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Abstract—We consider a certain class of large random ma-
trices, composed of independent column vectors with zero mean
and different covariance matrices, and derive asymptotically tight
deterministic approximations of their moments. This random
matrix model arises in several wireless communication systems
of recent interest, such as distributed antenna systems or large
antenna arrays. Computing the linear minimum mean square
error (LMMSE) detector in such systems requires the inversion
of a large covariance matrix which becomes prohibitively complex
as the number of antennas and users grows. We apply the derived
moment results to the design of a low-complexity polynomial
expansion detector which approximates the matrix inverse by
a matrix polynomial and study its asymptotic performance.
Simulation results corroborate the analysis and evaluate the
performance for finite system dimensions.

I. INTRODUCTION

Distributed antenna systems and large antenna arrays have

recently attained significant research interest [1], [2]. Both

are considered as promising solutions to counter intercell

interference and to increase the spectral efficiency of current

cellular networks. Since these techniques rely in essence on

a significant increase of the number of coordinated antennas,

the computational complexity of the joint precoding/detection

of the transmitted/received signals grows. This calls for low-

complexity solutions. In this paper, we address this need by

assessing the performance of a polynomial expansion detector

[3] adapted to the following general channel model.

Consider a discrete-time N × K multiple-input multiple-

output (MIMO) channel with output vector y ∈ C
N

:

y = Hx+ n (1)

where x = [x1, . . . , xK ]T is the complex channel input vector

satisfying E

[

xxH
]

= IK , H = [h1 · · ·hK ] ∈ C
N×K

is the

random channel matrix and n ∼ CN (0, σ2IN ) is a vector of

additive noise. The jth column hj ∈ C
N

of H is modeled as

hj =
1√
K

Rjwj , j = 1, . . . ,K (2)

where Rj ∈ C
N×N

is a deterministic matrix and the elements

of wj ∈ C
N

are independent and identically distributed (i.i.d.)

random variables with zero mean, unit variance and finite

eighth moment. This channel model captures different types

of wireless communication systems and generalizes several

well-known channel models as discussed below:

Distributed Antenna Systems: Let Rj = diag (r1j , . . . , rNj)

with elements rij =
√
pj/d

β/2
ij , where dij is the (normalized)

distance between transmitter j and receive antenna i, β is the

path loss exponent and pj is the transmit power of transmitter

j. This model is suitable for distributed antenna systems [1]

where each transmitter sees a different path loss to each of the

receive antennas since d1j , . . . , dNj are different.

Large-scale MIMO: Assume a receiver equipped with a very

large antenna array (N ≫ 1) as in [2]. Unless the antenna

spacing is sufficiently large, it is likely that the received signals

at different receive antennas are correlated. Our model allows

to assign a different correlation matrix Rj to each transmitter.

MIMO Multiple Access Channel (MAC): Consider a MIMO

MAC from M transmitters equipped with Km, m = 1, . . . ,M ,

antennas to a receiver with N antennas. Each point-to-point

link has a different transmit and receive correlation matrix [4]:

y =

M
∑

m=1

Φ
1

2

R,mWmΦ
1

2

T,mxm + n

where ΦR,1, . . . ,ΦR,M ∈ C
N×N

are deterministic correlation

matrices, ΦT,1 ∈ C
K1×K1 , . . . ,ΦT,M ∈ C

KM×KM are

nonnegative diagonal matrices, W1 ∈ C
N×K1 , . . . ,WM ∈

C
N×KM are random channel matrices with i.i.d. entries with

zero mean and variance 1/K, and x1 ∈ C
K1 , . . . ,xM ∈ C

KM

are the transmit vectors. Let
∑M

m=1 Km = K. Setting Rj =

Φ
1/2
R,m[Φ

1/2
T,m]ii for j ∈ {1 +

∑m−1
l=1 Kl, . . . ,

∑m
l=1 Kl} and

i = j −∑m−1
l=1 Kl, we fall back to the model in (2).

In the sequel, we will study the asymptotic behavior of the

moments µn of the matrix B
△

= HHH, defined as

µn
△

=
1

N
trBn, n = 0, 1, 2, . . . (3)

under the assumption that N and K grow infinitely large at

the same speed. In particular, we will derive deterministic

approximations µn of µn , such that µn − µn → 0 almost

surely, for N,K → ∞. This result can be used, for example, to

compute low-complexity approximations of the matrix inverse

(B+σ2IN )−1. The computation of this matrix arises in many

practical applications, such as for linear multiuser detectors

and beamforming strategies. We will focus exemplary on the

linear minimum mean square error (LMMSE) detector.



The LMMSE estimate x̂ of x, assuming perfect knowledge

of H at the receiver, is given as [5]

x̂ = HH(B+ σ2IN )−1y. (4)

The computational complexity of this estimate is of order

O(r2) [6], where r = min(N,K). A reduced complexity

estimate can be obtained by approximating the matrix inverse

in (4) by the following matrix polynomial [3]

(B+ σ2IN )−1 ≈
L−1
∑

l=0

wlB
l (5)

for some coefficients wl, where the filter rank L ≤ r is chosen

according to the allowable complexity. For a given transmitter

k, the above polynomial expansion detector can be seen as

a projection of y on the Lth Krylov subspace associated

to the pair (B,hk), i.e., the subspace of C
N

spanned by

the vectors {hk,Bhk, . . . ,B
L−1hk}, and a weighting of the

joint projections by the coefficients wl. Depending on L,

the polynomial expansion detector achieves a performance

between the matched filter (L = 1) and the LMMSE detector

(L = r) [3] and allows, consequently, to trade-off performance

for complexity. Moreover, (5) allows for an efficient multistage

implementation [3], [7], [6], where each stage l consists of a

matched filter HH and subsequent “re-spreading” by the matrix

H. In [8], it was shown that the signal-to-interference-plus-

noise ratio (SINR) at the filter output converges in certain

cases exponentially in the filter rank L to the SINR output of

the LMMSE detector. Thus, L does not need to scale with the

system size to achieve close to optimal performance [9].

The optimal weight vector w = [w0 · · ·wL−1]
T

can be

chosen to minimize the mean square error of the estimated

vector x̂, i.e.,

w = arg min
u=[u0,...,uL−1]T

E





∥

∥

∥

∥

∥

x−HH

L−1
∑

l=0

ulB
ly

∥

∥

∥

∥

∥

2

2



 . (6)

The solution to this optimization problem is given as [3]

w = Φ−1
ϕ (7)

where Φ ∈ R
L×L
+ and ϕ ∈ R

L
+ are defined as

[Φ]ij = µi+j + σ2µi+j−1 (8)

[ϕ]i = µi.

The computation of the weight vector w requires the calcu-

lation of the moments µ1, . . . , µ2L which is still computational

expensive for large L. However, under the assumption that the

dimensions of H grow infinitely large, it was shown for several

random matrix models (e.g. [7], [9], [10]) that the moments µn

can be closely approximated by their asymptotic counterparts

µ̄n. These are independent of a particular realization of H

and can be calculated based on the statistical properties of the

channel matrix. If these properties change on a much slower

timescale than the fast-fading channel fluctuations, the weight

vector w can be precomputed using µ̄n instead of µn. Thus,

the detector complexity depends only on the complexity of the

projection on the Krylov subspace which is of order O(r) [6].

Multistage or reduced-rank multiuser detectors were mainly

considered in the context of code-division multiple-access

(CDMA) systems as low-complexity solutions to the joint

detection of a large number of user terminals with long

spreading sequences [3]. The asymptotic (universal) weight

design was first studied in [7] for the equal transmit power case

and then extended to more involved models, such as different

transmit powers [9], [?], multi-path fading [10] and random

unitary spreading sequences [11]. These results were then put

on a common ground in [6] which compares different types

of linear multistage detectors in terms of their complexity and

asymptotic performance. Recently, also multistage detectors

for asynchronous CDMA systems were considered in [12].

The asymptotic results in the above works are based on

the almost sure (a.s.) convergence of the empirical spectral

distribution (e.s.d.) of the matrix B to a compactly supported

limit distribution. This limit distribution is in general given

implicitly by its Stieltjes transform which can be computed

based on the statistical properties of the underlying random

matrix model. The asymptotic moments are then obtained by

writing the Stieltjes transform as a moment generating function

[13, Theorem 2.3] and relying on combinatorial arguments

[10] or free probability theory [11].

The technique used in this work is different in two aspects.

First, we do not require the existence of a limiting eigenvalue

distribution of the matrix B. Instead, we provide for each pair

(N,K) a deterministic approximation µn of the moments µn

which becomes arbitrarily tight as N,K → ∞. Second, the

moments are derived through iterated differentiation of the

Stieltjes transform and can be computed by simple recursive

equations. This is in contrast to [10] which requires an

exhaustive search over complicated sets of indices. Hence, our

results are more practical from an implementation perspective.

Moreover, the asymptotic moments of the random matrix

model (2) have not been considered in the literature before.

The paper is structured as follows: Section II contains defi-

nitions and related results. The asymptotic moments of B are

derived in Section III and the performance of the polynomial

expansion receiver is studied in Section IV. Numerical results

are provided in Section V. Section VI concludes the paper.

II. RELATED RESULTS

We need the following definitions and related results. De-

note by “⇒” and “
a.s.−−→” weak and almost sure convergence.

Definition 1 (Empirical spectral distribution): Let A ∈
C

N×N
be a Hermitian matrix with eigenvalues λ1, . . . , λN .

Denote FA the e.s.d. of A, defined as

FA(x) =
1

N

N
∑

i=1

✶(λi ≤ x).

Definition 2 (Stieltjes transform): Let F be a real measur-

able function over R with support Supp (F ). For z ∈ C \
Supp (F ), the Stieltjes transform mF (z) of F is defined as

mF (z) =

∫

∞

−∞

1

λ− z
dF (λ).



Denote by S the class of functions f analytic over C\R+, such

that, for z ∈ C+, f ∈ C+, zf ∈ C+ and limy→∞ −iyf(iy) <
∞. Such functions are known to be Stieltjes transforms of

finite measures supported by R+ [13, Theorem 2.2].

Theorem 1 ([14, Theorem 1]): Let D ∈ C
N×N

be a Her-

mitian non-negative definite matrix and assume that D and

the matrices Rj , j = 1, . . . ,K, have uniformly bounded

spectral norms (with respect to N ). Let N,K → ∞, such that

0 < lim inf K
N ≤ lim sup K

N < ∞. Then, for any z ∈ C \R+,

1

N
trD (B− zIN )

−1 − 1

N
trDT(z)

a.s.−−→ 0

where T(z) ∈ C
N×N

is defined as

T(z)
△

=





1

K

K
∑

j=1

RjR
H

j

1 + δj(z)
− zIN





−1

(9)

and the following set of K implicit equations

δj(z) =
1

K
trRjR

H

j T(z), j = 1, . . . ,K

admits a unique solution (δ1(z), . . . , δK(z)) ∈ SK . Moreover,

denote by F the distribution function whose Stieltjes transform

is given by m(z) = 1
N trT(z). Then, almost surely,

FB − F ⇒ 0.

III. ASYMPTOTIC MOMENTS

In this section, we state our main results. Outlines of the

proofs of Theorems 2 and 3 are provided in the appendix.

Theorem 2: Let F be the distribution function as defined in

Theorem 1 and denote by µ0, µ1, . . . the successive moments

of F , defined as µn
△

=
∫

∞

0
λndF (λ). These moments can be

calculated as

µn =
(−1)n

n!

1

N
trTn

where Tn is defined recursively by the following set of

equations for n ≥ 0:

Tn+1 =

n
∑

i=0

i
∑

j=0

(

n

i

)(

i

j

)

Tn−iQi−j+1Tj

Qn+1 =
n+ 1

K

K
∑

k=1

fk,nRkR
H

k

fk,n+1 =

n
∑

i=0

i
∑

j=0

(

n

i

)(

i

j

)

(n− i+ 1)fk,jfk,i−jδk,n−i

δk,n+1 =
1

K
trRkR

H

kTn+1

where T0 = IN , fk,0 = −1 and δk,0 = 1
K trRkR

H

k ∀k.

Remark 3.1: While Theorem 2 allows to compute the mo-

ments µn of F , it does not imply the a.s. convergence of

µn and µn in general. Theorem 3 provides some sufficient

conditions for which this convergence holds.

Remark 3.2: Although difficult to show analytically, one

can verify numerically that Theorem 2 coincides with [10,

Theorem 1] for Rj = diag(r1j , . . . , rNj), j = 1, . . . ,K.

If the matrices Rj are drawn from a finite set of matrices,

we get the following stronger result:

Theorem 3: For fixed M > 0, let R = {R̃1, . . . , R̃M} be

a set of complex N × N matrices and let D ∈ C
N×N

be a

non-negative definite Hermitian matrix. Assume that D and

R̃m, m = 1, . . . ,M , have uniformly bounded spectral norms

(with respect to N ). Let Rj ∈ R for j = 1, . . . ,K. Assume

N,K → ∞, such that 0 < lim inf K
N ≤ lim sup K

N < ∞.

Then, for n = 0, 1, 2, . . . ,

1

N
trDBn − (−1)n

n!

1

N
trDTn

a.s.−−→ 0

where Tn is given by Theorem 2. This implies in particular,

µn − µn
a.s.−−→ 0.

Loosely speaking, Theorem 1 states that, for large matrix

dimensions, the e.s.d. FB of the matrix B can be closely

approximated by a deterministic distribution function F . Thus,

the optimal weighting vector w can be approximated by

replacing the moments µn of FB in (8) by the moments µn

of F . Using the result of Theorem 2, we can compute an

approximate weight vector w = [w0 . . . wL−1] as

w = Φ
−1

ϕ (10)

where Φ ∈ R
L×L
+ and ϕ ∈ R

L
+ are defined by

[

Φ
]

ij
=µi+j + σ2µi+j−1 (11)

[ϕ]i =µi.

IV. ASYMPTOTIC PERFORMANCE ANALYSIS

We consider now the asymptotic performance of the polyno-

mial expansion receiver in terms of the received SINR γk for

a given transmitter k. With weight vector w, the kth element

x̂k of the estimated vector x̂ reads

x̂k = hH

k

L−1
∑

l=0

wlB
l (Hx+ n) . (12)

One can easily show that the associated SINR γk can be

expressed as [6, Eq. (18)]

γk =
wT

ϕkϕ
T

kw

wT
(

Φk −ϕkϕ
T

k

)

w
(13)

where Φk ∈ R
L×L
+ and ϕk ∈ R

L
+ are given as

[Φk]ij =
[

Bi+j
]

kk
+ σ2

[

Bi+j−1
]

kk
(14)

[ϕk]i =
[

Bi
]

kk
.

The next theorem provides a tight deterministic approximation

of the terms [Bn]kk = hH

kB
n−1hk in the asymptotic limit.



Theorem 4: Under the assumptions of Theorem 3, the fol-

lowing convergence holds:

[Bn]kk − µk
n

a.s.−−→ 0

where

µk
n =

n−1
∑

i=0

µk
n−i−1

(−1)i

i!

1

K
trRkR

H

kTi, n ≥ 1

and Tn is given by Theorem 2. The initial values of the

recursion are µk
0 = 1 and T0 = IN .

Proof of Theorem 4: The proof follows the same steps

as [6, Theorem 1] and will not be given here.

Replacing [Bn]kk in (14) by µk
n and w in (13) by w, we

can obtain a deterministic approximation of the SINR γk at

the output of the polynomial expansion receiver.

V. NUMERICAL RESULTS

Consider a MAC from K = 40 single-antenna transmitters

to a receiver with N = 100 antennas. We use an extended

version of Jake’s model [4] for the generation of the matrices

Rj . Let Rj = Θ
1/2
j and Θj ∈ C

N×N
be defined as

[Θj ]kl =
1

φj
max − φj

min

∫ φj
max

φj

min

exp

(

2πi

λ
dkl cos(x)

)

dx

where dkl = 2λ(k−l) and φj
min, φj

max are drawn independently

from the intervals [−π, 0] and [0, π], respectively. The interval

[φj
min, φ

j
max] can be seen as the angular spread of the signal

from transmitter j, λ is the wave length, and dkl is the spacing

between the receive antennas k and l. We assume Rayleigh

fading channels, i.e., wj in (2) are independent standard

complex Gaussian vectors. The covariance matrices Θj are

chosen at random at the beginning and then kept fixed while

we average over many realizations of the channel matrix H.

We denote by SNR = 1/σ2 the transmit signal-to-noise ratio.

Fig. 1 shows the average received SINR E[γk] of a randomly

chosen transmitter as a function of the SNR for the matched

filter, the LMMSE detector and the polynomial expansion

detector with approximate weights for L = {2, 3, 6}. Markers

correspond to simulation results and solid lines to the deter-

ministic SINR approximations. The error bars indicate one

standard deviation of γk in each direction. Similar to [15], the

asymptotic SINR of transmitter k for the LMMSE detector

can be easily shown to satisfy

γLMMSE
k =

1

K
trRkR

H

kT(−1/SNR)

where T(z) is given by Theorem 1. We observe a good fit

between the deterministic approximations and the simulation

results for the average SINR. However, the standard deviation

of the SINR increases with L. This is because the higher order

moments converge slower to their deterministic approxima-

tions and exhibit therefore stronger fluctuations. Nevertheless,

the average SINR performance of the polynomial expansion

detector with L = 6 is already close to the performance of the

LMMSE detector.
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Fig. 1. Average received SINR versus SNR at the output of the matched filter,
LMMSE detector and the polynomial expansion detector with approximate
weights for different values of L. Markers correspond to simulation results,
solid lines to the deterministic SINR approximations. Error bars indicate one
standard deviation in each direction.
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Fig. 2. Average theoretical bit error rate versus SNR for the matched filter,
LMMSE detector and the polynomial expansion detector with approximate
weights for different values of L.

Fig. 2 depicts the theoretical average bit error rate (BER)

over SNR for the different detectors. Assuming binary phase-

shift keying (BPSK) modulation and Gaussian interference,

the BER is given as E[Q(
√
γk)] where Q(x) is the Gaussian

tail function. We can clearly see a performance increase of

the polynomial expansion detector with L, although the BER

saturates at high SNR. Although not explicitly shown here,

one can even observe a performance decrease for large values

of L. As mentioned before, this is due to the low accuracy of

the approximate weights caused by a slow convergence of the

higher-order moments to their deterministic approximations.



VI. CONCLUSION

We have derived asymptotically tight deterministic approx-

imations of the moments of a certain class of large random

matrices, useful for the study of distributed antenna systems

and large antenna arrays. We have applied these moment

results to the design of a polynomial expansion detector which

significantly reduces the computational complexity of mul-

tiuser detection compared to the LMMSE detector. Moreover,

we have derived an explicit expression of the asymptotic SINR

at the output of this detector and verified its accuracy and

performance for finite system dimensions by simulations.

APPENDIX

Outline of the proof of Theorem 2: From Definition 2, it

is easy to see that the moments µn of the distribution function

F can be obtained through successive differentiation of the

function 1
zm(− 1

z ), i.e.,

µn =
(−1)n

n!

dn

dzn

(

1

z
m

(

−1

z

))∣

∣

∣

∣

z=0

=
(−1)n

n!

∫

dn

dzn

(

1

zλ+ 1

)

dF (λ)

∣

∣

∣

∣

z=0

=

∫

λndF (λ).

Consider now the function η(z) = 1
zm(− 1

z ) for z ≥ 0 and

denote by ηn(z) its nth derivative. From Theorem 1, we have

η(z) =
1

N
trT0(z)

where

T0(z)
△

=



z
1

K

K
∑

j=1

RjR
H

j

1 + zδj,0(z)
+ IN





−1

and (δ1,0(z), . . . , δK,0(z)) ∈ R
K
+ is the unique solution to the

K implicit equations:

δj,0(z) =
1

K
trRjR

H

j T0(z), j = 1, . . . ,K.

Denoting Tn(z) = dn
T0(z)
dzn , we have ηn(z) = 1

N trTn(z).
Explicit expressions of Tn(z) can be found by re-writing

T0(z) with the help of some auxilliary functions and repeated

use of the Leibniz-rule for the nth derivative of the product

of two functions, i.e.,
dn(u(x)v(x))

dxn =
∑n

i=0

(

n
i

)dn−iu(x)
dxn−i

div(x)
dxi .

The resulting set of implicit equations simplifies to a system of

recursive equations for z = 0. One can easily see that T0(0) =
T0 = IN and, consequently, δj,0(0) = δj,0 = 1

K trRjR
H

j ∀j.

Outline of the proof of Theorem 3: Both
1
N trD (B− zIN )

−1
and 1

N trDT(z) as defined in Theorem 1

are Stieltjes transforms of finite measures which we denote by

π and π. Theorem 1 implies that, almost surely, π − π ⇒ 0.

Similar to the proof of Theorem 2 the moments of π and π
can be respectively expressed as

∫

λnπ(dλ) =
1

N
trDBn

and
∫

λnπ(dλ) =
(−1)n

n!

1

N
trDTn.

The a.s. weak convergence of π and π implies by [16, Theorem

25.8 (ii)] that
∫

f(λ)π(dλ) −
∫

f(λ)π(dλ)
a.s.−−→ 0, for any

bounded continuous function f(λ). Relying on [17], one can

prove that the support of π is almost surely compact since D

has bounded spectral norm and the spectral norm of B can be

shown to be almost surely bounded. Following similar steps

as in [4, Proof of Theorem 2, Part B], one can also show that

π has compact support. Thus, we can relax the assumption of

f(λ) to be bounded and choose f(λ) = λn to establish the

a.s. convergence of the moments of π and π.
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[7] R. R. Müller and S. Verdú, “Design and Analysis of Low-complexity In-
terference Mitigation on Vector Channels,” IEEE J. Sel. Areas Commun.,
vol. 19, no. 8, pp. 1429–1441, Aug. 2001.

[8] P. Loubaton and W. Hachem, “Asymptotic Analysis of Reduced Rank
Wiener Filters,” in Proc. of Information Theory Workshop (ITW’03),
Paris, France, Mar. 31 - Apr. 4, 2003, pp. 328–331.

[9] M. L. Honig and W. Xiao, “Performance of Reduced-rank Linear
Interference Suppression,” IEEE Trans. Inf. Theory, vol. 47, no. 5, pp.
1928–1946, Jul. 2001.

[10] L. Li, A. M. Tulino, and S. Verdú, “Design of Reduced-rank MMSE
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