
HAL Id: hal-00648520
https://centralesupelec.hal.science/hal-00648520

Submitted on 5 Dec 2011

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Spatial Interference Mitigation for Multiple Input
Multiple Output Ad Hoc Networks: MISO Gains

Salam Akoum, Marios Kountouris, Merouane Debbah, Heath Robert W.

To cite this version:
Salam Akoum, Marios Kountouris, Merouane Debbah, Heath Robert W.. Spatial Interference Miti-
gation for Multiple Input Multiple Output Ad Hoc Networks: MISO Gains. 2011 Conference Record
of the Forty Fifth Asilomar Conference on Signals, Systems and Computers (ASILOMAR), Nov 2011,
Pacific Grove, United States. �10.1109/ACSSC.2011.6190095�. �hal-00648520�

https://centralesupelec.hal.science/hal-00648520
https://hal.archives-ouvertes.fr


Spatial Interference Mitigation for Multiple Input
Multiple Output Ad Hoc Networks: MISO Gains

Salam Akoum ∗, Marios Kountouris †, Mérouane Debbah‡, and Robert W. Heath, Jr. ∗
∗Department of Electrical and Computer Engineering, The University of Texas at Austin, Austin, TX 78712-0240

†Department of Telecommunications, Supélec, 91192 Gif-sur-Yvette, France
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Abstract—We consider spatial interference mitigation at the
transmitter for multiple input single output ad hoc networks.
We apply zero forcing beamforming at the transmitter, and
analyze the corresponding network throughput and transmis-
sion capacity. Assuming a network with Poisson distributed
transmitting nodes and spatially independent Rayleigh fading
channels, we apply mathematical tools from stochastic geometry
to derive a lower bound on the probability of outage. We
derive scaling laws for the transmission capacity and show
that for a large number of antennas, the maximum density of
concurrently transmitting nodes scales linearly with the number
of antennas at the transmitter, for a given outage constraint.
Numerical results show that the network throughput achieved
by interference nulling at the transmitter is comparable to that
achieved by interference cancellation at the receiver.

I. INTRODUCTION

Mutual interference poses a major bottleneck on the
throughput performance of mobile ad hoc networks. Em-
ploying multiple antennas at the radio nodes is a promising
technique to mitigate interference and increase the network
throughput. In particular, multiple antenna processing tech-
niques at the receiver have been shown to yield linear
performance in terms of maximum density scaling [1]. The
role of multiple antennas in interference nulling at the
transmitter, however, have not yet been fully investigated.
This paper analyzes the gains from using multiple antennas
for transmission in an ad hoc network. It applies transmit
zero forcing beamforming for a multiple input single output
(MISO) ad hoc network to increase the density of successful
communication links.

Multiple antenna techniques for both single-user and multi-
user multiple systems have been investigated in the literature
[1]–[9] of mobile ad hoc networks. Single antenna transmis-
sion with multiple antennas interference cancellation at the
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receiver was shown in [1] to achieve linear scaling of the
maximum density of transmitting nodes with the number of
antennas at the receiver. Maximum ratio transmission and
zero forcing beamforming towards the strongest interferers
at the receivers was analyzed in [3]. Outage probability and
density scaling results for maximum ratio transmission and
maximum ratio combining was reported in [6]. Open loop
transmission with spatial multiplexing and orthogonal space
time block codes and linear receivers was analyzed in [4].
The performance of multi-user MIMO communication in
a Poisson field of interferers, with full and partial CSI at
the transmitter was investigated in [7], [8]; it was shown
that single-user transmission is optimal for most practical
scenarios of interest. Multiple antenna interference nulling
was considered in [9] for a two-tier spectrum sharing ad
hoc network. Full zero forcing from the secondary network
towards the primary receivers was applied at the transmitter.
Using multiple antennas at the transmitter for same-tier
interference mitigation was, however, not investigated. Prior
work on spatial interference mitigation for same-tier mobile
ad hoc networks [1]–[4] focused exclusively on multiple
antenna processing at the receiver. Multiple antennas at
the transmitter, if present, were used for maximum ratio
transmission or open loop spatial loop multiplexing towards
the associated receiver. The role of multiple antennas in
interference mitigation at the transmitter was not considered.

Assuming the transmitter locations are distributed accord-
ing to a homogeneous Poisson point process (PPP), we focus
in this paper on devising a strategy to use multiple antennas
for interference mitigation at the transmitter, to maximize the
network throughput and increase the density of concurrently
transmitting nodes. We consider a mobile ad hoc network
with single-stream data links and single receive antennas.
We apply zero forcing (ZF) to null the interference from the
transmitters at the closest receivers. We derive bounds on the
resulting probability of outage and the network throughput of
the mobile ad hoc network. We derive the scaling law of the
transmission capacity with the number of transmit antennas,
for sufficiently large number of antennas, and a target outage
constraint. In particular, we show that the maximum density



of concurrently transmitting nodes in the network scales
linearly with the number of antennas at the transmitter, as
the number of antennas increases.

II. SYSTEM MODEL AND PERFORMANCE METRICS

Consider an ad hoc network in which the transmitting
nodes are located according to a two-dimensional homo-
geneous PPP Φ0 with intensity λ0 transmitters per unit
area. Each transmitter attempts to transmit with a probability
Pa, independently of other transmitters, following a slotted
ALOHA random access protocol. The process of active
transmitters in each slot also forms a homogeneous PPP Φ
with intensity λ = λ0Pa. The location of the n-th active
transmitter is denoted by Tn. Each transmitter communicates
with a receiver at a fixed distance d away from it. The
receivers are not part of the transmitter PPP. The location
of the n-th receiver is denoted by Rn.

By the stationarity of the Poisson process, we consider
the performance of a typical transmitter-receiver link, T0-
R0. From the perspective of R0 and by Slivnyak’s theorem
[10], the process of interfering transmitters also forms a
homogeneous PPP of intensity λ. The transmitting nodes
in the network are equipped with N antennas; whereas the
receivers have a single antenna. The channel corresponding
to the desired signal between T0 and R0 is denoted by
h0 ∈ CN×1. The interfering channel between R0 and the
n-th transmitting node Tn is denoted by gn ∈ CN×1.
The symbol transmitted from Tn for Rn is given by sn,
such that E

[
|sn|2

]
is normalized to one, for all n. We use

the simplified attenuation model for the distance-dependent
pathloss, `(dn) = γd−αn , where γ is the fixed transmit power
at Tn and dn is the distance between Tn and R0. The pathloss
exponent is denoted by α > 2. The received signal at the
tagged receiver R0 for a frequency flat channel is given by

y0 =
√
γ d−

α
2 h∗0f0s0 (1)

+
√
γ
∑
Tn∈Φ

d
−α2
n g∗nwnrn + v0,

where the vector f0 ∈ CN×1 is the beamforming vector
at T0, wn ∈ CN×1 is the beamforming vector at Tn for
all n, and v0 ∈ C is the additive white Gaussian noise at
R0 with variance σ2. We assume that the elements of the
channel matrices h0 and gn are independent and identically
distributed CN (0, 1), modeling a richly scattered independent
fading environment.

We assume that each transmitter has knowledge of the
channel to its intended receiver, and the channels to the
adjacent receivers that the transmitter is interfering with.
The CSI assumptions in this paper are applicable for time
division duplexing (TDD) systems. The same assumptions on
the knowledge of the channels at the receiving nodes have
been considered in [1], [2], [8].

A primary performance metric of interest in this paper is
the probability of outage Pout with respect to a predefined

signal-to-interference-plus-noise ratio (SINR) β,

Pout = P (SINR ≤ β) . (2)

The SINR statistics at R0 depend on the design of the
beamforming vectors f0 and wn, for all n. The probability
of outage is used to compute the network throughput. The
network throughput is defined as the product of the sum rate
per unit area and the probability of success assuming that
capacity achieving codes are used. It is given by

T = λ log2 (1 + β)P (SINR > β) . (3)

The network throughput is different from the transmission
capacity which is defined as the area spectral efficiency for
the maximum density λε = sup{λ : P (SINR ≤ β) ≤ ε}
allowed subject to an outage constraint ε > 0, i.e.,

C = λε log2 (1 + β) (1− ε) . (4)

In contrast to the network throughput that may result in
high outage events, the transmission capacity calculates the
maximum density of transmissions per unit area so that a
desired outage level ε is not exceeded.

III. INTERFERENCE NULLING AT THE TRANSMITTER

We propose a transmission strategy based on ZF inter-
ference nulling at the transmitter. We assume that each
transmitter employs a partial ZF (PZF) beamforming vector.
PZF was first suggested in [1] for receive filter design. It was
found to be amenable to analysis and to explicitly balance
interference cancellation and boosting of the desired signal
power. With PZF, the transmitter uses ` degrees of freedom
to null its interference to its closest, in terms of distance,
receivers, and uses the remaining N − ` degrees of freedom
to transmit the desired signal to its associated receiver. With
no interference nulling ` = 0, PZF is equivalent to transmit
beamforming; whereas for ` = N − 1 it is equivalent to full
zero forcing beamforming.

To illustrate PZF beamforming, let

H0 = [h1 h2 · · · h`] , ` ≤ N − 1

be a N×` matrix of channels from T0 to its closest receivers.
The vectors h1, · · · ,h` are such that d01 < d02 < · · · < d0`

where d0n is the distance from T0 to receiver Rn. The PZF
beamforming vector f0 is chosen such that it is in the null
space of H0, Null(H0), of dimension N−`. Furthermore, to
maximize the desired signal power, f0 is taken in the direction
of the projection of the desired channel h0 onto Null(H0).
More precisely, f0 is computed as

f0 = QQ∗h0, (5)

where Q forms an orthonormal basis for Null(H0).
For the proposed spatial interference strategy, the signal-

to-interference-plus-noise ratio (SINR) at the tagged receiver
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Fig. 1. Partial zero forcing interference nulling at the transmitter. The
interference at the tagged receiver R0 is nulled by its closest interferer T1

but not nulled by its second interferer T2. The cardinality and the location
of the cancelled interferers in the set {Ct} in the aggregate interference at
R0 is unknown.

R0 is written as

SINR =
γd−α|h∗0f0|2

σ2 + γ
∑

Tn∈Φ/{Ct}

d−αn |g∗nwn|2
=

|h∗0f0|2
1

SNR
+ dαIt

,

(6)

where SNR = γd−α

σ2 is the signal-to-noise ratio at R0.
The set {Ct} is the set of the transmitters that nulled their
interference towards R0. The cardinality |Ct| of {Ct} as well
as the location of the nodes in {Ct} with respect to R0, are
unknown. They depend on the density of the nodes λ in
the network and the distance from the transmitters to the
receiver R0. For transmit PZF, interference nulling is done
“blindly” towards the closest receivers to the transmitter. The
aggregate interference at the tagged receiver R0 is not taken
into account in the nulling performed at T0. Consequently, the
aggregate interference at R0 need not be void of the closest
` interferers to R0 as in the case of PZF receiver cancellation
[1]. This is illustrated in Figure 1, where T1 and T2 are the
closest interferers to R0, the interference from T1 is removed
at R0 while that of T2 remains.

The desired signal power |h∗0f0|2 is Chi-squared dis-
tributed with 2(N − `) degrees of freedom, χ2

2(N−`). This
follows from the projection of a random vector h0 onto
an independent (N − `)-dimensional space Null(H0). The
distribution of the aggregate interference term depends on the
characterization of the set {Ct}. We compute an upper bound
on the expected value of the interference in the following
Lemma.

Lemma 1: The expected interference power It at R0 is
given by

E [It] =
(
πd2λp

)α
2

(
α

2

(α
2
− 1
)−1

)
, (7)

where λp = λ−ρ`, and ρ is the inverse of the area occupied

by the interferers on the two-dimensional network space.
Proof: The proof is provided in Appendix A.

The upper bound on E[It] can be understood by arguing
that on average each receive node in the network receives
interference from all the transmitters except ` interferers,
chosen at random from the total set of interferers Φ. This
implies that the density of interferers is reduced by ρ` where
ρ is the inverse of the area occupied by the network. The
value of ρ does not affect the conclusions drawn on the
scaling performance of the network.

Using the distribution of the desired signal power, and the
upper bound on the expected interference term, we find an
upper bound on the probability of outage for transmit PZF.

Theorem 1: The probability of outage for transmit ZF
beamforming for an ad hoc network with PPP distributed
nodes with density λ and N transmit antennas is upper
bounded by

PT−PZF
out ≤

β
(
α
2

(
α
2
− 1
)−1 (

πd2 (λ− ρ`)
)α

2 + 1
SNR

)
N − `− 1

. (8)

Proof: We apply the Markov inequality on the tail
probability of the inverse SINR to get

P [SINR ≤ β] = P
[

1
SINR ≥

1
β

]
≤ β E

[
1

SINR

]
(a)
= βE

[
1

|h∗
0f0|2

] [
E
[

1
SNR

]
+ E [dαIt]

]
≤

β
(
α
2 (α2−1)

−1
(πd2λp)

α
2 + 1

SNR

)
N−`−1 .

The expression in (a) is obtained because the signal and
interference plus noise terms are independent. The expected
value of the desired signal power is given by N − `−1. The
upper bound on the probability of outage is finally computed
using the upper bound from Lemma 1.

A bound on the network throughput T is obtained from
the complement of the probability of outage as follows

T ≥

1−
β
(
α
2

(
α
2 − 1

)−1 (
πd2 (λ− ρ`)

)α
2 + 1

SNR

)
N − `− 1


× λ log2 (1 + β) .

(9)

The transmission capacity C is a function of the maximum
density λε such that the probability of outage is less than
a threshold ε. A lower bound on the maximum density is
obtained by setting the probability of outage expression in
Theorem 1 equal to ε and solving for λ. It is given by

λε ≥

(
(N − `− 1) ε− β

SNR

β(πd2)
α
2
α
2

(
α
2 − 1

)−1

) 2
α

+ ρ`. (10)

In what follows, we use the bound on the transmission capac-
ity to derive the main result on the scaling of the transmit PZF
beamforming system with the number of transmit antennas.



IV. LINEAR DENSITY SCALING

To establish the scaling of the density λε with the number
of transmit antennas N for transmit PZF beamforming, we
choose the number of nulled receivers ` to be a constant
fraction of the total number of antennas

` = θN, 0 < θ < 1.

We rewrite the lower bound on the density λε in terms of θ
as

λε ≥

( ε
β

) 2
α
(
α
2
− 1
) 2
α
(

2
α

) 2
α

πd2
(1− θ)

2
α

(
1−

1 + β
SNR

(1− θ)N

) 2
α

+ ρ θN1− 2
α

)
N

2
α .

(11)

As the number of antennas N increases, for sufficiently large
N , the lower bound on λε scales linearly with N . More
formally, as N →∞,

λε
N
≥ ρ θ. (12)

This shows linear scaling of the density λε with the number
of transmit antennas when transmit ZF beamforming is
employed. The linear scaling result can be understood by
considering Lemma 1, as on average the aggregate interfer-
ence power at R0 is reduced by ` = θN . This provides a
linear scaling of the interference term with N . Similarly,
the desired signal power increases linearly with N . The
signal and interference terms both increase with the same
scaling with N and thus the linear scaling is maintained for
sufficiently large N .

V. SIMULATION RESULTS AND DISCUSSION

In this section, we present Monte Carlo simulations to
evaluate the performance of the transmit ZF scheme proposed
in the paper. The simulation setup follows that in [3]. The
distance between each transmitter and its associated receiver
is d = 10 m, and the pathloss exponent is set to α = 4.
The probability of outage threshold β is taken equal to 3
corresponding to an SINR threshold value of 4.8 dB.

Figure 2 plots the density λε of transmitting nodes on a
log-log scale for increasing number of transmit antennas N ,
for ε = 0.1. It compares the numerically computed density,
with the lower bound obtained in Theorem 1, and the lower
bound obtained in [1] for ZF interference cancellation at the
receiver for a single input multiple output (SIMO) system,
with N receive antennas. We observe from the figure that the
bounds and the numerically computed density indeed show a
linear scaling of λε with N . The lower bound of Theorem 1 is
tighter for a small number of antennas. The plot also suggests
that the simulated transmit ZF beamforming density scaling
approaches the bound for the SIMO interference cancellation
scheme, as the number of antennas increases.

In Figure 3, the network throughput is plotted for an
increasing number of antennas N , and an outage probability
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Fig. 2. The maximum density of transmitting nodes λε versus the number
of transmit antennas N . The simulated density refers to the density scaling
obtained by Monte Carlo simulations for ε = 0.1. The analytical transmit
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cancelation density is obtained in [1].
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Fig. 3. The network throughput as a function of the number of antennas
N for MISO ZF transmit nulling and SIMO ZF receive cancellation in [1].

target ε = 0.1. The network throughput achieved using
transmit ZF beamforming is compared with that of the SIMO
interference cancellation scheme in [1]. Figure 3 shows that
the two network throughputs are almost equivalent. This
clearly illustrates that receive processing techniques, while
achieving good performance, should not be considered in ex-
clusivity when it comes to interference reduction in multiple
antenna ad hoc networks. Transmit processing using a “blind”
interference nulling strategy yields good performance, and
removes the processing burden from the receiver.

Finally, although linear density scaling is shown to be
achieved for any 0 < θ < 1 for transmit PZF, we can find
the optimal fraction of antennas θ that should be used at
the transmitter to null the interference, while maximizing the
density of concurrent transmitters in the network. Figure 4
plots λε versus the number of nulled interferers ` for N = 10
and ε = 0.1. The maximum density is shown to be achieved
at ` = 5 for α = 4. This agrees with the optimal fraction
θ∗ = 1− 2

α obtained for ZF interference cancellation in [1].
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Fig. 4. The maximum density λε versus the number of nulled receivers `
for N = 10, ε = 0.1 and α = 4. The maximum is reached at ` = 5.

VI. CONCLUSION

In this paper, we analyzed spatial interference mitigation
for a MISO ad hoc network. We showed that ZF interference
nulling at the transmitter provides a linear increase in the
transmission capacity with the number of antennas at the
transmitter, for a given outage constraint. Although transmit
PZF is applied towards the closest receivers, which do not
necessarily correspond to the closest interferers to the desired
receiver, its network throughput performance is compara-
ble to the performance of SIMO ZF cancellation, where
cancellation is done deterministically towards the closest
interferers at the receiver. The main takeaway from this paper
is that multiple antennas at the transmitter should be used
more efficiently to improve the throughput performance of
mobile ad hoc networks. Future work includes devising a
distributed multiple input multiple output interference miti-
gation strategy, where in addition to interference nulling at
the transmitter, antennas at the receiver are used to cancel
residual interference.

APPENDIX A
PROOF OF LEMMA 1

The expected value of the aggregate interference It is given
by

E

 ∑
Tn/{Ct}

d−αn |g∗nwn|2
 =

∑
Tn/{Ct}

E
[
d−αn |g∗nwn|2

]
=

∑
Tn/{Ct}

E
[
d−αn

]
The distances d2

1, d2
2, · · · form a one dimensional PPP with

intensity πλp. The density λp is written as a function of λ
as follows

λp = λ− ρ`, (13)

where ρ is the inverse of the area occupied by the interferers,
or the two dimensional space of the ad hoc network. The
random variables πλpd2

n are distributed as χ2
2n, and thus have

PDF f(x) = xn−1e−x

(n−1)! . Therefore

E
[
d−α/2n

]
= (πλp)

α
2

Γ(n− α/2)

Γ(n)
. (14)

This quantity is finite only for n > α
2 , and thus the expected

power from the nearest uncancelled interferer is finite only
if n > α

2 . The upper bound on the expected interference, for
n ≥ dα2 e, is given by,

E[It] = (πλp)
α
2

∞∑
n=dα

2
e

Γ(n− α
2

)

Γ(n)

(a)
< (πλp)

α/2

1 +

∞∑
n=dα

2
e+2

(
n− dα

2
e
)−α

2


(b)

≤ (πλp)
α
2

(
1 +

∫ ∞
dα

2
e+1

(
x− dα

2
e
)−α

2
dx

)

= (πλp)
α
2

(
α

2

(α
2
− 1
)−1

)
(15)

where (a) is reached by invoking Kershaw’s inequality on the
Gamma function [3],

Γ(i− α/2)

Γ(i)
<
(
i− dα

2
e
)−α2

,

and (b) is computed by upper bounding the summation by
the integration.
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