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Abstract—“Naive Lattice Decoding” (NLD) and its low- diversity using suboptimal decoders?
complexity approximations such as lattice reduction-aided lin- This question has been addressed by the recent studiesd0] a
ear decoders represent an alternative to Maximum Likelihood [5]. The authors of [10] introduced the Naive Lattice Deaode
lattice decoders for MIMO systems. Their diversity order has ; . .
been investigated in recent works. These showed that the NLD (NLD), also Ca”e.d L‘?‘tt'ce _DeCOder in [4], as a_ relaxed \msi
achieves only the receive diversity and that MMSE-GDFE left Of the ML detection in which the decoded points don't neces-
preprocessing followed by NLD or its approximations achieves sarily take into account the finite constellation. The tle¢ioal
the maximum diversity. All the theoretical results have so far survey achieved in [10] shows that the Naive Lattice Decoder
focused on the diversity order but this is not the only relevant ohegents a suboptimal solution to the diversity probleah a
parameter to achieve good performance and the coding gain h v th imal ve di itv. A ding t 5
also needs to be considered. In addition, up to now there has not reac es_on y the mgxu’na recelve IVersity. i ccording [
been any numerical analysis of the actual performance of these the maximal transmit diversity can not be achieved becéese t
techniques for the coded systems for moderate SNR. Naive Lattice Decoder and its approximations (such askatti
In this paper, we consider MIMO systems using high-dimensional reduction aided linear decoders) do not take the constellat
perfect space-time codes. We show that by adding MMSE- .,nsiraint into account and a shaping problem occurs. lerord

GDFE preprocessing, the NLD has a loss of only 1.9B with .
respect to optimal decoding in the case of the Perfect Code to solve the shaping problem, the authors of [S] propose

4 x 4. However, even with MMSE-GDFE preprocessing, the the MMSE-GDFE left preprocessing. According to the sur-
performance of lattice-reduction aided linear receivers is still vey of [5], the MMSE-GDFE followed by a lattice decoder

very poor for high-dimensional lattices. _ _ such as the Naive Lattice Decoder, achieves asymptotically
Mhh%dgGTanés_Ll[_)ll_\ferzE%tiEﬁrfeCt Codes, Naive Lattice Decoder, gptimal performance and maximal diversity. Up to now, all

’ ' the analytical results focused on the diversity order ofhsuc
decoders, however achieving diversity does not guararmtee g
performances for moderate SNR and the coding gain of these

In the last decade, a great interest has been accordedetthniques should also be considered.

wireless transmission systems using multiple antennakeat Numerical simulations were carried out in [9] in order to
transmitter and the receiver. These systems offer higher danalyze this performance in the case of uncoded system&whic
rates as well as performance gain thanks to transmit aonly have the receive diversity; to the best of our knowledge
receive diversity techniques. In order to exploit the besefithere has not been any numerical result confirming what has
of MIMO systems, space-time (ST) codes based on algebraieen proposed in theory and analyzing the performance for
structures have been developed. For example, the perfées canoderate SNR when space-time coding is employed.
are a class of ST codes which are full-rate, full-rank and this paper, we consider the cases of the Golden Code
satisfy the property of the non-vanishing determinant. Trend the Perfect Codé x 4, and present numerical results
linear structure of these codes allows their decoding bastha@t confirm the theoretical findings of [10] and [5] as far
on the lattice point representation. Optimal performarcaes as the diversity order is considered. On the other side, we
be obtained when the maximum likelihood (ML) criteriorshow that while the MMSE-GDFE followed by Naive Lattice
is considered. Many algorithms have been implemented Becoding also achieves excellent coding gain, the codiiny ga
perform the ML detection, for example, the Sphere Decodef its suboptimal approximations is very poor for high ledti
(SD) and the Schnorr-Euchner are employed. However, tbienensions.
higher the lattice dimension or the constellation size lig t
more these decoders become complex, which limits their use.
An alternative to these techniques consists in using subop\We consider within this work am; x n,, MIMO system
timal decoders such as the ZF (Zero Forcing), the ZF-DREheren, andn, denote respectively the number of transmit
(Zero Forcing-Decision Feedback Equalizer) or the MMSENd receive antennas, ang > n;. The transmitted bits are
(Minimum Mean Square Error). These decoders have lawapped onto symbols belonging to a finite constellatibn
complexity, but they don't preserve the diversity order an@n the simulation results, we consider the case of a QAM
therefore they have suboptimal performances. constellation). We consider the case of space-time coding
So, is it possible to achieve maximal receive and transmising the Golden Code [2] and the Perfect Cdde 4 [7].

I. INTRODUCTION

Il. SYSTEM MODEL



The constructed codewoi € C"*7 is then transmitted by version of (5) by searching the estimate in the latfi¢eand
the n; antennas during@” time slots. The received codewordsolving:
has the following expression: $nop = argmin ||y — Ms|? (6)
sEZ"
Y=HX+W 1) ) ) . ) )
This decoding approach is known as the Naive Lattice Decod-

whereH € C"~*™ represents the complex channel matrixng, called also Lattice Decoding in [4], and does not gui@n
The channel matrix elements are modeled as independent idiat Sy p belongs to the constellatiotd™ which results
tically distributed (i.i.d.) complex Gaussian random gaies in decoding errors. In the following section, we invest&gat
with zero mean and unit variancH is supposed to be knownthe performances of the Naive Lattice Decoder by numerical
at the receiver. BesideSV accounts for the additive Gaussiarsimulations.

noise whose entries are i.i.d. Gaussian with zero mean and

varianceo? per complex dimension. IV. PERFORMANCES OF THENAIVE LATTICE DECODER

We can convert the system model given in (1) into a real-

valued system as follows. Consider the vectoysy; andw;
that are obtained by column-wise vectorization of the roafi
X, Y and W respectively. The vectax; can be written as

In this section, we start by analyzing the performances of
the Naive Lattice Decoder in a first subsection. The second
subsection is dedicated to studying the approximations of
the NLD, and the last one deals with the MMSE-GDFE
x; = ®s/, (2) preprocessing.

where ® ¢ CT*™T is the generator matrix of the spacea. Naive Lattice Decoding
time code, ands’ is the vector of information symbols. Let
H' =1y ® H be ann, T x n,T-block diagonal matrix whose
blocks are equal t&1. Then we can write:

The authors of [10] led a theoretical survey showing that
the Naive Lattice Decoder does not attain the optimal dityers
order and computed an upper bound of its reached diversity
y1=H®s +wy; =H.s + wy. (3) which is given by:

Finally, by applying a complex-to-real transformationpes- dyvep <np(n. —ng+1) @)

tively to y1, He,, s’ andw, we get the real equivalent system ) o
We recall that the maximal diversity of coded MIMO systems

whereM is the 27Tn; x 2Tn,. real-valued channel matrix and Amaz = M7y (®)

y and w denote respectively theTn, real-valued received From (7), whenn,
signal and theTn,. noise vector. '
In the rest of this paper we consider a symmetric MIM
system wherey; = n,, = T' and we definex by n = 2n?.

= n,, the Naive Lattice Decoder achieves
only the receive diversity ordern,. In the light of these
(Pneoretical results, we examine the performance of thisdiec
in case of the Golden Code presented in Fig. 1. As we can see,
the diversity order can’'t be observed for moderate SNR range
Nevertheless, we notice that the gap between the NLD and the
ML detection exceeds.5 dB at a Bit Error Rate BER 107

From the expression of the received signal given in (4vhen16—QAM constellations are used. In the following table
we conclude that the latter can be viewed as a point of the present numerical results in order to quantify the loss of
lattice generated byM perturbed by the noise vector. NLD compared to ML for the Golden Code at a BER0?
Consequently, the MIMO detection problem can be reducéat different constellation sizes.
to a lattice decoding problem. In order to achieve optimal
performances, the ML criterion should be used. Followirig th

IIl. LATTICE DECODING ANDML DETECTION
IN MIMO SYSTEMS

criterion, we search the estimaig;; which satisfies [3]: constellation 4-QAM  16-QAM  64-QAM  256-QAM
X . ) gap (dB) 5.8 4.58 2.9 0.45
Smr = argrj‘un lly — Ms|| (5)
sc A"

Equation (5) is equivalent to solving a Closest Vector Reobl AS shown in the table, this loss decreases as a function of the
(CVP) in the latticeA generated byM. constellation size. Intuitively, large signal constetat are
The most well-known ML decoding algorithms are thé&/most indistinguishable from lattices for moderate SNR.
Sphere Decoder (SD) [11] and Schnorr-Euchner algorithffPW, considering the case of the Perfect Cdde 4, simula-
[1]. Nonetheless, the optimality of the SD results in highons of the NLD presented in Fig. 2 confirm the loss of trans-
computational complexity which increases as the number it diversity. In fact, this decoding approach not only ddes
antennas or the constellation size grows [8]-[6], whichitsm achieve full diversity, but also has a huge gap compared to
the use of this detection approach. One can also solve acela¥L detection, which exceeds3.5 dB for BER= 10",



1o fact that the NLD and its approximations don't take into

ML consideration the constellation bounds.
- e ] In the next subsection we study by simulations the effects of
o LLL+ZF-DFE the MMSE-GDFE preprocessing on the performances of the

NLD and its approximations, since this left preprocessing i
known to solve the shaping problem [5].
C. MMSE-GDFE preprocessed Naive Lattice Decoding

First of all, let us outline the MMSE-GDFE left preprocess-
ing principle. We define the augmented channel mawixvith

BER

105l i respect to the Signal to Noise Rafio= % as:
NI — M
10°F - ﬁl
10" o s 2 pye 0 Consider the QR decompositiddl = QR = [ 81 }R,
SNR (dB) 2

whereQ € R?"*7 is an orthogonal matrixR € R"*"

. . nxn .
Fig. 1. Performance comparison of ML decoding, NLD decoding il - IS upper tnangqlar and); € R . is not necessarily an
aided decoding for the Golden Code usitg—QAM constellations. orthogonal matrix. Then we can writdl = Q; R.

The MMSE-GDFE preprocessing transforms the decoding

problem in (5) into the non-equivalent problem of finding :

SMMSE—-GDFE = argmin HQ?Y - RSH2 )
seA™

Besides, we define the—regularized decoders as the decoders
that solve the CVP in the lattic&™ with respect to the
modified metric:

ML
—&— NLD

-4 | —%— LLL+ZF
—6— LLL+ZF-DFE

Seq = argmin ([ly — M s|* +as|?)  (10)
sezn

BER

One can easily prove th@tyyrse—cpreE = Sreg, that is
the MMSE-GDFE preprocessing is equivalentteegularized
decoding fora = + [5].
. p .
The theoretical result of [5] shows that with MMSE-GDFE
preprocessing, the approximations of theregularized de-
coders achieve the maximum diversity. This leads us to araly
0 I 20 2 the impact of the MMSE-GDFE on the performance of the
SNR (dB) Naive Lattice Decoder and of the LLL-aided suboptimal
decoders ZF and ZF-DFE for the coded systems. The main
Fig. 2. Performance comparison of ML decoding, NLD decoding .- contribution of this paper consists in validating the reswolf
aided decoding for for the Perfect Codlex 4 using16—QAM constellations. [5] and estimating the coding gain by simulations.
Starting with the case of the Golden Code, where the lat-
tice dimension is8, we present in Fig. 3 the performances
of both MMSE-GDFE preprocessed NLD and the MMSE-
A theoretical survey done in [5] proved that latticeGDFE followed by the LLL+ZF-DFE decoder. We see that
reduction-aided linear decoders represent an approximafi this preprocessing corrects the errors caused by the eut-of
the Closest Vector Problem. Particularly, the LLL reductioconstellation events and achieves the optimal transméreliv
followed by the ZF or ZF-DFE detectors represents an apprasity. Besides, as far as the coding gain is concerned, weenoti
imation of the lattice decoding or the Naive Lattice Decodethat the preprocessing decreases the gap between the NLD and
In the case of the Golden Code and the Perfect Cbetet, the ML which reache®2dB at BER= 10~* when 16-QAM
we see in Fig. 1 and Fig. 2, that the LLL reduction followe@onstellations are used, and in the case of the LLL+ZF-DFE,
by the ZF or the ZF-DFE decoders are extremely close to tttee MMSE-GDFE brings a gain ofdB at BER= 104,
performance of the NLD. In the case of the Perfect Codex 4 where the lattice di-
The performances of the NLD and its approximations givemension is32, the MMSE-GDFE leads to a great improvement
by the LLL+ZF and the LLL+ZF-DFE decoders confirm thatn terms of diversity order and performance of the NLD. In
the loss of the maximal diversity order is due to the shapirigct, as shown in Fig. 4, where we consider the NLD and
problem and to the out-of constellation errors caused by ttlee MMSE-GDFE+NLD, with left preprocessing, the NLD

B. Approximations of the Naive Lattice Decoder



1o explain this with the fact that LLL reduction is not efficient

' VL for high lattice dimensions because it performs size redoct

—8—NLD only locally on consecutive pairs of columns.

—<$— MMSE-GDFE+NLD | . . . . .

& LLL+ZF-DEE This is bad news for the purpose of designing practical
decoders, since Naive Lattice Decoding is mostly a thezakti

tool and doesn'’t provide an advantage in terms of complexity

compared to ML decoding, as was shown in [9].

BER

V. CONCLUSION AND PERSPECTIVES

In this paper we led a numerical analysis of the perfor-
mances of Lattice Decoders in terms of the achieved diyersit
and the coding gain. The proposed results concerning the
diversity confirmed that the NLD and its suboptimal approx-
imations achieve only the receive diversity and that the los
. ‘ ‘ ‘ ‘ . ‘ of the tran_smit diversity is d.ue to the shaping problem_cause

10 15 SiOR a®) 25 30 35 by neglecting the constellation constraint. Besides, Etan
results validated that by adding the left preprocessing MMS
GDFE, the Naive Lattice Decoder recovers the maximal
diversity and offers very good performance. However, even
with MMSE-GDFE preprocessing, the gap of LLL-reduced
receivers compared to ML is still very large when the lattice
recovers the full diversity order and its gap compared to tlitmension increases.
ML detection is noticeably reduced. For a BERI0~3 the Why is the combination of LLL reduction and MMSE-GDFE
loss was about3.6 dB and with preprocessing, it is reducedpreprocessing suboptimal? Can this be explained by the fact
to only 1.5 dB for the 16—QAM constellations, i.e the MMSE- that the LLL reduction is not efficient and does not provide
GDFE brings a performance gain of more thendB for the good approximations for lattice decoding for high dimensio
NLD. lattices? The answer to these questions will be the subject o
However, as we can see from the same figure, applyifigiure works in which we will investigate more efficient ia#
reduction methods.
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Fig. 3.  Bit Error Rate vs. SNR for the Golden Code usihg—QAM
constellation.
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