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Abstract—We consider a multicell MIMO uplink channel
where each base station (BS) is equipped with a large number
of antennas N . The BSs are assumed to estimate their channels
based on pilot sequences sent by the user terminals (UTs). Recent
work has shown that, as N → ∞, (i) the simplest form of
user detection, i.e., the matched filter (MF), becomes optimal,
(ii) the transmit power per UT can be made arbitrarily small,
(iii) the system performance is limited by pilot contamination.
The aim of this paper is to assess to which extent the above
conclusions hold true for large, but finite N . In particular, we
derive how many antennas per UT are needed to achieve η %
of the ultimate performance. We then study how much can be
gained through more sophisticated minimum-mean-square-error
(MMSE) detection and how many more antennas are needed with
the MF to achieve the same performance. Our analysis relies on
novel results from random matrix theory which allow us to derive
tight approximations of achievable rates with a class of linear
receivers.

I. INTRODUCTION

As wireless networks are inherently limited by their own

interference, a lot of research focuses on interference reduction

techniques, such as multiuser MIMO [1], interference align-

ment [2] or multicell processing [3]. Although these techniques

can lead to considerable performance gains, it is unlikely

that they will be able to carry the exponentially growing

wireless data traffic. Due to this reason, a significant network

densification, i.e., increasing the number of antennas per unit

area, seems inevitable. One way of densifying the network

consists in cell-size shrinking, such as the deployment of

femto or small cells [4], which comes at the cost of additional

equipment and increased interference. Another, seemingly

simpler, but also less explored option is the use of very large

antennas arrays at the base stations (BSs) [5]. However, it is

well known that accurate channel state information (CSI) must

be acquired to reap the benefits of additional antennas. This

poses, in particular in fast fading channels, a challenge as the

number of antennas grows [6]. Thus, massive MIMO is only

feasible in time-division duplex (TDD) systems where channel

reciprocity can be exploited. Here, the channels are estimated

based on orthogonal pilot tones which are sent by the user

terminals (UTs). In such systems, additional antennas do not

increase the training overhead and, therefore, “always help”

[7]. Nevertheless, for a given coherence time, the number of

orthogonal pilot sequences is limited and they must be reused

in adjacent cells. This leads to channel estimation impairments

known as “pilot contamination” [8].

The use of massively many antennas was advocated for

the first time in [5] and has since then received growing

research interest [9], [10], [11]. It is particularly intriguing

that with an infinite number of antennas, the simplest forms of

user detection and precoding, i.e., matched filtering (MF) and

eigenbeamforming, become optimal, the transmit power can be

made arbitrarily small, and the performance is ultimately lim-

ited by pilot contamination. Therefore, several works address

the problem of how the negative impact of pilot contamination

can be reduced [9], [8].

But what is the difference between massive MIMO and

classical MIMO techniques whose benefits are well-known

since more than a decade [12]? This paper tries to give

an answer to this question. We first provide a definition of

massive MIMO as an operating condition of cellular systems

where multiuser interference and noise are small compared to

pilot contamination. Whether or not this condition is satisfied

depends in general on several factors: the number of BS

antennas N , the number of UTs per degree of freedom (DoF)

offered by the channel (we denote by DoF the rank of the

antenna correlation matrix which might be smaller than N ),

the signal-to-noise ratio (SNR) and the path loss. We then

study if more antennas can compensate for suboptimal user

detection, i.e., how many more antennas does the MF need

to achieve minimum-mean-square-error (MMSE) detection

performance. Interestingly, both detectors achieve the same

performance with an unlimited number of BS antennas.

The technical contributions of this work are summarized

as follows: We consider a very general channel model which

allows us to assign a different path loss and receive antenna

correlation matrix to each channel from a UT to a BS. As-

suming a large system limit where the number of BS antennas

N and the number of UTs per cell K grow infinitely large at

the same speed, we derive asymptotically tight approximations

of ergodic achievable rates with a class of linear receivers,

accounting explicitly for channel training and pilot contamina-

tion. Simulations suggest that our approximations are valid for

even small N and K. Our analysis is different from [5] which

assumes that K/N → 0. However, we obtain their results as a

special case. Although we do not fully exploit the generality

of the channel model in the current paper, it enables future

studies on massive MIMO under more realistic channel models

with the goal of analyzing the impact of antenna correlation,

spacing and aperture. Lastly, the techniques developed in this

work can be directly applied to the downlink [13].



II. SYSTEM MODEL

Consider a multi-cellular system consisting of L > 1 cells

with one BS and K UTs in each cell. Each BSs is equipped

with N antennas, the UTs have a single antenna. The focus of

this paper is on the uplink without any form of BS cooperation.

The received baseband signal vector yj ∈ C
N

at BS j at a

given time reads

yj =
√
ρ

L∑

l=1

Hjlxl + nj (1)

where Hjl ∈ C
N×K

is the channel matrix from the UTs

in cell l to BS j, xl = [xl1 · · ·xlK ]T ∼ CN (0, IK) is the

message-bearing transmit vector from the UTs in cell l, nj ∼
CN (0, IN ) is a noise vector and ρ > 0 denotes the transmit

SNR. We model the kth column vector hjlk ∈ C
N

of the

matrix Hjl as

hjlk = R̃jlkwjlk (2)

where Rjlk
△

= R̃jlkR̃
H

jlk ∈ C
N×N

are deterministic correla-

tion matrices and wjlk ∼ CN (0, IN ) are fast fading channel

vectors. The above channel model is very versatile as it allows

us to assign a different antenna correlation (including path

loss) to each channel vector. Moreover, the matrices Rjlk

do not need to have full rank. This is especially important

for large antenna arrays with a significant amount of antenna

correlation due to either insufficient antenna spacing or a lack

of scattering.

Remark 2.1: In particular, (2) can be used to represent

a physical channel model with a fixed number of dimen-

sions or angular bins P as in [10], by letting R̃jlk =
√
ℓjlk [A 0N×N−P ], where A ∈ C

N×P
and ℓjlk is the

inverse path loss from UT k in cell l to BS j. We will use a

particular form of this model in Section IV.

A. Channel estimation

During a dedicated training phase (whose length we ignore

in this work), the UTs in each cell transmit orthogonal pilot

sequences which allow the BSs to compute estimates Ĥjj =

[ĥjj1 · · · , ĥjjK ] ∈ C
N×K

of their local channels Hjj . The

same set of orthogonal pilot sequences is reused in every cell

so that the channel estimate is corrupted by pilot contamination

from adjacent cells [14], [5]. Under these assumptions, BS j
estimates the channel vector hjjk based on the observation

yτ
jk = hjjk +

∑

l 6=j

hjlk +
1√
ρτ

njk (3)

where njk ∼ CN (0, IN ) and ρτ > 0 is the effective

training SNR. Assuming MMSE estimation [15], we can

decompose the channel as hjjk = ĥjjk + h̃jjk, where

ĥjjk ∼ CN (0,Φjjk) is the channel estimate, h̃jjk ∼
CN (0,Rjjk −Φjjk) is the independent estimation error and

the matrices Φjlk are defined as (1 ≤ j, l ≤ L, 1 ≤ k ≤ K):

Φjlk = RjjkQjkRjlk (4)

Qjk =

(

1

ρτ
IN +

∑

l

Rjlk

)−1

. (5)

B. Achievable rates with linear detection

We consider linear single-user detection, where the jth BS

estimates the symbols xjm, m = 1, . . . ,K, of the UTs in its

cell by calculating the inner products between the received

vector yj and the linear filters rjm ∈ C
N

. Two particular

detectors are of practical interest, the matched filter rMF
jm and

the MMSE detector rMMSE
jm which we define as

rMF
jm = ĥjjm (6)

rMMSE
jm =

(

ĤjjĤ
H

jj + Zj +NλIN

)−1

ĥjjm (7)

where λ > 0 is a design parameter and

Zj = E



H̃jjH̃
H

jj +
∑

l 6=j

HjlHjl





=
∑

k

(Rjjk −Φjjk) +
∑

l 6=j

∑

k

Rjlk. (8)

Remark 2.2: Note that a BS could theoretically estimate

all channel matrices Hjl from the observations (3) to further

improve the performance. Nevertheless, high path loss to

neighboring cells is likely to render these channel estimates

unreliable and the potential performance gains are expected to

be marginal. Our formulation of rMMSE
jm further allows us to

treat λ (and also Zj) as a design parameter which could be

optimized. A natural choice is λ = 1

ρN .

Using a standard bound based on worst-case uncorrelated

additive noise yields the ergodic achievable rate Rjm of UT

m in cell j [16]:

Rjm = E [log
2
(1 + γjm)] (9)

where the associated “signal-to-interference-plus-noise ratio”

(SINR) γjm is given by (10) on the top of the next page.

III. ASYMPTOTIC ANALYSIS

In this section, we present our main technical results. All

proofs are provided in [13]. Under the assumption that N and

K grow infinitely large while keeping a finite ratio K/N , we

will derive deterministic approximations γ̄jm of γjm, such that

γjm − γ̄jm
a.s.−−→ 0 (11)

where ‘
a.s.−−→’ denotes almost sure convergence. We will refer

to the quantities γ̄jm as deterministic equivalents of γjm. The

large system analysis implicitly requires that the channel co-

herence times scales linearly with K (to allow for a sufficiently

large number of orthogonal pilot sequences). However, since

we will use our results as approximations for realistic system

dimensions, this assumption does not pose any problem.



γjm =

∣
∣
∣rHjmĥjjm

∣
∣
∣

2

E

[

rHjm

(
1

ρIN + h̃jjmh̃H

jjm − hjjmhH

jjm +
∑

l HjlH
H

jl

)

rjm |Ĥjj

] (10)

We would further like to remark that, in the asymptotic limit,

the term inside the expectation of the denominator of γjm
(10) can be arbitrarily closely approximated by a deterministic

quantity and we do not need to compute the expectation

explicitly. Moreover, since E[|γjm|] and γ̄jm are uniformly

bounded, the almost sure convergence in (11) implies by

[17][Corollary, p. 218]:

Rjm − log
2
(1 + γ̄jm) −→ 0. (12)

In the sequel, we assume that the following technical

conditions hold:

A 1: lim supN‖Rjlk‖ < ∞ for all j, l, k.

A 2: lim infN
1

N trRj,l,k > 0 for all j, l, k.

Our first result is a deterministic equivalent of the SINR at

the output of the matched filter:

Theorem 1 (Matched filter): A deterministic equivalent of

γjm for the matched filter is given as

γ̄MF
jm =

(
1

N trΦjjm

)2

1

ρN2 trΦjjm + 1

N

∑

l,k
1

N trRjlkΦjjm +
∑

l 6=j

∣
∣ 1
N trΦjlm

∣
∣
2
.

Our second result is a deterministic equivalent of the SINR

with MMSE detection:

Theorem 2 (MMSE detector): A deterministic equivalent

of γjm for the MMSE detector is given as

γ̄MMSE
jm =

δ2jm
1

ρN2 trΦjjmT̄′
j +

1

N

∑

l,k µjlkm +
∑

l 6=j |ϑjlm|2

where

ϑjlk =
1

N
trΦjlkTj

ϑ′
jlkm =

1

N
trΦjlkT

′
jm

µjlkm =
1

N
trRjlkT

′
jm

−
2Re

(

ϑ∗
jlkϑ

′
jlkm

)

(1 + δjk)− |ϑjlk|2 δ′jkm
(1 + δjk)

2

and where

• Tj = T(λ) and δj = [δj1 · · · δjK ]T = δ(λ) are given by

Theorem 3 for D = IN , S = Zj/N , Rk = Φjjk ∀k,

• T̄′
j = T′(λ) is given by Theorem 4 for D = IN , S =

Zj/N , Θ = IN , Rk = Φjjk ∀k,

• T′
jm = T′(λ), δ

′
jm =

[
δ′j1m · · · δ′jKm

]T
= δ

′(λ) are

given by Theorem 4 for D = IN , S = Zj/N ,Θ = Φjjm,

Rk = Φjjk ∀k.

Theorems 3 and 4 can be found in the Appendix.

Remark 3.1: The theorem can be drastically simplified if

a less general channel model is considered, e.g. the same

correlation matrices Rjlk for all UTs, no correlation and only

path loss, Zj = 0. Due to space reasons, we only state the most

general form here and provide one special case (cf. Corollary

3) where γ̄MMSE
jm can be even given closed form.

Interestingly, the performances of matched filter and MMSE

detector coincide for an infinite number of antennas:

Corollary 1 (Performance with infinitely many antennas):

γ̄MF
jm, γ̄MMSE

jm −−−−−−−−−−→
N→∞, K/N→0

γ̄∞
jm

△

=
β2

jjm
∑

l 6=j |βjlm|2

where βjlk = limN
1

N trΦjlk, whenever the limit exists.

Note that γ̄∞
jm corresponds also to the asymptotic signal-to-

interference ratio (SIR) derived in [5, Eq. (13)].

IV. ON THE MASSIVE MIMO EFFECT

Let us for now ignore the effects of estimation noise, i.e.,

ρτ → ∞, and consider the simple channel model

Hjj =

√

N

P
AWjj , Hjl =

√

α
N

P
AWjl, l 6= j (13)

where A ∈ C
N×P

is composed of P ≤ N columns of

an arbitrary unitary N × N matrix, Wjl ∈ C
P×K

are

standard complex Gaussian matrices and α ∈ (0, 1] is an

intercell interference factor. Note that this is a special case

of (2). Under this model, the total energy of the channel

grows linearly with the number of antennas N and UTs K,

since E
[
trHjjH

H

jj

]
= KN

P trAAH = KN . The motivation

behind this channel model is twofold. First, we assume that

the antenna aperture increases with each additional antenna

element. Thus, the captured energy increases linearly with N .

This is in contrast to existing works which assume that more

and more antenna elements are packed into a fixed volume,

see e.g. [18], [19]. An insufficiency of this channel model is

that the captured energy grows without bounds as N → ∞.

However, we believe that linear energy gains can be achieved

up to very large numbers of antennas if the size of the antenna

array is scaled accordingly. Second, the number of DoF P
offered by the channel does not need to be equal to N [10].

One could either assume P to be large but constant or to scale

with N , e.g. P = cN , where c ∈ (0, 1]. In general, P depends

on the amount of scattering in the channel and, therefore, on



the radio environment. Under the assumptions made above,

we obtain the following corollary from Theorem 1:

Corollary 2: For the channel model in (13) and ρτ → ∞,

γ̄MF
km, for all k,m, can be given in closed form as

γ̄MF △

=
1

L̄

ρN
︸︷︷︸

noise

+
K

P
L̄2

︸ ︷︷ ︸

multiuser interference

+ α(L̄− 1)
︸ ︷︷ ︸

pilot contamination

(14)

where L̄ = 1 + α(L− 1).

We define the associated rate R̄MF as

R̄MF = log
2

(
1 + γ̄MF

)
. (15)

One can make several observations from (14). Obviously,

the effective SNR ρN increases linearly with N . Thus, if the

number of antennas is doubled, the transmit power can be

reduced by a factor of two to achieve the same SNR. Less

obvious is that the multiuser interference depends mainly on

the ratio P/K (number of DoF per UT) and not directly

on the number of antennas. Moreover, noise and multiuser

interference vanish for N,P → ∞ while pilot contamination

is the only performance-limiting factor [5]:

γ̄MF −−−−−−−−−−−−→
N,P→∞, K/N→0

γ∞ =
1

α(L̄− 1)
. (16)

We denote by R∞ the ultimately achievable rate, defined as

R∞ = log
2
(1 + γ∞) = log

2

(

1 +
1

α(L̄− 1)

)

. (17)

It is interesting that even with more sophisticated linear

single-user detection, such as MMSE detection, the ultimate

performance limit γ∞ cannot be exceeded (see Corollary 1 and

[10]). Note that without pilot contamination, i.e., for L = 1 or

α = 0, the SINR grows without bounds as P,N → ∞. If P
is fixed but large, the SINR saturates at a smaller value than

γ∞. In this case, adding additional antennas only improves

the SNR but does not reduce the multiuser interference. Thus,

with a finite number of DoF, MMSE detection remains also

for N → ∞ superior to MF.

Based on the above observations, we believe that it is

justified to speak about a massive MIMO effect whenever γjm
is close to γ∞, or in other words, whenever noise and multiuser

interference are small compared to the pilot contamination. It

becomes evident from (14) that the number of antennas needed

for massive MIMO depends strongly on the system parameters

P , K, L, α and ρ. In particular, there is no massive MIMO

effect without pilot contamination since γ∞ → ∞. Thus,

massive MIMO can be seen as a particular operating condition

in multi-cellular systems where the performance is ultimately

limited by pilot contamination and the matched filter achieves

a performance close to this ultimate limit. To make this

definition more precise, we say that we operate under massive

MIMO conditions if, for some desired η ∈ (0, 1),

R̄MF ≥ ηR∞. (18)

This condition implies that we achieve at least the fraction η
of the ultimate performance with the simplest form of single-

user detection. Replacing R̄MF in the last equation by (15) and

solving for P/K leads to

P

K
≥
(

1

L̄2 [(1 + γ∞)
η − 1]

− 1

ρNL̄
− α(L̄− 1)

L̄2

)−1

. (19)

Thus for a given set of parameters ρ, N , α and L, we can

find the fraction P/K necessary to satisfy (18). For the partic-

ular channel model considered in this section, also Theorem 2

for the MMSE detector can be significantly simplified:

Corollary 3: For the channel model in (13) and ρτ → ∞,

γ̄MMSE
km , for all k,m, can be given in closed-form as

γ̄MMSE =
1

L̄
ρNX + K

P L̄2Y + α
(
L̄− 1

)

where L̄ = 1 + α(L− 1) and

X =
Z2

Z2 − K
P

Y = X +

[
1 + α2(L− 1)

]
(1− 2Z)

L̄2
(
Z2 − K

P

)

Z = λL̄(1 + δ) +
K

P

[
1 + (1 + δ)

(
L̄2 − 1

)]

δ =
1− λL̄− K

P L̄2 +

√
(
1 + λL̄+ K

P L̄2
)2 − 4K

P

2
[
λL̄+ K

P

(
L̄2 − 1

)] .

The last result reveals that also the SINR of the MMSE

detector depends on P,K,N and ρ only through the ratio P/K
and the effective SNR ρN . Hence, we can use Corollary 3 to

determine the ratio P/K necessary to satisfy the condition

R̄MMSE = log
(
1 + γ̄MMSE

)
≥ ηR∞ (20)

which can be very efficiently solved by a simple line search,

e.g. via bisection. We assume in the sequel λ = 1/(ρN).
Before we proceed, let us verify the accuracy of the approxi-

mations R̄MF and R̄MMSE for finite (N,K). In Fig. 1, we depict

the ergodic achievable rate Rjm of an arbitrary UT with MF

and MMSE detection as a function of the number of antennas

N for K = 10 UTs, L = 4 cells, ρ = 0 dB and intercell

interference factor α = 0.1. We compare two different cases:

P = N and P = N/3. As expected, the performance in the

latter scenario is inferior due to stronger multiuser interference.

Most importantly, our closed-form approximations are almost

indistinguishable from the simulation results over the entire

range of N .

Figs. 2 and 3 show the necessary DoF per UT P/K for

a given effective SNR ρN to achieve a spectral efficiency

of ηR∞ with either the MF (solid lines) or MMSE detector

(dashed lines). We consider L = 4 cells and an intercell

interference factor α = 0.3 and α = 0.1, respectively. The

plots must be understood in the following way: Each curve

corresponds to a particular value of η. In the region above

each curve, the condition (18), respectively (20), is satisfied.
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Fig. 1. Ergodic achievable rate with MF and MMSE detection versus number
of antennas N for P = {N,N/3} for ρ = 0 dB.

Let us first focus on Fig. 2 with α = 0.3. For an effective

SNR ρN = 20 dB (e.g. ρ = 0 dB and N = 100 = 20 dB),

we need about P/K = 90 DoF per UT to achieve 90% of

the ultimate performance R∞, i.e., 0.9 × 2.2 ≈ 2 b/s/Hz. If

P ≈ N , only a single UT could be served (Note that this

is a simplifying example. Our analysis assumes K ≫ 1.).

However, if we had N = 1000 = 30 dB antennas, the

transmit power ρ could be decreased by 10 dB and 10 UTs

could be served with the same performance. At the same

operating point, the MMSE detector requires only ∼ 60 DoF

per UT to achieve 90% of the ultimate performance. Thus,

MMSE detection would allow us to increase the number of

simultaneously served UTs by a factor 90

60
= 1.5. This example

also demonstrates the importance of the relation between N
and P . In particular, if P saturates for some N , adding more

antennas increases the effective SNR but does not reduce the

multiuser interference. Thus, the number of UTs which can be

simultaneously supported depends significantly on the radio

environment. We can further see that adding antennas shows

diminishing returns. This is because the distances between

the curves for different values of η grow exponentially fast.

Remember that for η = 1, a ratio of P/K = ∞ would be

needed. A last observation we can make is that the absolute

difference between MF and MMSE detection is marginal for

small values of η but gets quickly pronounced as η → 1.

Turning to Fig. 3 for α = 0.1, we can see that for the

same effective SNR ρN = 20 dB and the same number

of DoF per UT P/K = 90 as in the previous example,

only 80% of the ultimate performance are achieved by the

MF. However, since the intercell interference is significantly

smaller compared to the previous example, this corresponds to

0.9×5.1 ≈ 4.6 b/s/Hz. Thus, although we operate further away

from the ultimate performance limit, the resulting spectral

efficiency is still higher. With MMSE detection, only 35
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Fig. 2. Degrees of freedom per UT P/K necessary to achieve ηR∞ versus
effective SNR ρN for L = 4 and α = 0.3.

10 15 20 25 30 35 40
0

50

100

150

200

250
α = 0.1, L = 4

70%

80%

> 90%

η

R∞ = 5.1 b/s/Hz

Effective SNR : ρN (dB)

D
eg

re
es

o
f

fr
ee

d
o

m
p

er
U

T
:
P
/
K

MF

MMSE

Fig. 3. Degrees of freedom per UT P/K necessary to achieve ηR∞ versus
effective SNR ρN for L = 4 and α = 0.1.

DoF per UT are necessary to achieve the same performance

and, consequently, 90/35 ≈ 2.5 times more UTs could be

simultaneously served. With decreasing intercell interference

(and hence decreasing pilot contamination) the advantages of

MMSE detection become more and more important.

V. CONCLUSIONS

We have studied the uplink of a MIMO multi-cell system

where channel estimates are prone to pilot contamination.

Under a very general channel model, allowing for an individual

correlation matrix for each UT, and the assumption that the

number of BS antennas and UTs grows large, we have derived

deterministic equivalents of achievable rates with matched



filter and MMSE detector. These results have been used to

study the performance of both detectors in the large but finite

N regime. Interestingly, their performance depends mainly on

the DoF per UT the channel offers and the effective SNR.

Moreover, we have determined (i) how many antennas are

needed to achieve η % of the ultimate performance limit and

(ii) how many more antennas are needed by the MF to achieve

MMSE performance. Our results can be also applied for the

study of the downlink [13] and could be further used to analyze

the effects of more realistic channels models, such as antenna

correlation, spacing and aperture.

APPENDIX

Theorem 3 ([20, Theorem 1]): Let D ∈ C
N×N

and S ∈
C

N×N
be Hermitian nonnegative definite matrices and let

H ∈ C
N×K

be a random matrix with columns hk =
1√
N
R

1

2

k uk, where uk ∈ C
N

are random vectors of i.i.d.

elements with zero mean, unit variance and finite 8th order

moment, and Rk ∈ C
N×N

are deterministic covariance

matrices. Assume that D, S and Rk, k = 1, . . . ,K, have

uniformly bounded spectral norms (with respect to N ). Let

N,K → ∞, such that 0 ≤ lim inf K
N ≤ lim sup K

N < ∞.

Then, for any ρ > 0,

1

N
trD

(
HHH + S+ ρIN

)−1 − 1

N
trDT(ρ)

a.s.−−→ 0

where T(ρ) ∈ C
N×N

is defined as

T(ρ) =

(

1

N

K∑

k=1

Rk

1 + δk(ρ)
+ S+ ρIN

)−1

and the following set of K implicit equations

δk(ρ) =
1

N
trRkT(ρ), k = 1, . . . ,K

has a unique solution δ(ρ) = [δ1(ρ) · · · δK(ρ)]
T ≥ 0.

Theorem 4: Let Θ ∈ C
N×N

be a Hermitian nonnegative

definite matrix with uniformly bounded spectral norm (with

respect to N ). Under the same conditions as in Theorem 3,

1

N
trD

(
HHH + S+ ρIN

)−1

Θ
(
HHH + S+ ρIN

)−1

− 1

N
trDT′(ρ)

a.s.−−→ 0

where T′(ρ) ∈ C
N×N

is defined as

T′(ρ) = T(ρ)ΘT(ρ) +T(ρ)
1

N

K∑

k=1

Rkδ
′
k(ρ)

(1 + δk(ρ))
2
T(ρ)

with T(ρ) and δk(ρ) as defined in Theorem 3 and δ
′(ρ) =

[δ′
1
(ρ) · · · δ′K(ρ)]

T
given by

δ
′(ρ) = (IK − J(ρ))

−1
v(ρ)

[J(ρ)]kl =
1

N trRkT(ρ)RlT(ρ)

N (1 + δk(ρ))
2

[v(ρ)]k =
1

N
trRkT(ρ)ΘT(ρ)

where J(ρ) ∈ C
K×K

and v(ρ) ∈ C
K

.
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