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Abstract—We consider a multiple-input multiple-output
(MIMO) multiple access channel (MAC), where the channel
between each transmitter and the receiver is modeled by the
double-scattering channel model. Based on novel techniques from
random matrix theory, we derive deterministic approximations
of the mutual information, the signal-to-noise-plus-interference-
ratio (SINR) at the output of the minimum-mean-square-error
(MMSE) detector and the sum-rate with MMSE detection, which
are almost surely tight in the large system limit. Moreover, we
derive the asymptotically optimal transmit covariance matrices.
Our simulation results show that the asymptotic analysis provides
very close approximations for realistic system dimensions.

I. INTRODUCTION

Most works on wireless multiple-input multiple-output

(MIMO) systems share the underlying assumption of a rich

scattering environment and, thus, Rayleigh or Rician fading

channel matrices with full rank. However, several measure-

ments of outdoor MIMO channels have shown that this as-

sumption fails to hold in certain scenarios, where low-rank

channels are observed despite low antenna correlation at the

transmitter and receiver (see e.g. [1], [2]). Motivated by these

observations, a generalized fading MIMO channel model, the

so-called “double-scattering model” [3], was proposed and

has since then attracted significant research interest. A special

case of the double-scattering model is the keyhole channel

[4], [5] which exhibits null correlation between the entries

of the channel matrix but only a single degree of freedom.

The existence of such channels in reality was confirmed by

measurements in [5].

Several theoretical works have studied the double-scattering

model so far. The authors of [6] derive capacity upper-bounds

for the general model and a closed-form expression for the

keyhole channel. An asymptotic study of the outage capacity

of the multi-keyhole channel was presented in [7]. The diver-

sity order of the double-scattering model was considered in

[8] and it was shown that a MIMO system with t transmit

antennas, r receive antennas and s scatterers achieves the

diversity of order trs/max(t, r, s). A closed-from expression

of the diversity-multiplexing trade-off (DMT) was derived

in [9]. Beamforming along the strongest eigenmode over

Rayleigh product MIMO channels, i.e., the double-scattering

model without any form of correlation, was considered in [10].

Here, the authors derive exact expressions of the cumulative

distribution function (cdf) and the probability density function

(pdf) of the largest eigenvalue of the Gramian of the channel

matrix and compute closed-form results for the ergodic capac-

ity, outage probability and signal-to-noise-plus-interference-

ratio (SINR) distribution. In a later paper [11], the MIMO

multiple access channel (MAC) with double-scattering fading

is analyzed. The authors obtain closed-form upper-bounds on

the sum-capacity and prove that the transmitters should send

their signals along the eigenvectors of the transmit correlation

matrices in order to maximize capacity.

Despite the significant interest in the double-scattering chan-

nel model, little work has been done to study its asymptotic

performance when the channel dimensions grow large. We are

only aware of [2], in which a model without transmit and

receive correlation is studied relying on tools from free prob-

ability theory. Implicit expressions of the asymptotic mutual

information and the SINR of the minimum-mean-square-error

(MMSE) detector are found.

In this paper, we consider a MIMO MAC with double-

scattering fading in its most general form and derive deter-

ministic approximations of the (ergodic) mutual information,

the (ergodic) sum-rate with MMSE detection and the SINR

at the output of the MMSE detector. The approximations

become almost surely exact as the dimensions of all channel

matrices grow large and can be easily numerically computed

with negligible computing complexity. In addition, we provide

the asymptotically capacity maximizing transmit covariance

matrices and present an iterative water-filling algorithm for

their computation. Our numerical results suggest that the

asymptotic approximations are already very tight for channel

dimensions with as little as four transmit and receive antennas

and are therefore of clear practical value.

The key idea behind the proofs in this paper is that

the double-scattering channel model can be interpreted as a

Kronecker channel [12] with a random receive correlation

matrix, which itself is modeled by the Kronecker model. This

observation allows us to build upon [12] which provides an

asymptotic analysis of the Kronecker channel model with

deterministic correlation matrices. We then extend this work

by allowing the correlation matrices to be random. The results

in this paper are obtained through advanced tools from random

matrix theory (inspired by [13], [14], see also the textbook

[15] for a comprehensive introduction and a contemporary

overview of recent research results) and are hence not only a

novel contribution to the field of wireless communications but

also to the field of large random matrix theory. We also believe

that the developed techniques can be successfully applied

to the study of even more involved channel models, such

as channels with line-of-sight (LOS) components or MIMO

product channels with an arbitrary number of matrices.



II. SYSTEM MODEL

Consider a discrete-time MIMO channel from K transmit-

ters, equipped with nk (k = 1, . . . ,K) antennas, respectively,

to a receiver with N antennas. The channel output vector

y ∈ C
N

at a given time reads

y =
K
∑

k=1

Hkxk + n (1)

where Hk ∈ C
N×nk and xk = [xk,1, . . . , xk,nk

]T ∼
CN (0,Qk), Qk ∈ C

nk×nk , are the channel matrix and

the transmit vector associated with the kth transmitter, and

n ∼ CN (0, ρIN ) is a noise vector. The channel matrices Hk

are modeled by the double-scattering model [3]

Hk =
1√

Nknk

R
1

2

kW1,kS
1

2

kW2,kT
1

2

k (2)

where Rk ∈ C
N×N

, Sk ∈ C
Nk×Nk and Tk ∈ C

nk×nk

are deterministic correlation matrices, while W1,k ∈ C
N×Nk

and W2,k ∈ C
Nk×nk are independent standard complex

Gaussian matrices. Since the distributions of W1,k and W2,k

are unitarily invariant we can assume without loss of generality

Sk = diag(sk,1, . . . , sk,Nk
) to be diagonal matrices. Denote

IN (ρ) the instantaneous normalized mutual information of the

channel (1) in nats/s/Hz, defined as

IN (ρ) =
1

N
log det

(

IN +
1

ρ

K
∑

k=1

HkQkH
H

k

)

. (3)

III. MAIN RESULTS

The notation N → ∞ denotes in the sequel that N and all

Nk, nk grow infinitely large, satisfying 0 < lim inf Nk

N
≤

lim sup Nk

N
< ∞, 0 < lim inf nk

N
≤ lim sup nk

N
< ∞.

These conditions ensure that all matrix dimensions grow at

a similar speed. Additionally we need the following technical

assumptions:

A 1: For all k, lim sup‖Rk‖ < ∞, lim sup‖Sk‖ < ∞
and lim sup‖TkQk‖ < ∞, where ‖·‖ is the spectral norm.

Our first theorem introduces a set of 3K implicit equations

which uniquely determines the quantites (gk, ḡk, δk) (1 ≤ k ≤
K). These quantities will be used in the sequel to provide

deterministic approximations of IN (ρ) which become almost

surely arbitrarily tight as N → ∞.

Theorem 1 (Fundamental equations): The following sys-

tem of 3K implicit equations in ḡk, gk and δk (1 ≤ k ≤ K):

ḡk =
1

nk

trT
1

2

kQkT
1

2

k

(

gkT
1

2

kQkT
1

2

k + Ink

)−1

gk =
1

nk

Nk
∑

j=1

sk,jδk
1 + ḡksk,jδk

(4)

δk =
1

Nk

trRk

(

K
∑

k=1

nk

Nk

ḡkgk
δk

Rk + ρIN

)−1

has a unique solution satisfying ḡk, gk, δk > 0 for all k and

ρ > 0.

Remark 3.1: One can also prove that ḡk, gk and δk can

be computed by a classical fixed-point algorithm which itera-

tively computes (4), starting from some arbitrary initialization

ḡk, gk, δk > 0. This algorithm generally converges in a few

iterations (depending on the system size) and does not pose

any computational challenge.

The next theorem provides a deterministic, asymptotically

tight approximation of the (ergodic) mutual information based

on the quantites (gk, ḡk, δk) as provided by Theorem 1.

Theorem 2 (Mutual information):

(i) IN (ρ)− ĪN (ρ)
a.s.−−−−→

N→∞

0

(ii) E [IN (ρ)]− ĪN (ρ) −−−−→
N→∞

0

where

ĪN (ρ) =
1

N
log det

(

IN +
1

ρ

K
∑

k=1

nk

Nk

ḡkgk
δk

Rk

)

+
1

N

K
∑

k=1

[log det (INk
+ ḡkδkSk)

+ log det
(

Ink
+ gkT

1

2

kQkT
1

2

k

)

− 2nkgkḡk

]

and gk, ḡk, δk are the unique positive solutions to (4).

The following result allows us to compute the asymptoti-

cally optimal precoding matrices Qk which maximize ĪN (ρ)
under individual transmit power constraints.

Theorem 3 (Optimal power allocation): The solution to

the following optimization problem:
(

Q̄∗

1, . . . , Q̄
∗

K

)

= arg max
Q1,...,Qk

ĪN (ρ)

s.t.
1

nk

trQk ≤ Pk ∀k

is given as Q̄∗

k = UkP̄
∗

kU
H

k , where Uk ∈ C
nk×nk

is defined by the spectral decomposition of Tk =
Ukdiag(tk,1, . . . , tk,nk

)UH

k and P̄∗

k = diag(p̄∗k,1, . . . , p̄
∗

k,nk
) is

given by the water-filling solution:

p̄∗k,j =

(

µk − 1

g∗ktk,j

)+

(5)

where µk is chosen to satisfy 1
nk

tr P̄∗

k = Pk and g∗k is given

by Theorem 1 for Qk = Q̄∗

k.

Remark 3.2: The optimal power allocation matrices P̄∗

k can

be calculated by the iterative water-filling Algorithm 1 (see

[12, Remark 2] and [13, Remark 5] for a discussion of the

convergence of this algorithm).

The last two results of this correspondence provide de-

terministic approximations of the SINR at the output of the

MMSE detector and the sum-rate with MMSE detection.



Algorithm 1 Iterative water-filling algorithm

1: Let ǫ > 0, n = 0 and p̄∗,0k,j = Pk for all k, j.

2: repeat

3: For all k, compute g∗,nk according to Theorem 1 with

matrices Qk = Ukdiag
(

p̄∗,nk,j

)

UH

k .

4: For all k, j, calculate p̄∗,n+1
k,j =

(

µk − 1
g
∗,n

k
tk,j

)+

, with

µk such that 1
nk

∑nk

j=1 p̄
∗,n+1
k,j = Pk.

5: n = n+ 1
6: until maxk,j |p̄∗,nk,j − p̄∗,n−1

k,j | ≤ ǫ

Theorem 4 (SINR of the MMSE detector): Assume Qk =
Ink

and Tk = diag(tk,1, . . . , tk,nk
) for all k and let γk,j be

the SINR at the output of the MMSE detector related to the

transmit symbol xk,j , given by

γk,j = hH

k,j

(

K
∑

i=1

HiH
H

i − hk,jh
H

k,j + ρIN

)−1

hk,j .

Then

γk,j − γ̄k,j
a.s.−−−−→

N→∞

0

where γ̄k,j = tk,jgk and gk is by given by Theorem 1.

Remark 3.3: The theorem is also valid under the more

general assumptions Tk = Ukdiag(tk,1, . . . , tk,nk
)UH

k and

Qk = Ukdiag(pk,1, . . . , pk,nk
)UH

k . We can then simply de-

fine the matrices T′

k = diag(tk,1pk,1, . . . , tk,nk
pk,nk

) and

Q′

k = INk
for which the theorem holds.

Corollary 1 (Sum-rate with MMSE decoding): Under the

same assumptions as in Theorem 4, let

R(ρ) =
1

N

K
∑

k=1

nk
∑

j=1

log(1 + γk,j).

Then,

(i) R(ρ)− 1

N

K
∑

k=1

nk
∑

j=1

log(1 + tk,jgk)
a.s.−−−−→

N→∞

0

(ii) E [R(ρ)]− 1

N

K
∑

k=1

nk
∑

j=1

log(1 + tk,jgk)
a.s.−−−−→

N→∞

0

where gk is given by Theorem 1.

A. The Rayleigh product channel

A special case of the double-scattering channel is the

Rayleigh product MIMO channel [10] which does not exhibit

any form of correlation between the transmit and receive

antennas or the scatterers. For this model, the Theorems 1,

2 and 4 can be given in closed-from as shown in the next

corollary.

Corollary 2 (Rayleigh product channel): For all k, let

Nk = S, nk = N and assume Tk = IN , Sk = IS and

Rk = IN . Then,

ĪN (ρ) = log

(

1 +
1

ρ

NK

S
ḡ

(

ḡ +
S

N
− 1

))

− KS

N
log

(

1 +
N

S
(ḡ − 1)

)

−K log (ḡ)− 2K (1− ḡ)

and

γ̄k,j =
1− ḡ

ḡ

where ḡ is the unique solution to

ḡ3 − ḡ2
(

2− S

N
− 1

K

)

+ ḡ

(

1− S

N
− 1

K
+

S

NK
(1 + ρ)

)

− S

NK
ρ = 0 (6)

such that δ
△

= (1 − ḡ)/(ḡ(ḡ + S/N − 1)) > 0 and g
△

= (1 −
ḡ)/ḡ > 0.

Note that similar expressions for the asymptotic mutual

information and MMSE-SINR have been obtained in [2] by

means of free probability theory. However, their results require

the numerical solution of a third order differential equation.

IV. NUMERICAL EXAMPLES

As a first numerical example, we consider the “multi-

keyhole channel”, i.e., K = 1, S1 = IN1
, R1 = IN ,

T1 = Q1 = In1
, for N = n1 = 4. Fig. 1 depicts

the normalized ergodic mutual information E [IN (ρ)] and its

asymptotic approximation ĪN (ρ) versus SNR for multiple

N1 ∈ {1, 2, 3, 4, 100} “keyholes”. Surprisingly, the match

between both results is almost perfect although the channel

dimensions are very small.

As a second example, we consider a multiple access channel

from K = 3 transmitters, assuming the double-scattering

model in [3]. Under this model, the correlation matrices are

given as Rk = G(φr,k, dr,k, Nk), Sk = G(φs,k, ds,k, Nk) and

Tk = G(φt,k, dt,k, Nk), where G(φ, d, n) is defined as

[G(φ, d, n)]k,l =
1

n

n−1

2
∑

j= 1−n
2

exp

(

i2πd(k − l) sin

(

jφ

1− n

))

.

The values φt,k and φr,k determine the angular spread of the

radiated and received signals, dt,k and dr,k are the antenna

spacings at the kth transmitter and receiver in multiples of

the signal wavelength, and Nk can be seen as the number and

ds,k as the spacing of the scatterers. For simplicity, we assume

N = 4, Pk = 1/nk, Nk = 11, nk = 3, dt,k = dr,k = 0.25
and ds,k = 50 for all k. We further assume φr,k = φt,k for

all k, with φr,k ∈ {π/4, π/2, π} and φs,k = π/8. Fig. 2

shows E [IN (ρ)] and ĪN (ρ) with uniform and optimal power

allocation versus SNR. Again, our asymptotic results yield

very tight approximations for even small system dimensions.
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Fig. 1. Ergodic mutual information E [IN (ρ)] of the multi-keyhole channel
and its asymptotic approximation ĪN (ρ) versus SNR.

−10 −5 0 5 10 15 20 25
0

1

2

3

4

5

RN (ρ)

IN (ρ)

ρ (dB)

E
[I

N
(ρ
)]

o
r

E
[R

N
(ρ
)]

(n
at

s/
s/

H
z)

Uniform power (Approximation)

Optimal power (Approximation)

Simulation

Fig. 2. Ergodic mutual information E [IN (ρ)] and sum-rate E [RN (ρ)] of
the multiple access channel and their asymptotic approximations ĪN (ρ) and
R̄N (ρ) versus SNR.

For comparison, we also provide the sum-rate with MMSE

detection E [RN (ρ)] and its deterministic approximation R̄N .

We observe a good fit between both results at low SNR

values, but a slight mismatch for higher values. This is due

to a slower convergence of the SINR γk,j to its deterministic

approximation γ̄k,j .

V. CONCLUSION

We have studied a MIMO MAC with double-scattering

fading channels. Under the assumption that the dimensions

of all channel matrices grow infinitely large, we have derived

almost surely tight deterministic approximations of the mutual

information, the SINR of the MMSE detector and the sum-

rate with MMSE detection. In addition, we have provided an

iterative water-filling algorithm to compute the asymptotically

optimal transmit covariance matrices. Our numerical results

show that the asymptotic analysis provides very close approx-

imations for very small system dimensions with as little as four

transmit and received antennas. We believe that the techniques

used in this paper could be succesfully applied to the study of

even more involved channel models.

VI. APPENDIX

Sketch of proof of Theorem 1: The key idea is that the

double-scattering model can be considered as the Kronecker

channel model [12] with random correlation matrices. For the

Kronecker model, the matrices Hk are given as

Hk =
1√
nk

ZkW2,kT
1

2

k (7)

where Zk ∈ C
N×Nk is a deterministic matrix and W2,k

and Tk are as defined in (2). The fundamental equations (cf.

Theorem 1) for this model are given by [12, Corollary 1]

ēk =
1

nk

trT
1

2

kQkT
1

2

k

(

ekT
1

2

kQkT
1

2

k + Ink

)−1

ek =
1

nk

trZkZ
H

k

(

K
∑

i=1

ēiZiZ
H

i + ρIN

)−1

. (8)

Assume now Zk to be random and modeled as

Zk =
1√
Nk

R
1

2

kW1,kS
1

2

k . (9)

Notice first that the expressions of the quantities ēk are un-

affected by this assumption. Second, ek have become random

quantities and it is our goal to find deterministic approxima-

tions gk of ek, such that ek−gk
a.s.−−→ 0 as N → ∞. Following

similar steps as in the proof of [13, Theorem 4], one can now

show that

max
k

|ēk − ḡk| a.s.−−−−→
N→∞

0

max
k

|ek − gk| a.s.−−−−→
N→∞

0 (10)

where ḡk and gk satisfy (4). The proof of uniqueness of such

solutions relies on arguments of so called standard functions

[16] and follows similar steps as in [13, Proof of Theorem 3]

or [14, Proof of Theorem 1].

Sketch of proof of Theorem 2: We rely again on the

observation that the double-scattering model can be considered

as the Kronecker channel model [12] with random correlation

matrices Zk (cf. (7) and (9)). A deterministic equivalent

ĪKron
N (ρ) of the mutual information for the Kronecker model

(7) was provided in [12, Theorem 2]. Here, ĪKron
N (ρ) is defined

as a function of the quantities ēk and ek (given as the unique

solutions to (8)) which reads:

ĪKron
N (ρ) =

1

N
log det

(

IN +
1

ρ

K
∑

k=1

ēkZkZ
H

k

)

+

K
∑

k=1

1

N
log det

(

Ink
+ ekT

1

2

kQkT
1

2

k

)

− 1

N

K
∑

k=1

nkekēk.

(11)



Due to the almost sure convergence of ek − gk → 0 and

ēk − ḡk → 0 established in Theorem 1, we can simply

replace ek and ēk by gk and ḡk, respectively. It remains

now to find a deterministic equivalent of the first term
1
N
log det

(

IN + 1
ρ

∑K

k=1 ēkZkZ
H

k

)

, which is random since

the matrices Zk are random. However, this term is nothing

but the mutual information of another Kronecker channel with

matrices H̃k =
√

ēk
Nk

R
1

2

kW1,kS
1

2

k . Hence we can apply again

[12, Theorem 2] to find its deterministic equivalent. Combin-

ing both results yields ĪN (ρ) and terminates the proof of (i).
Denote Ω the probability space engendering the sequences

{W1,1, . . . ,W1,K ,W2,1, . . . ,W2,K}. Then, on a sub-space

of Ω of measure 1, we have by (i): IN (ρ) − ĪN (ρ) → 0 as

N → ∞. Integrating this expression over Ω implies by the

dominated convergence theorem [17] part (ii).

Sketch of proof of Theorem 3: Similar to the proof of

[12, Proposition 3], one can show that the covariance matrices

Q̄∗

k should align to the eigenvectors of the transmit correlation

matrices Tk to maximize ĪN (ρ), i.e., Q̄∗

k = UkP̄
∗

kU
H

k . Note

that it was also proved in [11, Theorem 1] that these signaling

directions are optimal to maximize E [IN (ρ)]. One can then

further show that

dĪN (ρ)

dp̄∗k,j
=

g∗ktk,j
1 + g∗ktk,j p̄

∗

k,j

∀k, j

and
d2ĪN (ρ)
d(p̄∗

k,j
)2 < 0. Since ĪN (ρ) is hence strictly concave in p̄∗k,j

it follows from the KKT conditions [18] that P̄∗

k is given by

the water-filling solution (5) with power constraint 1
nk

tr Q̄∗

k =
1
nk

tr P̄∗

k = Pk.

Sketch of proof of Theorem 4: Assume that Hk are given

by the Kronecker model (7) with deterministic matrices Zk. It

follows from standard lemmas of random matrix theory (see

e.g. [13, Appendix C], that the following limit holds:

γk,j − tk,j
1

nk

trZkZ
H

k

(

K
∑

i=1

HiH
H

i + ρInk

)

a.s.−−−−→
N→∞

0.

Applying [12, Theorem 1] to the second term yields

γk,j − tk,j
1

nk

trZkZ
H

k

(

K
∑

i=1

ēiZiZ
H

i + ρInk

)

a.s.−−−−→
N→∞

0

where ēi are given as the solutions to (8). Notice from (8) that

the second term is equal to tk,jek. Assume now the matrices

Zk random and given by (9). Thus, we have by (10)

γk,j − tk,jgk
a.s.−−−−→

N→∞

0.

Sketch of proof of Corollary 1: Part (i) follows directly

from Theorem 4 and the continuous mapping theorem [19,

Theorem 2.3]. Part (ii) follows from the same arguments as

in the proof of Theorem 3 (ii).

Sketch of roof of Corollary 2: One can show by straight-

forward but tedious calculations that the fundamental equa-

tions (4) can be reduced to a single implicit equation (6) if

Tk = IN , Sk = IS and Rk = IN for all k. Replacing gk
and δk by g and δ in the expressions of IN (ρ) and γ̄k,j ,

respectively, leads to the desired result.
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