (K -2).
=2
N
Iy (?BK,XK> ~ €NCJP(:E1) .

The three first approximations follow from the fact that; S°5 " 8,, = Py, the last one from

Lemma 3. Plugging these approximations into the expressidh(\; € A, A\x € B) yields:

P(\ € A, Ak € B)

_o\F+ _ _
~ / dry 62(K 2)F (901)6(N K)log x1 leeNCJp(xl)
A

~

% / d[L‘K 62(K—2)F*(mK)€(N—K) long—N:L’KGQIOg(z1—J:K)
B

K1 N-K_,~(N-2)z;

Zg{—2 N—2 —2(K-2) i © 2
le—e H ZO H (xz - I']) dx2:K71 .
K,N T12T222TK g K=2,N=-2  o<icj<Kk-1

As x; > a; > A\t andzi < B < A7, the last integral goes to one & N — oo and:

P(\ € A, Ak € B)

~ / dIl e_N(wF%(xl)_(l_%)10g$1+x1—ch(ac1))
A

2(K—2) m— _(1_K 2log(z1 —x )
o [ i P
B

0
« ZKfZ,NfZ 6_2(1(_2) '
Zie N
Recall that we are interested in the linkt ! log P (\; € A, \x € B). The last term will account

for a constanfl’ (see for instance (63)):

2 log(

The term+”) within the exponential in the integral accounts for the lirgetion between

A1 and )\ i and its contribution vanishes at the desired rate. In oewaluate the two remaining
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integrals, one has to rely on Laplace’s method (see fornest§s2]) to express the leading term
of the integrals (replacindd N ! by ¢ below):

— + —(1— — —Ni + —(1— —
/dl’l e N(QCF (z1)—(1—c)log z1+x1 ch(ml)) ~ e NlanEA(QCF (z)—(1—c)logz+x cJ,,(:c)) ’
A

/de e—N(QcF’(:tK)—(l—c)loga:K+xK—ch(mK)) ~ e—Ninfyeg(QcF’(y)—(l—c)logy+y) '
B

Finally, we get the desired limit:

Nlog[?’{)\leA )\KEB}—> inf @ (z) —inf @ (y) + T,

—00 €A yeDB

where
P (z) = 2cF"(z) — (1 —c)loga 4z — cJy(x) ,
P (y) = 2cF (y)—(1—c)logy+y .

It remains to replace/, by its expression (58) and to spread the constrmver ®* and ¢,
which are not a priori rate functions (recall that a rate fiorcis nonnegative). IN~ € B, then
the event{\x € B} is “typical” and no deviation occurs, otherwise stated, tate function
I~ should satisfy/~(A~) = 0. Similarly, I;"(A*) = 0 under Hy, and I (\3,) = 0 under H,.
NecessarilyY' should writeT = ®(A\7) + ®(A*) under Hy (resp.T = &(A7) + ¢(AZ
H,) and the rate functions should be given By:= &~ — ®(\~), Ij = &+ — ®(\T) under H,
(resp.l; = & — ®(Ag,) under H;), which are the desired results.

We have proved (informally) that the LDP holds true fai, Ax) with rate functlonIO*/ (x)+

) under

I~ (y). The contraction principle [43, Chap. 4] immediatly yielthe t_ DP for the ratloj—;( with

rate function:

Lop(t) = (x;lf {Iy,(x) + T (y)} (66)

which is the desired result. We provide here intuitive argota to understand this fact.

For this, interpret the value of the rate functiéfi(x) as the cost associated to a deviation
of A\; (underH;) aroundz: P{\; € (x z+dx)} ~ e~ N2 (@) _If a deviation occurs for the ratio
A , sayA1 € (t,t + dt) wheret > Spk (which is the typical behaviour df under H;), then
necessarily\; must deviate around some valtig so does\i around some valug, so that the
ratio is around. In terms of rate functions, the cost of the joint deviation ~ ty, \x ~ y) IS
I} (ty) + I~ (y). The true cost associated to the deviation of the ratio véilthe minimum cost

among all these possible joint deviations)afand Ak, hence the rate function (66).
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APPENDIXC

CLOSED-FORM EXPRESSIONS FOR FUNCTIONS, F* AND F~

Consider the Stieltjes transforfnof Marcenko-Pastur distribution:

We gather without proofs a few facts relatedftowhich are part of the folklore.

Lemma 4 (Representation of). The following hold true:
1) Functionf is analytic inC — [A~, A™].

2) If 2 € C— A=, \*] with R(2) > 2 %2 then
(1—z—c)+/(1—2—0¢)?—dez
2cz

where /= stands for the principal branch of the square-root.
3) If z € C—[A\~,\*] with R(z) < 2£2~ then

(1—2z—c)— /(1 —2—0c)>—4dez
2cz

f(z) =

?

f(z) =

where—,/z stands for the branch of the square-root whose imagg:is C, R(z) < 0}.
4) As a consequence, the following hold true:

(l—z—c)+/(1—2—c)?—4dcx

f(x) = S if o>\, (67)
f(r) — (l—x—c)—\/z(clx—x—c)g—élcx f 0<az<A . (68)

5) Consider the following functiofi(z) = cf(2) — =<, Functionsf andf satisfy the following

system of equations:
_ 1
{f(Z) T AR (69)

r _ 1
f(2) = —aramy

Recall the definition (31) and (51) of functid™ andF . In the following lemma, we provide
closed-form formulas of interest.

Lemma 5. The following identities hold true:

1) Letxz > AT, then

F(x) = log(z) + % log(1 + cf(x)) 4+ log(1 + f(x)) + zf(x)f(z) .
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2) Let0 <x < A7, then
F(2) = log(x) + élog(l b of(2)) + log(—(1 + E(x))) + 28 (0)E(x) .

Proof: Consider the case whene> \". First write

log(x—y)zlog(:c)—i—/:o (1+ ! )du.

U Y—u

Integrating with respect witl?;;, and applying Funini’s theorem yields:
>~ /1
/log(a: — y)Pyp(dy) = log(x) + / (a + f(u)) du

in the case where > \*. Recall thatf andf are holomorphic functions ovét— ({0}U[A~, A*])
and satisfy system (69) (notice in particular that ¢f and1 + f never vanish). Using the first

equation of (69) implies that:

[ 108~ )y () = togta) ~ [t du (70)
Consider(u, f, f) = Llog(1+ cf) +log(1 +f) + uff. By a direct computation of the derivative,
we get:
g (), Fw) = f(—— b )+ F [ — uf) + £F
du > N 1+cf 1+f
= fu)f(u) .
Hence

o

/z N F(u)f(u) du = E log(1 + cf) + log(1 + f) + uff‘]

= — <% log(1 + cf(x)) + log(1 + f(z)) + l’f(“f)f(a:)) -

It remains to plug this identity into (70) to conclude. Thenesentation oF ~ can be established

similarly.
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