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Gif-sur-Yvette, France

Mérouane Debbah

Alcatel-Lucent Chair on Flexible Radio, Supélec
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ABSTRACT

We study a multi-cell frequency-selective fading uplink chan-

nel from K user terminals (UTs) to B base stations (BSs).

The BSs, assumed to be oblivious of the applied encoding

scheme, compress and forward their observations to a cen-

tral station (CS) via capacity limited backhaul links. The CS

jointly decodes the messages from all UTs. Since we assume

no prior channel state information, the channel needs to be

estimated during its coherence time. Based on a lower bound

of the ergodic mutual information, we determine the optimal

fraction of the coherence time used for channel training. We

then study how the optimal training length is impacted by the

backhaul capacity. Our analysis is based on large random ma-

trix theory but shown by simulations to be tight for even small

system dimensions.

Index Terms— Coordinated Multi-Point (CoMP), net-

work MIMO, channel estimation, random matrix theory

1. INTRODUCTION

Network MIMO or multi-cell processing are seen as promis-

ing techniques to further increase the interference limited per-

formance of today’s cellular networks. In essence, a network

MIMO system consists of multiple base stations (BSs) which

are connected via high speed backhaul links to a central sta-

tion (CS) which jointly processes their respective data. How-

ever, there are two fundamental limitations (among others) re-

lated to multi-cell processing: limited backhaul capacity and

imperfect channel state information. For a detailed overview

of this topic we refer to the survey [1] and references therein.

In this paper, we focus on both of these limitations,

assuming that: (i) The BSs act as oblivious relays which

forward compressed versions of their received signals to the

CS via orthogonal error- and delay-free backhaul links, each

of fixed capacity C bits/channel use, (ii) the CS estimates all

channels based on pilot tones sent by the UTs, and (iii) the CS

jointly processes the received signals from all BSs. We then

consider a lower bound of the normalized ergodic mutual

information of this channel, called the net ergodic achiev-

able rate Rnet(τ). For a given channel coherence time T , we

attempt to find the optimal length τ∗ of the pilot sequences

which maximizes Rnet(τ). As this optimization problem is in
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Fig. 1. System model for M = 2 antennas per BS.

general intractable, we study a deterministic approximation

Rnet(τ) of Rnet(τ), based on large random matrix theory.

We then show that optimizing Rnet(τ) instead of Rnet(τ) is

asymptotically optimal but provides accurate approximations

for even small system dimensions. In addition, we study

the impact of the backhaul capacity on the optimal channel

training length. Since we assume that the CS estimates all

channels based on the compressed observations from the BSs,

the estimates are impaired by thermal noise and quantization

errors. As a result, increasing the backhaul capacity leads to

improved channel estimates and, hence, smaller values of τ∗.

2. SYSTEM MODEL

We consider a multi-cell frequency-selective fading uplink

channel from K single-antenna UTs to B BSs with M anten-

nas each, as schematically shown in Fig. 1. We assume an or-

thogonal frequency-division multiplexing (OFDM) transmis-

sion scheme over L sub-carriers. The stacked receive vector

y(ℓ) = [y1(ℓ), . . . , yBM (ℓ)]
T ∈ C

BM
of all BSs on the ℓth

sub-carrier at a given time reads

y(ℓ) = H(ℓ)x(ℓ) + n(ℓ), ℓ = 1, . . . , L (1)

where x(ℓ) = [x1(ℓ), . . . , xK(ℓ)]
T ∈ C

K
is the vec-

tor of the transmitted signals of all UTs on sub-carrier ℓ,
n(ℓ) ∼ CN (0, IBM ) is a noise vector whose elements are



independent centered circular symmetric complex Gaussian

random variables with unit variance, and H(ℓ) ∈ C
BM×K

is the aggregated channel matrix from all UTs to all BSs

on the ℓth sub-carrier. We consider a discrete-time block-

fading channel model where the channel remains constant

for a coherence block of T channel uses and then changes

randomly from one block to the other. The elements of the

matrix H(ℓ) = {hij(ℓ)} are assumed to be independent and

modeled as hij(ℓ) ∼ CN (0, vij). The matrix V = {vij}
models the different path losses between the UTs and the

BS-antennas and will be referred to as the variance profile of

the channel matrix H(l). Since we assume no CSI at the UTs,

we assume that each UT k sends its data by the L Gaussian

inputs xk(ℓ) ∼ CN (0, P/L), i.i.d. over ℓ and k.

2.1. Compression at the BSs

The BSs are assumed to be oblivious to the applied encoding

scheme of the UTs and forward compressed versions y′i(ℓ)
of their received signal sequences yi(ℓ) to the CS via delay-

and error-free backhaul links, each of capacity C bits/channel

use. Since we assume that the BSs and the CS have no prior

knowledge of the instantaneous channel realizations, we con-

sider a simple, sub-optimal compression scheme which nei-

ther exploits correlations between the received signals at dif-

ferent antennas nor adapts the employed quantization code-

book to the actual channel realization. Thus, a single quanti-

zation codebook for the compression of each sequence yi(ℓ)
is used. Assuming further that each BS uses C/(ML) bits

for the compression of each received complex symbol per an-

tenna per sub-carrier, the quantization noise variance σ2
i (ℓ)

can be upper-bounded by [2]

σ2
i = σ2

i (ℓ) =
1 + P

L

∑K

j=1 vij

2
C

ML − 1
∀ℓ . (2)

2.2. Channel Training

Similar to [3], each channel coherence block of length T is

split into a phase for channel training and a phase for data

transmission. During the training phase of length τ , all K
UTs broadcast orthogonal sequences of pilot tones of equal

power P/L on all sub-carriers. The orthogonality of the train-

ing sequences imposes τ ≥ K. We assume that the CS com-

putes the minimum mean square error (MMSE) estimate of

the channels hij(ℓ) from all UTs to all BSs. This allows us

to decompose the channel hij(ℓ) into the estimate ĥij(ℓ) and

the independent estimation error h̃ij(ℓ), such that

hij(ℓ) = ĥij(ℓ) + h̃ij(ℓ) . (3)

The variance of the estimated channel v̂ij(τ) and the estima-

tion error ṽij(τ) are independent of ℓ and given by [2]

v̂ij(τ) =
τ P

L
v2ij

τ P
L
vij + 1 + σ2

i

, ṽij(τ) =
vij(1 + σ2

i )

τ P
L
vij + 1 + σ2

i

.

2.3. Data Transmission

In each channel coherence block, the UTs broadcast their

data simultaneously during T − τ channel uses. The CS

jointly decodes the messages from all UTs, leveraging the

previously computed channel estimate Ĥ(ℓ). With the knowl-

edge of Ĥ(ℓ), the CS “sees” in its received signal y′(ℓ) =

[y′1(ℓ), . . . , y
′

BM (ℓ)]
T

the useful term Ĥ(ℓ)x(l) and the over-

all noise term z(ℓ) = H̃(ℓ)x(ℓ) + n(ℓ) + q(ℓ), i.e.,

y′(ℓ) = Ĥ(ℓ)x(ℓ) + z(ℓ) (4)

where the quantization noise vector q(ℓ) has mutually in-

dependent elements qi(ℓ) ∼ CN (0, σ2
i ), i = 1, . . . , BM .

Since the statistical distributions of all sub-carriers, signals

and noise are i.i.d. with respect to the index ℓ, we will here-

after omit the dependence on ℓ and consider a single isolated

sub-carrier.

3. NET ERGODIC ACHIEVABLE RATE

The capacity of the channel (4) is not explicitly known. We

consider therefore an achievable lower bound of the normal-

ized ergodic mutual information 1
BM

I
(

y′;x|Ĥ
)

, referred to

hereafter as the ergodic achievable rate R(τ). This lower

bound is in essence obtained by overestimating the detrimen-

tal effect of the estimation error, treating the total noise term z

as independent complex Gaussian noise with covariance ma-

trix Kz(τ) = E

[

zzH
]

∈ R
BM×BM
+ , given as

Kz(τ) = diag
(

1 + σ2
i +

P

L

∑K

j=1
ṽij(τ)

)BM

i=1
. (5)

Thus, the ergodic achievable rate can be written as [4, 3]

R(τ) =
1

BM
EĤ

[

log

∣

∣

∣

∣

IBM +
P

L
H(τ)H(τ)H

∣

∣

∣

∣

]

(6)

where H(τ) = K
−

1

2

z (τ)Ĥ is the effective channel matrix.

Taking into account that only a fraction (1− τ/T ) of the total

coherence block length can be used for data transmission, we

wish to find the optimal training length τ∗, maximizing the

net ergodic achievable rate

Rnet(τ)
△

=
(

1−
τ

T

)

R(τ) . (7)

Since an explicit expression of R(τ) for finite dimensions of

the channel matrix H(τ) seems intractable, we resort to an

approximation based on the theory of large random matrices.

3.1. Deterministic Equivalent

In this section, we present a deterministic equivalent ap-

proximation R(τ) of R(τ) in the large system limit, i.e., for

K,BM,L → ∞ at the same speed. Denote N = BM the



product of the number of BSs and the number of antennas

per BS. The notation K → ∞ will refer in the sequel to the

following two conditions on K, N and L:

0 < lim inf
K→∞

N

K
≤ lim sup

K→∞

N

K
< ∞ (8)

0 < lim inf
K→∞

L

K
≤ lim sup

K→∞

L

K
< ∞ . (9)

Define V(τ) = K−1
z (τ)V̂(τ) the variance profile of the ef-

fective channel H(τ) with elements

vij(τ) =
v̂ij(τ)

1 + σ2
i +

P
L

∑K

ℓ=1 ṽiℓ(τ)
(10)

and consider the following N ×N matrices

Dj(τ) = diag (v1j(τ), . . . , vNj(τ)) , j = 1, . . . ,K. (11)

We are now in position to state the deterministic approxima-

tion R(τ) of R(τ) based on a direct application of [5, Theo-

rem 2.3] to our channel model.

Theorem 1 (Deterministic Equivalent) Assume that K, N
and L satisfy (8)–(9) and 0 ≤ vij(τ) < vmax < ∞∀i, j.

Then:

(i) The following implicit equation:

T(z) =

(

1

K

∑K

j=1

Dj(τ)

1 + 1
K

trDj(τ)T(z)
− zIN

)−1

admits a unique solution T(z) = diag (t1(z), . . . , tN (z))
such that the ti(z) are Stieltjes transforms of probabil-

ity measures over R+ (see e.g. [5, Proposition 2.1]).

(ii) Let P > 0. Denote TP = T(− L
KP

), define δj =
1
K

trDj(τ)TP , j = 1, . . . ,K, and let

R(τ) =
1

N

K
∑

j=1

log (1 + δj)−
1

N

K
∑

j=1

δj
1 + δj

−
1

N
log det

(

L

KP
TP

)

.

Then, the following holds true:

R(τ)−R(τ) −−−−→
K→∞

0 .

3.2. Optimization of the training length τ

In order to find the optimal training length τ∗ for a given

coherence block length T , we wish to maximize Rnet(τ) as

given by (7). As this optimization problem is intractable for

finite channel dimensions, we pursue the following approach:

1. We find τ∗ maximizing the deterministic approxima-

tion Rnet(τ) =
(

1− τ
T

)

R(τ).

2. We show that Rnet(τ
∗) − Rnet(τ

∗) −−−−→
K→∞

0 and τ∗ −

τ∗ −−−−→
K→∞

0.

3. We verify by simulations that τ∗ is very close to τ∗ for

even small values of K, N and L.

In the following, Theorem 2 provides an explicit expression of

the derivative of R(τ) while Theorem 3 establishes concavity

of Rnet(τ) for matrices with a doubly-regular variance profile.

Theorem 4 shows that optimizing Rnet(τ) instead of Rnet(τ) is

asymptotically optimal and provides a simple way to compute

τ∗. All proofs can be found in [2].

Theorem 2 (Derivative) Under the same conditions as for

Theorem 1, the first derivative of R(τ) permits the explicit

expression

R
′

(τ) =
1

N

K
∑

j=1

1
K

trD′

j(τ)TP

1 + 1
K

trDj(τ)TP

(12)

where TP = T(− L
KP

) is given by Theorem 1 (i) and

D′

j(τ) =
dDj(τ)

d τ
, j = 1, . . . ,K. Moreover, for any P, τ > 0,

R(τ) is strictly increasing, i.e., R
′

(τ) > 0.

Theorem 3 (Concavity) Let P, τ > 0. Assume that N = K
and that V(τ) is a doubly regular matrix which satisfies the

following regularity condition:

K(τ) =
1

N

N
∑

i=1

vik(τ) =
1

N

N
∑

j=1

vℓj(τ) ∀k, ℓ . (13)

Then, Rnet(τ) is a strictly concave function, i.e., R
′′

net(τ) < 0.

Remark 3.1 We conjecture that Theorem 3 also holds for non

doubly regular variance profiles V(τ).

Theorem 4 (Convergence) Let τ∗ = argmaxτ∈[0,T ] Rnet(τ)

and τ∗ = argmaxτ∈[0,T ] Rnet(τ). Then, under the same con-

ditions as for Theorem 1, the following holds true:

(i)

Rnet(τ
∗)−Rnet(τ

∗) −−−−→
K→∞

0 . (14)

(ii) Further assume that V(τ) is a doubly regular matrix

which satisfies the conditions of Theorem 3. Then,

τ∗ − τ∗ −−−−→
K→∞

0 (15)

where τ∗ is given as the solution to

R
′

net(τ) =
(

1−
τ

T

)

R
′

(τ)−
1

T
R(τ) = 0 (16)

with R(τ) and R
′

(τ) given by Theorem 1 (ii) and The-

orem 2, respectively.
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4. NUMERICAL RESULTS

In order to validate the analysis in the preceding sections, we

assume B = K = 3, M = 2 and consider a randomly cho-

sen variance profile V which is not doubly-regular. We then

assume V fixed and average over many independent realiza-

tions of the channel matrix H. The transmit signal-to-noise-

ratio is defined as SNR = E

[

|xi(ℓ)|
2
]

/E
[

|ni(ℓ)|
2
]

= P/L.

Unless otherwise stated, we assume T = 1000 and L = 1.

In Fig. 2, we show Rnet(τ) and Rnet(τ) as a function of the

training length τ for different values of C = {1, 5, 10}. This

plot validates Theorem 3 and the conjecture in Remark 3.1 as

Rnet(τ) is obviously a concave function. Since the curves of

Rnet(τ) and Rnet(τ) match closely, a good approximation of

τ∗ can be found by maximizing Rnet(τ) instead of Rnet(τ).
The validity of Theorem 4 is demonstrated in Fig. 3 which

shows the optimal training length τ∗, found by an exhaustive

search based on Monte Carlo simulations, and the training

length τ∗ which maximizes Rnet(τ) as a function of the SNR

for C = 1 bits/channel use and T = 100. The differences

between both values are mainly due to the exhaustive search

over a necessarily discrete set of values of τ .

Fig. 4 shows the dependence of the optimal training length

τ∗ on the backhaul capacity C for a fixed SNR = 10 dB. One

can see that τ∗ is a decreasing function of C which converges

quickly to particular value corresponding to infinite capac-

ity backhaul links. The reason for this is the following. The

CS estimates the channel coefficients based on the quantized

training signals received by the BSs. The channel estimate

is hence impaired by thermal noise and quantization errors.

Therefore, increasing C results in better channel estimates

and reduces the necessary training length.
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