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ABSTRACT

In this paper, we design a low complexity linear MMSE decader
recover the signal transmitted By mobile users to a base station
equipped withN receiving antennas, arranged as a uniform lineal
array (ULA). The angles of arrival are supposed to be unifpmiis-
tributed. As the dimension increases, it is hard to investdfsstem
and therefore recent results on random matrix theory anghpatial
expansion detectors are helpful to approximate the optiriear
MMSE receiver. Simulation results confirm the validity ofstlap-
proximation.

Index Terms— Uniform Linear Array, Polynomial Receiver,
Random Vandermonde Matrix

1. INTRODUCTION

In the last two decades, multiuser detection has shown tousea
ful design technology for detecting desired signals frotariierence
and noise. The first optimum multiuser detector was invattig)

results on random matrix theory, in particular on the momerit
random Vandermonde matrices with entries on the unit cid]e
we are able to find the optimum polynomial receiver, optimuitnw

'respect to the mean square error (MSE). Note that similaoaghes

could be used to find optimum receiver for compact rotatingy!kal
antenna [5]. In the next section, we present the model urialegre
vation. In section 3, we describe a low complexity linear MMS
receiver and in section 4 we use recent asynptotic resuk&oder-
monde matrices to estimate weights. In section 5, simulatshow
the validaty of the MMSE reciver design and in the last sectie@
give the conclusions.

Notation. In the following, upper (lower) boldface symbols will be
used for matrices (column vectors), whereas lower symbiblsep-
resent scalar values.)™ will represent the hermitian transpose op-
erator,(.)” denotes the transpose operator &nd||r denotes the
Frobenius norm operator. We denote hy the M x M identity
matrix. We letTr be the (non-normalized) trace for square matrices,
defined byIr(A) = "7, as:, wherea; are the diagonal elements
of the M x M matrix A. We also letry, be the normalized trace,

by Verdu in 7] for asynchronous Gaussian multiple access channeldefined bytras (A) = - Tr(A).

based on maximume-likelihood detection. The receiver isimered
optimal in the sense that the performance in the absencelsSizam
noise approaches that of a single-user system. Since thputam
tion of the inverse matrix is complex, the authors of [2] aaluced
a multistage linear receiver to design different lineaedtdrs, such
as decorrelating detectors and minimum mean square etiextde
approximating the inverse matrix by a polynomial expansibthe
correlation matrix. This expansion is formed by a linear boration
of the outputs of the individual receiver stages. The patyiab ap-
proximations are helpful in practice only if the weights dencalcu-
lated more easily than performing matrix inversion. As théraum
weights depend on the eigenvalues of the correlation matrey
are not easy to calculate either. The combination of polyabex-
pansion detectors and convergence results from randonixrtteer
ory gives in [3] low-complexity detectors to mitigate irfierence in
multiple-input multiple-output (MIMO) systems.

In this paper, we design a multiuser receiver using the timeia-

imum mean square error (MMSE) as a signal detector in a systesatisfying[E [x(t)x(t)H]

model wherel mobile users are communicating in the uplink with
a base station represented by a uniform linear array. THesar-
rival are supposed to be uniformly distributed and the cebmatrix

2. SYSTEM MODEL

We considerM mobile users, each with a single antenna, commu-
nicating with a base station equipped with receiving antennas,
arranged as a uniform linear array (ULA), as in Figure 1. The 1
output signal at the base station is given by

v(6:)

1=1

= V(O)P*x(t) + n(t)

1/2
pi/ T

y(t) = () + n(t)

wherex is the M x 1 input signal transmitted by th&f users

x(t) = [z1(t), ...

= I, andn(t) is the additive Gaus-
sian noise such that [n(t)n(t)"] = oIn. We suppose that the
components ix(¢) andn(t) are independent. The elements of the
M x M matrix

e ()]

can be modeled by a random Vandermonde matrix. This scenario

can be met in large surveillance system using radar. Usilogvikn
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eigenvalues aP'/2V#VP'/2). The characteristic polynomial can
be written as

M .
> ai (PVPVIVPY? 4 01) =0
=0
wherea; = Oéi()\l, ey AM; 0'2;p1, . ,pju). We obtain
(PAVIVPI2 4 o1) =

1—1

M
-y (PWVHVP”2 + 021)
=1 @0

M -1/ i
e - Pl B (P1/2VHVP1/2)
o1 40 5 J ’

Fig. 1. Graphical representation of the system model. which means that we can write the inverse as a matrix polyaloofi
degreeM — 1in P2V VP'/? such that

represent the power with which the users send informatiarthé M1 )
case of a line of _sight between the _mobile users and the batsenst (P1/2VHVP1/2 n 021) -1 _ Z ) (Pl/QVHVPI/Q)l 7
the N x M matrix V has the following form prd
V(0) = —= [v(01),.., v(0n)]
YN T where the coefficients; = 22 7'} (*7")o*¢~/~ and they only
where depend on the eigenvalueséf? V, the poweP and the noise vari-
ancec?. In order to reduce the complexity, this suggests the in-
vo) =1 e_j%% sin(0) e_]-Q,r%(N_l)Sin(g)]T tr_oduction of multistage_receivers that approximate t_fwen'se ma-
’ v ’ trix of the LMMSE receiver by a polynomial expansion of degre

) K < MinPY2vivpl/2
and6,..., 0 are the angles of the users (see Figure 1) and are
supposed to be i.i.d. and uniform ¢r- I, % [, dis the interspacing .
distance between the antennas of the ULA, arns the wavelenght . 5 iol/2x H 1/2vim1py1/2 7 H
of the signal. Assuming a memoryless channel, we can write XMMSE = Zﬂi(P VEVP)TP VY. ()

i=1

y = VPY%x +n. Q)

N N N T
The weight vecto@ = |31,...,8x| can be choosen to optimize

some performance measure. We derive the vector of weights su
that minimizes the mean square error (MSE) of the estimagetby
XMMSE

3. RECEIVER DESIGN

The linear minimum mean square error (MMSE) detec®bfqr the
channel in (1) is given by

K 2
X_Z Bi(P1/2VHVP1/2)i—1P1/2VHy

i=1

-1
%= (PWVHVP”2 + 021) p/2viy. @) .
B =argminE

B

Recovering the data in (2), hence, requires the inversidgheofma-
trix between brackets which is a difficult task when the disiens ) . . o (4)
of this matrix are large. In order to compute this, we rementie Ex?/r2esslling ecﬂ}’f&'?? (?)Qasg linear combination of the veato=
Caley-Hamilton theorem, which states that any square msatis- (£~ V' VP/%)" " P/“V7y, we can write the expectation in
fies its own characteristic equation (4)as

]

where \; are the eigenvalues &V, p; the eigenvalues oP,  where the matri = [z1,...,zx]. We minimize respect t@ and
and i (pi, \;) the eigenvalues dP'/2V VP'/? (for large matri- ~ We obtain that the optimum weight vector satisfies

ces,u; can be viewed as functions pf, A;, due to the almost sure

convergence of products of Vandermonde matrices and dietisrm . 1

tic matrices [7], which is whyu; (p;, \;) has been subsituted for the B= (IE [ZHZ]) E [ZHx] =& 1.

det (131/2VHV1>1/2 4 0?Tar — (uipis \i) + aQ)IM) —o, E UX -z



The elements of th& x K matrix & are given by

®(i,j) =E |22,
=K [(XHP1/2VH + nH)VPl/Q(Pl/QVHVPl/Q)i_l %

(P2 Hypl/2)i—ipl/2yH (vpl /2 4 n)]
) .
- T (PWVHVP”?) |+

+ {Tr(Pl/QVHVPl/Q)H—j_l}
v (PvHv)iﬂ} + JMQ —

SR

itj—1
Tr (PVHV) ! ] ©)
and the elements of thE€ x 1 vector¢ are
¢(1) =E [zf{x}
=E [(XHP1/2VH + nH)VP1/2(P1/2VHVP1/2)'L71X}
_ 1 12 Hupl/2) o 1 Heo\E
_M{T&“(P VIVP2) | = — T (PVIV)]
(6)

4. ASYMPTOTIC ANALYSIS

We need to recall some results from random matrix theory. Ve a

proximate the optimum weights by using results on the asgtigpt
moments of random Vandermonde matrices [4]. In particular,
assume that the size &f grows to infinity while the ratio of the
number of columns to rows tends to a limit> 0.

Definition 1. An N x M random Vandermonde matrix with unit

entries has the form

1 1
1 e Iw1 e IwM
V= ﬁ . . 5
eI (N=1)w1 e J(N=Dwar
wherews, ...,wyr arei.i.d. random variables.

We will denote byP(n) the set of all partitions of1,...,n},
and will write W1, ..., W, for the blocks of a givep € P(n).

Definition 2. For p € P(n), we define

Kp,w,N -
1 1 — eI N (@pk—1) ~wh(k))
—_— - dwi .. .dwi,,
Nrti=lel /(O,Qw)\p\ k=1 1- e](“’b(k—l)_“’b(k)) wi “lel
(7)
whereww,, ..., ww,, areii.d. (indexed by the blocks pj with

the same distribution ab and whereb(k) is the block ofp which
containsk. If the limit
®)

Kpw= lim K,u N
N—oco

exists, it is called a Vandermonde mixed moment expansieffi-co
cient.

In [4], it has been proved that the limit in (8) exists if thendiy
of w is continous. The calculation is based on combinatorialmoem
tation using crossing partitions since the matrices arefreet We
will need the following result [4]:

Theorem 1. Letw be as in Section 2, i.ev = 274 sin(9) with 6
uniform on] — 2, & [. We have that all limitd<, ., exist. Also,

my, = lim E
N—o0

[t (PVIV)'| = 3 K,ur”7'R, (@)
)

pPEP(n
when — r > 0, P, = limy—,c0 tr(P™), P, =[], P, .

The quantities (9) are also computable [8]. Using the previo
resultin Theorem 1, we obtain an estimation of the optimunglats
for the considered model, whé¥i — oo, % — r, as follows

ﬁasy - lt(:slyd)asy’
where the generic element &, is given by

(10)

Dsy(i,g) = Z Kp,wf‘p‘_lpp +0° ZKp,wT‘p‘_IPp
pEP(i+5) PEP(i+j—1)
= mitj + 0 mirj1,
and

sy (1) = K, P17 'p = m,.
Basy (%) Z Ps 13
pEP(4)

This means that we can write the equation (10) in the follgviorm

3(1)

2 2
ma + oc“m1 Mmrg+1+0 Mg

mi asy

2 2 5(2)

ma ms3 + oc“ma MK+2 + 0 MK41 asy
2 2 N

mk | |[Mmr+1+ 0 mi mak + o mak—1]| BK)

Note that we have substitut&[tr (PV*V)"] with [tr (PVZV)"],
which is valid due to almost sure convergence [7].

5. NUMERICAL RESULTS

In this section, we present simulations of the above ressimu-
lations show the validity of our approximation. Documeittatof
code for computing the moments of Vandermonde matrices ean b
found in [8].

In the Figure 2, we have plotted, increasifg and N, the error

—1
|G — Gasy |2 WhereG = (P1/2VHVP1/2 + 021) pl/2yH

and G,.y = K, B9, (PV/2VHVPY/2)i-1P2VH | The ra-
tio between the increasing M mobile users and N receivingrant
nas is assumes to be equalls, 1,7/5. In Figure 3,||G||% and
||Gasyl||7 are plotted with increasing/ and N with ratio 1/5, and
with approximation ordefk = 5.

In Figure 5, we have plotted the SINR per user, increasing
the number of receiving and mobile users with given ratioa¢qu
to 1/5,1,7/5. In particular, the SINR of usef (¢ = 1,..., M)

reads SINR = =7 ‘g‘fhf‘il
YLy, iz |lBehi P +0?

the matrixGg.sy andh, is the /-th column of the matrix product
P/2V. Figure 4 shows good results for order of approximation
K = 4. In all simulations, we assume the powier= I,,, variance
noises = /0.5, wavelenght\ = 2, and distance between receiving
antennasl = 1.

whereg, is the ¢-th row of
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Fig. 2. ||G — Gusyl|% is plotted increasing and N with ratio
1/5,1,7/5.
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Fig. 3. ||G||% and||G.sy||% are plotted increasing/ and N with
ratio1/5.

6. CONCLUSION

In this paper, we have designed a low-complexity linear MM8E
ceiver through random matrix theory and polynomial expamsie-
tectors. In particular, we have used recent asymptotidteesn the
moments of random Vandermonde matrices with entries onrfie u
circle to approximate the optimum weights of the polynonrizd
ceiver. Simulation results are presented in order to cortfirerva-
lidity of our approximation.
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