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On the Optimal Stacking of Information-plus-Noise
Matrices

Øyvind Ryan, Member, IEEE

Abstract—Observations of the form D + X, where D is a
matrix representing information, and X is a random matrix
representing noise, can be grouped into a compund observation
matrix, on the same information + noise form. There are many
ways the observations can be stacked into such a matrix, for
instance vertically, horizontally, or quadratically. An unbiased
estimator for the spectrum of D can be formulated for each
stacking scenario in the case of Gaussian noise. We compare
these spectrum estimators for the different stacking scenarios,
and show that all kinds of stacking actually decrease the variance
of the corresponding spectrum estimators when compared to just
taking an average of the observations, and find which stacking
is optimal in this sense. When the number of observations grow,
however, it is shown that the difference between the estimators is
marginal. with only the cases of vertical and horizontal stackings
having a higher variance asymptotically.

Index Terms—Gaussian matrices, Random Matrices, free con-
volution, deconvolution, spectrum estimation.

I. INTRODUCTION

Random matrices find applications in many fields of re-
search, such as digital communication [1], mathematical fi-
nance [2] and nuclear physics [3]. Free probability theory [4],
[5], [6], [7], [8] has strong connections with random matrix
theory, and can be used for high dimensional statistical infer-
ence by addressing the following questions:

Given A, B two n × n independent square Hermitian (or
symmetric) random matrices:
1) Can one derive the eigenvalue distribution of A from those
of A+B and B?
2) Can one derive the eigenvalue distribution of A from those
of AB and B?

More generally, such questions can be asked starting with
any functional of the involved random matrices. If 1) or 2)
can be answered for given random matrices A and B, the
corresponding operation for finding the eigenvalue distribu-
tion is called deconvolution. Deconvolution can be easier to
perform in the large n-limit, and the literature contains result
in this respect both for Vandermonde matrices [9], [10], and
Gaussian matrices. For Gaussian matrices in the large n-limit,
there exist several results which can be stated in terms of the
Stieltjes transform [11], [12], and several results on inference
as in 1) and 2) [13], [14], [15], [16], [17], [18], [19].
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In this contribution we will focus on the method of mo-
ments [4], [20], which also applies in the large n-limit for
Gaussian matrices, and has a more general role in the context
of free probability [8]. The method of moments is based on
the relations between the moments of the matrices involved.
The p-th moment of an n× n random matrix A is defined as

tn,p
A

= E [tr(Ap)] =

�
λpdρ(λ) (1)

where E[·] is the expectation, tr the normalized trace, and
dρ(λ) = E

�
1
n

�n
i=1 δ(λ− λi)

�
the associated empirical mean

measure, with {λ1, ..., λn} the eigenvalues of A. The p-th
moment is thus defined only if E [tr(Ap)] exists. Both the
Stieltjes transform of the eigenvalue distribution of A, and
the moments of A, can be used to retrieve the eigenvalues
of A, and can therefore be used for spectrum estimation. For
many types of random matrices, tn,p

A
converges almost surely

when n→ ∞ to an analytical expression tp
A
, depending only

on some specific parameters, such as the distribution of the
entries of A. This enables us to reduce the dimensionality of
the problem, which can be useful also for n of moderate size,
due to the rate of convergence.

Deconvolution in terms of moments turns out to be quite
simple if asymptotic freeness holds, and can be performed
using the R- and S-transforms [8]. A lthough Gaussian ma-
trices are asymptotically free, they are not free for any finite
dimensions. In fact, the literature contains no non-trivial cases
of finite matrices which display freeness. In [21], a moment-
based framework which applies for Gaussian matrices of
any dimensions is presented, and which has many similari-
ties with the moment-based free probability framework. This
contribution willl address the following questions on how
this framework can be best adapted for spectrum estimation
purposes:

1) Observations of the form D+X allow for stacking into a
compound observation matrix. Can the compound obser-
vation matrix be supported within the same framework?

2) Is one stacking of the observations better than another,
for the purpose of spectrum estimation?

A popularway of combining observations is the so-called sam-
ple covariance matrix, which essentially results from stacking
observations of a random vector horizontally into a compound
matrix. Results in this paper will actually challenge this
construction, at least for the simple case under consideration,
showing that it is not always the best way of combining
observations. Another facet of stacking is that it can make
asymptotic results more applicable, and eliminate the need
for results on finite-dimensional matrices. This can be useful,
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since asymptotic results can be simpler to obtain, and have
a nicer form. We will give a partial answer to the above
questions in this paper, in the sense that we characterize the
stacking of observations which is optimal in terms of the
variance of the corresponding spectrum estimators, and we
characterize what we gain in comparison with methods where
observations are not stacked.

The paper is organized as follows. Section II provides
background essentials on random matrix theory needed to
state the main results, and define different ways of stacking
observations. Section III defines the unbiased spectrum esti-
mators we will analyse, states the form of this which is useful
for implementation. Section IV states the main result, which
concerns finding the stacking which gives a minimum variance
estimator. In Section V we present some useful simulations
verifying the results.

II. RANDOM MATRIX BACKGROUND ESSENTIA LS

In the following, upper boldface symbols will be used
for matrices, and lower symbols will represent scalar values.
(.)T will denote the transpose operator, (.)⋆ conjugation, and
(.)H =

�
(.)T

�⋆
Hermitian transpose. The n×n identity matrix

will be written as In. We let Tr be the (non-normalized) trace
for square matrices, defined by

Tr(A) =

n�

i=1

aii,

where aij is the (i, j) entry of the n × n matrix A. We also
let tr be the normalized trace, defined by tr(A) = 1

nTr(A).
In addition to the moments, we define the mixed moments by

Ap1,...,pk
= E [tr (Ap1) · · · tr (Apk)] .

When A is non-random, the moments are simply Ap =
tr(Ap). X will denote a standard complex Gaussian matrix,
meaning that it has i.i.d. complex Gaussian entries with zero
mean and unit variance Moreover, the real and imaginary parts
of the entries are independent, each with variance 1

2 .
From L = L1L2 observations of an n×N random matrix

Y, we can form the (nL1) × (NL2) compound observation
matrix, denoted YL1,L2 , by stacking the observations into a
L1 × L2 block matrix in a given order. Similarly, if D is
non-random, we will denote by DL1,L2 the compound matrix
formed in the same way from D. We will be concerned with
the following question:

Assume that

Y = D+X, (2)

with D non-random and X Gaussian, both of size n×N . How
can we infer the spectrum of D from independent observations
Y1, ...,YL of Y in an unbiased way, and with minimum
variance?

[21] states a moment-based method to infer the spectrum of
1
NDD

H from that of 1
NYY

H . SinceXL1,L2 is also Gaussian,
and since the compound matrices satisfy YL1,L2 = DL1,L2 +
XL1,L2 , the same method can be used to infer the spectrum

of 1
NL2

DL1,L2D
H
L1,L2

from the compound observation matrix.
But since

tr

��
1

NL2
DL1,L2D

H
L1,L2

�p�
= Lp−1

1 tr

��
1

N
DD

H

�p�
,

(3)
the method from [21] applied to the compound observation
matrix help us infer the spectrum of 1

NDD
H also. We will

state the corresponding estimator in Section III. To ease
notation, we will let Dp = tr

��
1
NDD

H
�p�

in the following.
We will see that different stackings L1, L2 give rise to dif-
ferent spectrum estimators, all of them unbiased, and we will
compare their variances. Different stackings will be denoted
as follows:

Definition 1: Assume that we are given a number of L > 0
observations We will call a stacking scenario

• horizontal if the observations are grouped into a 1 × L
block matrix,

• vertical if the observations are grouped into a L×1 block
matrix,

• rectangular (of ratio c with 0 < c < ∞) if the obser-
vations are grouped into a L1 × L2 block matrix with
L = L1 × L2, and with (L1, L2) = argmin

���c− L1

L2

���.
These three types of stackings are also denoted by H , V , and
R, respectively.

Horizontal stacking in particular has been considered pre-
viously [22].

III. FORMULATION OF THE ESTIMATOR

To state our estimators, we need the following concepts,
taken from [21]. These concepts are better motivated geometri-
cally in terms of pairings of Gaussian elements. This is further
explained in Appendix A :

Definition 2: Let p be a positive integer. By a partial
permutation we mean a one-to-one mapping π between two
subsets ρ1, ρ2 of {1, . . . , p}. We denote by SPp the set of
partial permutations of p elements. When π ∈ SPp, we define
π̂ ∈ SP2p by

π̂(2j − 1) = 2π−1(j), j ∈ ρ2

π̂(2j) = 2π(j)− 1, j ∈ ρ1.

We associate to π an equivalence relation ρ = ρ(π) on
{1, ..., 2p} generated by

j ∼ρ π̂(j) + 1, j + 1 ∼ρ π̂(j), for j ∈ ρ1, (4)

and we let k(ρ) and l(ρ) denote the number of blocks of ρ
consisting of only even or odd numbers, respectively. With
D = (ρ1

�
ρ2)

c σ = σ(π) is defined as the equivalence
relation on D generated by the relations

k ∼σ k + 1 if k, k + 1 ∈ D (5)

k ∼σ l if k, l ∈ D, k + 1 ∼ρ l, (6)

and we let kd(ρ) be the number of blocks of ρ contained
within the even numbers which intersect D ∪ (D + 1), and
ld(ρ) be the number of blocks of ρ contained within the odd
numbers which intersect D ∪ (D+ 1).

Our estimators can now be stated as follows:
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Lemma 1: Let Y = D+X, and

Dp1,...,pk
= tr

��
1

N
DD

H

�p1
�
tr

��
1

N
DD

H

�p2
�
· · ·

×tr

��
1

N
DD

H

�pk
�

(7)

Yp1,...,pk
= tr

��
1

N
YY

H

�p1
�
tr

��
1

N
YY

H

�p2
�
· · ·

×tr

��
1

N
YY

H

�pk
�
, (8)

and let |ρ1|, |ρ2| be the number of elements in ρ1, ρ2. Then

Dp1,...,pk
=

�

π∈SPp
π=π(ρ1,ρ2,q)

(−1)|ρ1|n
|σ(π)|−k

N |ρ1|

×Nk(ρ(π))−kd(ρ(π))nl(ρ(π))−ld(ρ(π))

× Yl1,...,lr (9)

is an unbiased estimator for Dp1,...,pk
, i.e. E

�
Dp1,...,pk

�
=

Dp1,...,pk
for all p. In particular, �Dp is an unbiased estimator

for Dp.
Similarly, given L = L1L2 observations Yi = D + Xi

(1 ≤ i ≤ L), form the compound observation matrix YL1,L2

and let instead Yp be the moments

Yp = tr

��
1

NL2
YL1,L2Y

H
L1,L2

�p�
. (10)

Then

Dp1,...,pk,L1,L2

= Lk−p1−···−pk

1

�

π∈SPp
π=π(ρ1,ρ2,q)

(−1)|ρ1|
(nL1)

|σ(π)|−k

(NL2)|ρ1|

×(L2N)k(ρ(π))−kd(ρ(π))(L1n)
l(ρ(π))−ld(ρ(π))

×Yl1,...,lr (11)

is also an unbiased estimator for Dp1,...,pk
for any L1, L2. In

particular Dp,L1,L2 is an unbiased estimator for Dp
1.

Note that there is a constant term in Dp1,...,pk
, coming

from π where ρ1 = ρ2 = {1, ..., p}. The proof of Lemma 1
can be found in Appendix B. The appendix concentrates on
establishing Equation (9), since Equation (11) is immediate:
the term trailing Lk−p1−···−pk

1 in Equation (11) is an unbiased

estimator for the momentsFp = tr
��

1
NL2

DL1,L2D
H
L1,L2

�p�
,

once Equation (9) is established, so that the entire right hand
side of Equation (11) is an unbiased estimator for

Lk−p1−···−pk

1 Fp1,...,pk

= Lk−p1−···−pk

1 Fp1 · · ·Fpk

= (L1−p1

1 Fp1) · · · (L
1−pk

1 Fpk
)

= Dp1 · · ·Dpk
,

where we have used Equation (3).

1There can also be a known noise variance σ2 present, so that Model (2)
takes the form Y = D + σ2X. Generalizations of the result to this case is
obviuos, and the implementation used supports arbitrary noise variances.

Equation (9) is important: it reveals a similarity in the
expressions for convolution and deconvolution, so that the
implementation of Equation (13) from [21] for convolution
can also be used for deconvolution. Secondly, Equation (9)
can be used for obtaining an expression for the variances of
�Dp, as will be seen.

IV. STATEMENT OF THE MA IN RESULT

The following result says that, among the estimators we
have defined, any rectangular stacking asymptotically has the
lowest variance, and that horizontal and vertical stackings,
as well as averaging of observations, have a higher vari-
ance asymptotically. We will let vp,·,L denote the variance
of Dp,L1,L2 , with L = L1L2 the number of observations,
and · the stacking (H , V , or R). We will in addition let
A denote taking the average of L applications of �Dp, i.e.
1
L

�L
i=1

�Dp(Yi) and denote the variance of the corresponding
estimator by vp,A,L. It is clear that this is also an unbiased
estimator for Dp, with vp,A,L = 1

Lvp,R,1, since observations
are assumed independent. When P is a polynomial in several
variables, also denote by the degree of P , or deg(P ), the
highest sum of the exponents in any term therein. We will use
the notationO(Lk) to denote any polynomial in L where there
are no terms of higher order than k.

Theorem 1: The variance vp,·,L of Dp,L1,L2 is O(L−1).
Moreover,

lim
L→∞

Lv1,·,L =
2

nN
D1 +

1

nN
,

where · can be H,V,R, or A. For p ≥ 2 we have that

lim
L→∞

Lvp,R,L =
2p2

nN
D2p−1

lim
L→∞

Lvp,V,L =
2p2

nN
D2p−1 +

p2

N2
D2p−2

lim
L→∞

Lvp,H,L =
2p2

nN
D2p−1 +

p2

nN
D2p−2

lim
L→∞

Lvp,A,L =
2p2

nN
D2p−1 +

�
p2

N2
+
p2

nN

�
D2p−2

+Q(D2p−3, ..., D1),

where Q is a polynomial in D2p−3, D2p−4, . . . , D1 of degree
2p − 2, with only positive coefficients. In particular, all
rectangular stackings asymptotically have the same variance,
and

lim
L→∞

Lvp,R,L ≤ lim
L→∞

Lvp,V,L ≤ lim
L→∞

Lvp,A,L

lim
L→∞

Lvp,R,L ≤ lim
L→∞

Lvp,H,L ≤ lim
L→∞

Lvp,A,L

(since Q(D2p−3, ..., D1) ≥ 0 and all Dp ≥ 0). A lso, the
variance decreases with L for a fixed stacking aspect ratio,
and, for a given L and any rectangular stackings R1, R2

into L = L
(1)
1 × L

(1)
2 and L = L

(2)
1 × L

(2)
2 observations,

respectively. vp,R1,L < vp,R2,L if and only if

max

�
nL

(1)
1

NL
(1)
2

,
nL

(1)
2

NL
(1)
1

�
< max

�
nL

(2)
1

NL
(2)
2

,
nL

(2)
2

NL
(2)
1

�
. (12)

A lso, vp,·,L < vp,A,L for any stacking.
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Fig. 1. The estimator expressed in (10) with quadratic stacking applied
with different number of observations. D is a 4× 4 matrix. The actual third
moment of 1

N
DD

H is also shown.

The proof of Theorem 1 can be found in Appendix C.
Note that Equation (12) expresses that the first compound
observation matrix is “more square” than the second, thereby
providing an even stronger conclusion in the case of any given
finite number of observations. Theorem 1 is a statement on
the leading order term of the variances of moments of certain
random matrices. Similarly, the recently developed theory of
second order freeness [23], [24], [25] studies the leading order
terms in covariance expressions for many types of random
matrices.

V. SIMULATIONS

In [21], Proposition 1 was implemented. In the following,
the estimators and the expression (16) for the variance are
computed using this implementation 2.

Figure 1 shows results for the third moment estimator ex-
pressed in (11), applied to a diagonal matrix D, with diagonal
entries assumed to be 2, 1, 1, 0.5 (i.e. n = N = 4). The estima-
tor was applied to quadratic stackings of L = 1, 4, 9, 16, ..., all
the way up to L = 900 observations. A lthough Theorem 1 says
that the quadratic stacking is optimal, the difference between
the different estimators may be hard to detect in practice,
since differences may be small. Figure 2 gives a comparison
for the actual variances for different number of observations
and different stacking aspect ratios, verifying Theorem 1. The
theoretical limits for rectangular and horizontal stacking and
averaging are also shown. We have used the same 4×4 matrix,
and computed an exact expression for the variance obtained
in Appendix B. As predicted by Theorem 1, the variance
tends towards the theoretical lower bounds for rectangular and
horizontal stacking when the number of observations grow. For
L = 50 observations, to verify the results, we have also plotted

2A guide to the Matlab source code running the following simulations can
be found in [26].
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(a) L = 5
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(b) L = 50. Empirical variances are also shown for c = 0.02, 2/25, 0.5, 2.

Fig. 2. Figures displaying Lv3,·,L for the different estimators for Model
(2), for different number of observations L. A diagonal matrix D with entries
2, 1, 1, 0.5 on the diagonal has been chosen. The three rectangular lines are
the theoretical limits limL→∞ Lv3,·,L for rectangular stacking, horizontal
stacking, and averaging, as predicted by Theorem 1, in increasing order. It is
seen that aspect ratio near 1 gives lowest variance, and that the variances
decreases towards the theoretical limit predicted by Theorem 1 when L
increases.

the empirical variances

1

K − 1

K�

i=1

(xi − x̄)
2,

where {xi}Ki=1 areK outputs from the estimator (i.e. a number
of KL observations is needed, since each run of the estimator
requires L observations), and x̄ = 1

K

�K
i=1 xi is the mean. We

have set K = 1000, and indicated the empirical variances for
L1 = 1, 2, 5, 10, which correspond to c = 0.02, 0.08, 0.5, 2.

V I. CONCLUSION AND FURTHER WORK

We have analyzed an unbiased spectrum estimator from
observations of the form D + X, where X is Gaussian, and
shown that the way the observations are stacked can play a
role. More specifically, it is desirable to stack observations so
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that the compound observation matrix is square, as this will
give rise to spectrum estimators with lowest possible variance.
Asymptotically (i.e. when the number of observations grow to
infinity), the variance of the estimators are the same, with
only vertical and horizontal stacking and averaging displaying
different asymptotic behaviour. A ll cases of stacking were
shown to reduce the variance when compared to averaging.

This paper only considers estimators which perform aver-
aging or stacking of observations. Future work could consider
non-linear ways of combining observations, and compare re-
sults on these with the results obtained here. Theorem 1 should
also have some significance when the noise is not Gaussian,
since many random matrices with non-Gaussian, i.i.d. entries
display the same asymptotic behaviour as Gaussian matrices.
Future work could also consider this, and explore to which
extent results generalize to the finite regime.

A PPENDIX A
GEOMETRIC INTERPRETATION OF π, ρ(π) AND σ(π)

The following geometric interpretations explain the con-
cepts in Definition 2, and is a summary of [21]:

• We draw k disconnected circles with 2p1, 2p2, ..., 2pk
edges, respectively, and number the edges clockwise from
1 to 2p1+· · ·+2pk. The set ρ1 is visualized as a subset of
the even edges (2, 4, ..., 2p) under the mapping i→ 2i, ρ2
is visualized as a subset of the odd edges (1, 3, ..., 2p−1)
under the mapping i→ 2i− 1.

• π(i) = j means that the corresponding even and odd
edges 2i and 2j − 1 are identified, and with opposite
orientation.

• The vertices on the circles are also labeled clockwise, so
that edge i borders to vertices i and i+1. When edges are
identified as above, we also get an identification between
the vertices bordering to the edges. This gives rise to an
equivalence relation on the vertices. The corresponding
partition in P(2p1+ · · ·+2pk) of the equivalence classes
of vertices is written ρ(π), where P(n) denotes the
partition of n elements.

• It turns out that a block of ρ either consists of odd
numbers only (odd vertices), or of even numbers only
(even vertices). k(ρ(π)) is defined as the number of
blocks consisting of even numbers only, l(ρ(π)) as the
number of blocks consisting of odd numbers only.

• Edges from ρ1 and ρ2 are called random edges, other
edges are called deterministic edges. kd(ρ(π)) is the
number of even equivalence classes of vertices bordering
to a deterministic edge, ld(ρ(π)) is defined similarly for
odd equivalence classes of vertices.

• σ = σ(π) is the partition where the blocks are the
connected components of deterministic edges after iden-
tification of edges.

• By the graph of random edges we will mean the graph
constructed when we, after the identification of edges,
join vertices which are connected with a path of determin-
istic edges, and afterwards remove the set of deterministic
edges,

The quantities k(ρ(π)) − kd(ρ(π)) and l(ρ(π)) − ld(ρ(π))
in Equation (13) thus describe the number of even and odd

vertices, respectively, which do not border to deterministic
edges in the graph after the identification of edges. Note
that when ρ1 = ρ2 = {1, ..., p}, σ(π) is a partition of zero
elements. In this case we define Dl1,...,lr = 1.

A PPENDIX B
THE PROOFS OF LEMMA 1

We will need the following result, taken from [21], where
the general statement is for the case when D is random,
independent from X:

Proposition 1: Let X be an n × N standard, complex,
Gaussian matrix and D be an n×N non-random matrix. Set

Dp1,...,pk
= tr

��
1

N
DD

H

�p1
�
tr

��
1

N
DD

H

�p2
�
· · ·

× tr

��
1

N
DD

H

�pk
�

Mp1,...,pk
= E

�
tr

��
1

N
(D+X)(D+X)H

�p1
�

× tr

��
1

N
(D+X)(D+X)H

�p2
�
· · ·

× tr

��
1

N
(D+X)(D +X)H

�pk
��
,

We have that

Mp1,...,pk
=

�

π∈SPp
π=π(ρ1,ρ2,q)

n|σ(π)|−k

N |ρ1|

×Nk(ρ(π))−kd(ρ(π))nl(ρ(π))−ld(ρ(π))

×Dl1,...,lr , (13)

and where l1, . . . , lr are the cardinalities of the blocks of σ(π),
divided by 2.

Lemma 1 will be proved from Proposition 1. To ease the
expressions in the following, we will set

Pπ(n,N) = Nk(ρ(π))−kd(ρ(π))nl(ρ(π))−ld(ρ(π)).

To prove that the estimators Dp1,...,pk
expressed in (9) are

unbiased, we will first find alternative recursive expressions for
them, and prove by induction that these are unbiased. Assume
that we have found unbiased estimators Dq1,...,ql building on
Equation (13), whenever q1+ · · ·+ ql < p1+ · · ·+ pk. Define
Dp1,...,pk

by reorganizing Equation (13) to

Dp1,...,pk
= Yp1,...,pk

−
�

p≥1

�
π∈SPp

π=π(ρ1,ρ2,q)

n|σ(π)|−k

N |ρ1|

×Pπ(n,N) Dl1,...,lr . (14)

Here the term for the empty partial permutation has been sep-
arated from the other terms, and, by convention, Dl1,...,lr = 1
whenever π = π(ρ1, ρ2, q) with ρ1 = ρ2 = {1, ..., p}. Taking
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expectations on both sides in Equation (14) we get

E( Dp1,...,pk
)

= E(Yp1,...,pk
)

−
�

p≥1

�

π∈SPp
π=π(ρ1,ρ2,q)

n|σ(π)|−k

N |ρ1|
Pπ(n,N)E( Dl1,...,lr)

= Dp1,...,pk

+
�

p≥1

�

π∈SPp
π=π(ρ1,ρ2,q)

n|σ(π)|−k

N |ρ1|
Pπ(n,N)Dl1,...,lr

−
�

p≥1

�

π∈SPp
π=π(ρ1,ρ2,q)

n|σ(π)|−k

N |ρ1|
Pπ(n,N)Dl1,...,lr

= Dp1,...,pk
,

where we have again used Equation (13). This shows that
Dp1,...,pk

also is unbiased. We will now show that this recur-
sive definition of Dp1,...,pk

coincides with Equation (9), which
will complete the proof of Lemma 1.

Recursively replacing the Dl1,...,lr in Equation (14) until
there are only terms on the form Yp1,...,pk

left, we arrive at an
expression on the form
�

l

�
π1,...,πl

(−1)l
��l

i=1
n|σ(πi)|−σ(πi−1)

N |ρ1i|
Pπi

(n,N)
�
Yl1,...,lr

=
�

l

�
π1,...,πl

(−1)l n|σ(πl)|−k

N
�l

i=1
|ρ1i|

��l
i=1 Pπi

(n,N)
�
Yl1,...,lr ,

(15)
where π1, ..., πl are non-empty partial permutations, and where
l1, ..., lr are the cardinalities of the blocks after the identifica-
tion of edges from all π1, ..., πl. We will call a π = π1, ..., πl
a nested partial permutation, since it corresponds to a nested
application of partial permutations. The factor (−1)l comes
from l applications of Equation (14), where each application
contributes a factor (−1) therein. Due to this alternating sign,
many terms in Equation (15) will cancel. The following class
of permutations will be useful to see these cancellations:

Definition 3: Let Πl,k be the set of nested partial permuta-
tions on the form {π1, ..., πl}, where |ρπ1 |+ · · ·+ |ρπl

| = k.
A lso, when π = {π1, ..., πl} are nested partial permutations
which do not contain any identifications involving edges i
or j, let Ππ,i,j ⊂ Πl,k+2

�
Πl+1,k+2 be the set of nested

partial permutations which equals π, with the exception that
the identification (i, j) is added.

It is clear that any π ∈ Ππ,i,j gives equal contribution in
Equation (15) up to sign, since each such π embraces the
same edges, and the order of the identification of edges does
not matter for the final graph. It is also clear that

|Ππ,i,j ∩Πl,k+2| = l,

|Ππ,i,j ∩Πl+1,k+2| = l + 1,

and that the contributions from the two sets Ππ,i,j∩Πl,k+2 and
Ππ,i,j ∩Πl+1,k+2 have opposite signs, since the sign for any
π ∈ Πl,k is (−1)l. Adding the contributions, we get that the
total contribution from Ππ,i,j equals that from just one nested
partial permutation in Πl+1,k+2 where we set πl+1 = (i, j).
Summing over all π and l where π = {π1, ..., πl} does not
contain any identifications involving i or j, we get that the

contribution from the set of π which contain (i, j) equals the
sum over {π1, ..., πl−1, πl = (i, j)}. In the same way we can
sum over π with (i, j) replaced by all other edge possibilities,
to arrive at the sum over all π = {π1, ..., πl}, where all |ρπi

| =
1, and where we need only to sum over sets (i.e. the order of
the elements does not matter). In other words, and since there
are l = |ρ1| partial permutations nested in this way, we can
replace Equation (14) with

�Dp =
�

π∈SPp
π=π(ρ1,ρ2,q)

(−1)|ρ1|
n|σ(π)|−1

N |ρ1|
Pπ(n,N)Yl1,...,lr .

This coincides with Equation (9), and the proof of Lemma 1
is finished.

In a similar way to how Lemma 1 was proved, we can also
obtain the following expression for the variance of �Dp. We
will only state it for the case of no stacking, and apply it for
the stacked observation model in Appendix C:

Lemma 2: Let SPR2p be the set of partial permutations of
{1, ..., 2p} such that all identifications are from {1, ..., p} to
{p+ 1, ..., 2p}, or vice versa. The variance

vp = E

�
�Dp

2�
− E

�
�Dp

�2

of �Dp equals

�

π∈SPR2p

n|σ(π)|−2

N |ρ1|
Pπ(n,N)Dl1,...,lr . (16)

Proof: Inserting the expression (9) twice we get

vp =E

�
�Dp

2�
− E

�
�Dp

�2

=
�

π1∈SPp

π1=π(ρ
(1)
1 ,ρ

(1)
2 ,q)

�

π2∈SPp

π2=π(ρ
(2)
1 ,ρ

(2)
2 ,q)

(−1)|ρ
(1)
1 |(−1)|ρ

(2)
1 |n

|σ(π1)|−1

N |ρ
(1)
1 |

n|σ(π2)|−1

N |ρ
(2)
1 |

× Pπ1(n,N)Pπ2(n,N)

×
�
E

�
Y
l
(1)
1 ,...,l

(1)
r1

Y
l
(2)
1 ,...,l

(2)
r2

�

−E

�
Y
l
(1)
1 ,...,l

(1)
r1

�
E

�
Y
l
(2)
1 ,...,l

(2)
r2

��
, (17)

where l(1)1 , . . . , l
(1)
r1 are the cardinalities of the blocks of σ(π1)

divided by 2, l(2)1 , . . . , l
(2)
r2 those of σ(π2) divided by 2. Using

Equation (13) we can write

E

�
Y
l
(1)
1 ,...,l

(1)
r1

Y
l
(2)
1 ,...,l

(2)
r2

�

=
�

π∈SP
2p−|ρ

(1)
1

|−|ρ
(2)
1

|

π=π(ρ1,ρ2,q)

n|σ(π)|−r1−r2

N |ρ1|
Pπ(n,N)Dl1,...,lr ,(18)
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where l1, . . . , lr are the cardinalities of σ(π) divided by 2, and

E

�
Y
l
(1)
1 ,...,l

(1)
r1

�
E

�
Y
l
(2)
1 ,...,l

(2)
r2

�

=
�

π(1)∈SP
p−|ρ

(1)
1 |

π(1)=π(ρ11,ρ12,q)

�

π(2)∈SP
p−|ρ

(2)
1 |

π(2)=π(ρ21,ρ22,q)

n|σ(π
(1))|−r1

N |ρ11|

n|σ(π
(2))|−r2

N |ρ21|

×Pπ(1)(n,N)Pπ(2)(n,N)

×D
l
(1)
1 ,...,l

(1)
r1

D
l
(2)
1 ,...,l

(2)
r2

, (19)

where l(1)1 , . . . , l
(1)
r1 are the cardinalities of σ(π(1)) divided by

2, l(2)1 , . . . , l
(2)
r2 those of σ(π(2)) divided by 2. The powers of

n and N in Equation (19) can be written as

n|σ(π
(1))|+|σ(π(2))|−r1−r2

N |ρ11|+|ρ21|
Pπ(1)(n,N)Pπ(2)(n,N),

which match the powers of n and N in Equation (18) when
π = π1×π2 does not contain any identification of edges from
different expectations. These terms thus cancel, and we are
left with summing over π containing identification of edges
between the two expectations.

To see that we need only to sum over π containing only
identification of edges from one expectation to another, note
that a π1 containing (i, j) cancels the contribution from a π
containing (i, j), since the former has an additional power of
(−1). The same can be said for π2. The only terms not can-
celing therefore occur when π1 and π2 are empty, and π only
contains identifications between the two expectations. These
correspond to SPR2p by definition. A ll of them contribute with
a positive sign, and all in all we get that vp equals

�

π∈SPR2p

n|σ(π)|−2

N |ρ1|
Pπ(n,N)Dl1,...,lr

(since r1 = r2 = 1), which is what we had to show.

A PPENDIX C
THE PROOF OF THEOREM 1

The geometric interpretation of π ∈ SPR2p is as an identi-
fication among some of 4p edges, where even edges are only
identified with odd edges and vice versa, and where there are
only identifications between {1, ..., 2p} and {2p + 1, ..., 4p},
and vice versa. It is clear that π ∈ SPR2p is invariant under
cyclic shifts of the form π → s1ks2lπ(s1ks2l)

−1, where

s1k(r) =

�
r + k for r ∈ {1, ..., 2p}
r for r ∈ {2p+ 1, ..., 4p}

s2l(r) =

�
r for r ∈ {1, ..., 2p}
r + l for r ∈ {2p+ 1, ..., 4p}

(addition performed so that result stays within the same
interval, either [1, ..., 2p] or [2p+1, ..., 4p]) as long as k and l
either are both odd, or both even, in order for the identification
to remain between even and odd elements and vice versa.
The equivalence class of π ∈ SPR2p under cyclic shifts is
given by

�
k,l s1ks2lπ(s1ks2l)

−1, where k and l either are both
odd, or both even. We will denote by SPE2p the set of such

equivalence classes, and denote by π̄ ∈ SPE2p the equivalence
class of π ∈ SPR2p.

From the geometric interpretation of π it is clear that, when
we instead of π use s1ks2lπ(s1ks2l)−1,

1) |ρ1| and |ρ2| is the same for π and s1ks2lπ(s1ks2l)−1,
2) |σ(π)| = |σ(s1ks2lπ(s1ks2l)

−1)|. The block cardinali-
ties l1, ..., lr of σ(π) and σ(s1ks2lπ(s1ks2l)−1) are also
equal,

3) when k and l are both even, k, kd, l, ld are the same for
ρ(π) and ρ(s1ks2lπ(s1ks2l)−1),

4) when k and l are both odd,

k(ρ(π) = l(ρ(s1ks2lπ(s1ks2l)
−1))

kd(ρ(π) = ld(ρ(s1ks2lπ(s1ks2l)
−1))

l(ρ(π) = k(ρ(s1ks2lπ(s1ks2l)
−1))

ld(ρ(π) = kd(ρ(s1ks2lπ(s1ks2l)
−1)).

By definition of Pπ , the last two statements say that

Ps1ks2lπ(s1ks2l)−1(n,N) = Pπ(n,N)

when k, l are both even, and

Ps1ks2lπ(s1ks2l)−1(n,N) = Pπ(N,n)

when k, l are both odd. Since there are equally many elements
with k, l odd and k, l even under cyclic equivalence, we see
that

Qπ̄(n,N) =
�

π1∼π

Pπ1(n,N) (20)

is a polynomial symmetric in n and N , where ∼ denotes
equivalence under cyclic shifts. The first statements above say
that the rest of the powers of n and N in Equation (16) are
unchanged under cyclic equivalence. By summing over the
cyclic equivalence classes in Equation (16), we see that it can
be rewritten as

vp =
�

π̄∈SPE2p

n|σ(π)|−2

N |ρ1|
Qπ̄(n,N)Dl1,...,lr , (21)

with Qπ̄ symmetric in n and N . Moreover, Qπ̄ has the form
Qπ̄(n,N) = ankN l + bnlNk, where a + b is the number of
elements in the cyclic equivalence class of π.

Since Dp,L1,L2 is L1−p
1 times the estimator for the p-

th moment Fp of the compound matrix by the comments
following the statement of Lemma 1, the variance vp,·,L of
Dp,L1,L2 in Equation (11) is, after replacing n with nL1, and
N with NL2 in Equation (21),

vp,·,L = L2−2p
1

�

π∈SPE2p

n|σ(π)|−2L
|σ(π)|−2
1

N |ρ1|L
|ρ1|
2

Qπ̄(nL1, NL2)

×Fl1,...,lr

= L2−2p
1

�

π∈SPE2p

n|σ(π)|−2L
|σ(π)|−2
1

N |ρ1|L
|ρ1|
2

Qπ̄(nL1, NL2)

×L
2p−|ρ1|−|σ(π)|
1 Dl1,...,lr

=
�

π∈SPE2p

n|σ(π)|−2

N |ρ1|L|ρ1|
Qπ̄(nL1, NL2)Dl1,...,lr , (22)
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where we have used Equation (3), and set L = L1L2.
deg(Qπ̄) describes the number of vertices in the graph

of random edges not bordering to deterministic edges. Each
vertex is associated with a value ≤ Lmax(n,N), so that Qπ̄

has order at most L to the power of the number of vertices
not bordering to deterministic edges. We will use this in the
following, and consider the following possibilities:

1) There are no deterministic edges: in this case, p =
|ρ1|/2. Since there are only crossidentifications between
{1, ..., 2p} and {2p + 1, ..., 4p} for π ∈ SPR2p, any
vertex in {2p+ 1, ..., 4p} is identified with a vertex in
{1, ..., 2p}, so that {1, ..., 2p} contains representatives
for all equivalence classes of vertices. There are thus
at most p even equivalence classes, and at most p odd
equivalence classes. Thus

Qπ̄(nL1, NL2) ≤ O ((nL1)
p(NL2)

p) = O(Lp)

= O(L|ρ1|/2).

When p = 1, |ρ1| = 2, and |ρ1|/2 = |ρ1| − 1, so that
Qπ̄(nL1, NL2) ≤ O

�
L|ρ1|−1

�
, and it is easy to check

that we have equality for the only partial permutation
in SPR2, and that Qπ̄(nL1, NL2) = nNL|ρ1|−1 for
this π̄. When p > 1, |ρ1|/2 < |ρ1| − 1, so that
Qπ̄(nL1, NL2) = O(L

|ρ1|−2) for such π̄.
2) The graph of random edges is a tree, and there exist de-

terministic edges: since any crossidentification between
{1, ..., 2p} and {2p+1, ..., 4p} does not give rise to a leaf
node when all edges are considered, any leaf in the tree
of random edges must be bordering to a deterministic
edge. Since the tree contains |ρ1|+1 vertices, and since
there are at least two leafs in any tree, we have that
Qπ̄(nL1, NL2) has order at most O

�
L|ρ1|−1

�
, with

equality only if the graph of random edges borders to
exactly two deterministic edges. It is easily seen that this
occurs if and only if |ρ1| pairs of edges are identified in
successive order.

3) The graph of random edges is not a tree, and there
exist deterministic edges: if there are two cycles in the
graph of random edges, Qπ̄(nL1, NL2) has order at
mostO

�
L|ρ1|−2

�
(two subtracted for the cycles, one for

the deterministic edge). Similarly, if there is one cycle,
and more than one vertex bordering to a deterministic
edge, Qπ̄(nL1, NL2) has order at most O

�
L|ρ1|−2

�
.

A ssume thus that there is only one vertex bordering to
a deterministic edge, and only one cycle. It is easily
checked that this vertex must be on the cycle, and that
we must end up in the same situation as in 2) where
edges are identified in successive order, for which we
actually have a tree. Thus, there is nothing more to
consider.

We see that Qπ̄(nL1, NL2) has order at most O
�
L|ρ1|−1

�

in any case. Inserting into Equation (22), the first case above
contributes with L−1 1

nN for p = 1, for p > 1 we get only
terms of order O(L−2). The third case contributes only with
terms of orderO(L−2). For the second case, contributions are
of orderO(L−2) when |ρ1| pairs of edges are not identified in
successive order. When they are identified in successive order,

we consider the following different possibilities:
• When |ρ1| is odd we will have k(ρ(π)) − kd(ρ(π)) =

l(ρ(π))− ld(ρ(π)) = |ρ1|−1
2 , so that

Qπ̄(nL1, NL2)

= (L2N)k(ρ(π))−kd(ρ(π))(L1n)
l(ρ(π))−ld(ρ(π))

= (L2N)
|ρ1|−1

2 (L1n)
|ρ1|−1

2

= (nN)
|ρ1|−1

2 L
|ρ1|−1

2 ,

so that the term for π̄ in Equation (22) is of order
L(|ρ1|−1)/2−|ρ1| = L−|ρ1|/2−1/2. When |ρ1| = 1, this is
O
�
L−1

�
, and the contribution in this case is 1

nNL times
the number of partitions in the equivalence class of π̄
When |ρ1| > 1, all terms are of order O(L−2).

• When |ρ1| is even, either
1) k(ρ(π))−kd(ρ(π)) = |ρ1|

2 −1, l(ρ(π))−ld(ρ(π)) =
|ρ1|
2 , for which

Qπ̄(nL1, NL2)

= (L2N)
|ρ1|

2 −1(L1n)
|ρ1|

2

= N
|ρ1|
2 −1n

|ρ1|
2 L

|ρ1|
2 −1L1,

so that the term for π̄ in Equation (22) is of order

L|ρ1|/2−1−|ρ1|L1 = L−|ρ1|/2−1L1.

When the stacking is not vertical, we have that
L1 ≤ O(L1/2), so that the term for π̄ is of
order ≤ O(L−|ρ1|/2−1L1/2) = O(L−|ρ1|/2−1/2) ≤
O(L−3/2) When the stacking is vertical, the term is
of order L−|ρ1|/2, which is O(L−2) when |ρ1| > 2.
When |ρ1| = 2, the contribution in Equation (22) is
seen to be 1

N2L times the number of partitions in
the equivalence class of π̄.

2) k(ρ(π)) − kd(ρ(π)) = |ρ1|
2 , l(ρ(π)) − ld(ρ(π)) =

|ρ1|
2 − 1, for which the term for π̄ in Equation (22)

similarly is shown to be of order

L|ρ1|/2−1−|ρ1|L2 = L−|ρ1|/2−1L2,

and, similarly, only horizontal stacking with |ρ1| =
2 gives contributions of order O(L−1). The contri-
bution in Equation (22) is seen to be 1

nNL times the
number of partitions in the equivalence class of π̄.

When it comes to the number of elements in the corresponding
equivalence classes, it is easy to see that

• there are 2p2 elements for the class where |ρ1| = 1, cor-
responding to any choice of the 2p edges {1, ..., 2p}, and
any choice of the p even or odd edges in {2p+1, ..., 4p}.

• p2 elements for each class where |ρ1| = 2.
Summing up, we see that for p = 1, v1,·,L = L−1 2

nND1 +
L−1 1

nN for any type of stacking/averaging. For p ≥ 2 we get
that

vp,R,L = L−1 2p
2

nN
D2p−1 +O

�
L−3/2

�

vp,V,L = L−1 2p
2

nN
D2p−1 + L

−1 p
2

N2
D2p−2 +O

�
L−3/2

�

vp,H,L = L−1 2p
2

nN
D2p−1 + L

−1 p
2

nN
D2p−2 +O

�
L−3/2

�
,
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and the first formulas in Theorem 1 follows after multiplying
both sides with L, and taking limits. The O

�
L−3/2

�
-terms

make up the polynomial Q in Theorem 1, which has only posi-
tive coefficients due to Expression (16). The case of averaging
follows by noting that there are only positive coefficients in
Equation (22) for the variance, and that the variance is divided
by L when one takes L independent observations.

Finally, we prove why the least variance is obtained when
the compound observation matrix is as square as possible.
With c1 = nL1, c2 = NL2, c = c1

c2
, we can write each

Qπ̄(nL1, NL2) as a scalar multiple of

ck1c
l
2 + c

l
1c

k
2

= (nN)
k+l
2 L

k+l
2

�
c

k−l
2

1 c
l−k
2

2 + c
l−k
2

1 c
k−l
2

2

�

= (nN)
k+l
2 L

k+l
2

�
c

k−l
2 + c

l−k
2

�
,

It is clear that f(c) = c(k−l)/2+c(l−k)/2 has a global minimum
at c = 1 on (0,∞), and the result follows.
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