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ABSTRACT

In this paper, we design a low complexity linear MMSE decoderto
recover the signal transmitted byM mobile users to a base station
equipped withN receiving antennas, arranged as a uniform linear
array (ULA). The angles of arrival are supposed to be uniformly dis-
tributed. As the dimension increases, it is hard to invert the system
and therefore recent results on random matrix theory and polynomial
expansion detectors are helpful to approximate the optimumlinear
MMSE receiver. Simulation results confirm the validity of this ap-
proximation.

Index Terms— Uniform Linear Array, Polynomial Receiver,
Random Vandermonde Matrix

1. INTRODUCTION

In the last two decades, multiuser detection has shown to be ause-
ful design technology for detecting desired signals from interference
and noise. The first optimum multiuser detector was investigated
by Verdú in [?] for asynchronous Gaussian multiple access channels
based on maximum-likelihood detection. The receiver is considered
optimal in the sense that the performance in the absence of Gaussian
noise approaches that of a single-user system. Since the computa-
tion of the inverse matrix is complex, the authors of [2] introduced
a multistage linear receiver to design different linear detectors, such
as decorrelating detectors and minimum mean square error detector,
approximating the inverse matrix by a polynomial expansionof the
correlation matrix. This expansion is formed by a linear combination
of the outputs of the individual receiver stages. The polynomial ap-
proximations are helpful in practice only if the weights canbe calcu-
lated more easily than performing matrix inversion. As the optimum
weights depend on the eigenvalues of the correlation matrix, they
are not easy to calculate either. The combination of polynomial ex-
pansion detectors and convergence results from random matrix the-
ory gives in [3] low-complexity detectors to mitigate interference in
multiple-input multiple-output (MIMO) systems.
In this paper, we design a multiuser receiver using the linear min-
imum mean square error (MMSE) as a signal detector in a system
model whereM mobile users are communicating in the uplink with
a base station represented by a uniform linear array. The angles of ar-
rival are supposed to be uniformly distributed and the channel matrix
can be modeled by a random Vandermonde matrix. This scenario
can be met in large surveillance system using radar. Using known
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results on random matrix theory, in particular on the moments of
random Vandermonde matrices with entries on the unit circle[4],
we are able to find the optimum polynomial receiver, optimum with
respect to the mean square error (MSE). Note that similar approaches
could be used to find optimum receiver for compact rotating MIMO
antenna [5]. In the next section, we present the model under obser-
vation. In section 3, we describe a low complexity linear MMSE
receiver and in section 4 we use recent asynptotic results onVander-
monde matrices to estimate weights. In section 5, simulations show
the validaty of the MMSE reciver design and in the last section we
give the conclusions.
Notation. In the following, upper (lower) boldface symbols will be
used for matrices (column vectors), whereas lower symbols will rep-
resent scalar values.(.)H will represent the hermitian transpose op-
erator,(.)T denotes the transpose operator and|| · ||F denotes the
Frobenius norm operator. We denote byIM theM × M identity
matrix. We letTr be the (non-normalized) trace for square matrices,
defined byTr(A) =

∑n
i=1 aii, whereaii are the diagonal elements

of theM ×M matrixA. We also lettrM be the normalized trace,
defined bytrM (A) = 1

M
Tr(A).

2. SYSTEM MODEL

We considerM mobile users, each with a single antenna, commu-
nicating with a base station equipped withN receiving antennas,
arranged as a uniform linear array (ULA), as in Figure 1. TheN ×1
output signal at the base station is given by

y(t) =

M
∑

i=1

v(θi)p
1/2
i xi(t) + n(t)

= V(θ)P1/2
x(t) + n(t)

wherex is theM × 1 input signal transmitted by theM users

x(t) = [x1(t), . . . , xM (t)]T ,

satisfyingE
[

x(t)x(t)H
]

= IM , andn(t) is the additive Gaus-
sian noise such thatE

[

n(t)n(t)H
]

= σ2IM . We suppose that the
components inx(t) andn(t) are independent. The elements of the
M ×M matrix

P =











p1 0 · · · 0
0 p2 · · · 0
...

. . .
. . .

...
0 · · · 0 pM













Fig. 1. Graphical representation of the system model.

represent the power with which the users send information. In the
case of a line of sight between the mobile users and the base station,
theN ×M matrixV has the following form

V(θ) =
1√
N

[v(θ1), . . . ,v(θM )] ,

where

v(θ) =
[

1, e−j2π d
λ

sin(θ), . . . , e−j2π d
λ
(N−1) sin(θ)

]T

,

andθ1, . . . , θM are the angles of the users (see Figure 1) and are
supposed to be i.i.d. and uniform on]− π

4
, π
4
[ , d is the interspacing

distance between the antennas of the ULA, andλ is the wavelenght
of the signal. Assuming a memoryless channel, we can write

y = VP
1/2

x+ n. (1)

3. RECEIVER DESIGN

The linear minimum mean square error (MMSE) detector [?] for the
channel in (1) is given by

x̂ =
(

P
1/2

V
H
VP

1/2 + σ2
I
)−1

P
1/2

V
H
y. (2)

Recovering the data in (2), hence, requires the inversion ofthe ma-
trix between brackets which is a difficult task when the dimensions
of this matrix are large. In order to compute this, we remember the
Caley-Hamilton theorem, which states that any square matrix satis-
fies its own characteristic equation

det
(

P
1/2

V
H
VP

1/2 + σ2
IM − (µi(pi, λi) + σ2)IM

)

= 0,

whereλi are the eigenvalues ofVHV, pi the eigenvalues ofP,
andµi(pi, λi) the eigenvalues ofP1/2VHVP1/2 (for large matri-
ces,µi can be viewed as functions ofpi, λi, due to the almost sure
convergence of products of Vandermonde matrices and determinis-
tic matrices [7], which is whyµi(pi, λi) has been subsituted for the

eigenvalues ofP1/2VHVP1/2). The characteristic polynomial can
be written as

M
∑

i=0

αi

(

P
1/2

V
H
VP

1/2 + σ2
I
)i

= 0

whereαi = αi(λ1, . . . , λM ;σ2; p1, . . . , pM ). We obtain

(

P
1/2

V
H
VP

1/2 + σ2
I
)−1

=

= −
M
∑

i=1

αi

α0

(

P
1/2

V
H
VP

1/2 + σ2
I
)i−1

= −
M
∑

i=1

αi

α0

i−1
∑

j=1

(

i− 1

j

)

σ2(i−j−1)
(

P
1/2

V
H
VP

1/2
)i−1

,

which means that we can write the inverse as a matrix polynomial of
degreeM − 1 in P1/2VHVP1/2 such that

(

P
1/2

V
H
VP

1/2 + σ2
I
)−1

=

M−1
∑

i=0

βi

(

P
1/2

V
H
VP

1/2
)i

,

where the coefficientsβi =
αi

α0

∑i−1
j=1

(

i−1
j

)

σ2(i−j−1) and they only

depend on the eigenvalues ofVHV, the powerP and the noise vari-
anceσ2. In order to reduce the complexity, this suggests the in-
troduction of multistage receivers that approximate the inverse ma-
trix of the LMMSE receiver by a polynomial expansion of degree
K < M in P1/2VHVP1/2:

x̂MMSE =
K
∑

i=1

β̂i(P
1/2

V
H
VP

1/2)i−1
P

1/2
V

H
y. (3)

The weight vector̂β =
[

β̂1, . . . , β̂K

]T

can be choosen to optimize

some performance measure. We derive the vector of weights such
that minimizes the mean square error (MSE) of the estimated vector
x̂MMSE

β̂ = argmin
β̂

E





∣

∣

∣

∣

∣

x−
K
∑

i=1

β̂i(P
1/2

V
H
VP

1/2)i−1
P

1/2
V

H
y

∣

∣

∣

∣

∣

2


 .

(4)
Expressing equation (3) as a linear combination of the vectorszi =
(P1/2VHVP1/2)i−1P1/2VHy, we can write the expectation in
(4) as

E

[

∣

∣

∣
x− Zβ̂

∣

∣

∣

2
]

,

where the matrixZ = [z1, . . . , zK ]. We minimize respect tôβ and
we obtain that the optimum weight vector satisfies

β̂ =
(

E

[

Z
H
Z
])−1

E

[

Z
H
x
]

= Φ
−1

φ.



The elements of theK ×K matrixΦ are given by

Φ(i, j) = E

[

z
H
i zj

]

= E

[

(xH
P

1/2
V

H + n
H)VP

1/2(P1/2
V

H
VP

1/2)i−1×

×(P1/2
V

H
VP

1/2)j−1
P

1/2
V

H(VP
1/2

x+ n)
]

=
1

M

[

Tr
(

P
1/2

V
H
VP

1/2
)i+j

]

+

+
σ2

M

[

Tr
(

P
1/2

V
H
VP

1/2
)i+j−1

]

=
1

M

[

Tr
(

PV
H
V
)i+j

]

+
σ2

M

[

Tr
(

PV
H
V
)i+j−1

]

(5)

and the elements of theK × 1 vectorφ are

φ(i) = E

[

z
H
i x
]

= E

[

(xH
P

1/2
V

H + n
H)VP

1/2(P1/2
V

H
VP

1/2)i−1
x
]

=
1

M

[

Tr
(

P
1/2

V
H
VP

1/2
)i
]

=
1

M

[

Tr
(

PV
H
V
)i
]

.

(6)

4. ASYMPTOTIC ANALYSIS

We need to recall some results from random matrix theory. We ap-
proximate the optimum weights by using results on the asymptotic
moments of random Vandermonde matrices [4]. In particular,we
assume that the size ofV grows to infinity while the ratio of the
number of columns to rows tends to a limitr > 0.

Definition 1. An N × M random Vandermonde matrix with unit
entries has the form

V =
1√
N











1 · · · 1
e−jω1 · · · e−jωM

... · · ·
...

e−j(N−1)ω1 · · · e−j(N−1)ωM











,

whereω1, . . . , ωM are i.i.d. random variables.

We will denote byP(n) the set of all partitions of{1, . . . , n},
and will writeW1, . . . ,Wr for the blocks of a givenρ ∈ P(n).

Definition 2. For ρ ∈ P(n), we define

Kρ,ω,N =

1

Nn+1−|ρ|

∫

(0,2π)|ρ|

n
∏

k=1

1− ejN(ωb(k−1)−ωb(k))

1− ej(ωb(k−1)−ωb(k))
dω1 . . . dω|ρ|,

(7)

whereωW1 , . . . , ωW|ρ|
are i.i.d. (indexed by the blocks ofρ) with

the same distribution ofω and whereb(k) is the block ofρ which
containsk. If the limit

Kρ,ω = lim
N→∞

Kρ,ω,N (8)

exists, it is called a Vandermonde mixed moment expansion coeffi-
cient.

In [4], it has been proved that the limit in (8) exists if the density
of ω is continous. The calculation is based on combinatorial compu-
tation using crossing partitions since the matrices are notfree. We
will need the following result [4]:

Theorem 1. Letω be as in Section 2, i.e.ω = 2π d
λ
sin(θ) with θ

uniform on ]− π
4
, π
4
[ . We have that all limitsKρ,ω exist. Also,

mn = lim
N→∞

E

[

trM
(

PV
H
V
)n]

=
∑

ρ∈P(n)

Kρ,ωr
|ρ|−1Pρ (9)

whenM
N

→ r > 0, Pn = limN→∞ tr(Pn), Pρ =
∏k

i=1 PWi .

The quantities (9) are also computable [8]. Using the previous
result in Theorem 1, we obtain an estimation of the optimum weights
for the considered model, whenN → ∞, M

N
→ r, as follows

β̂asy = Φ
−1
asyφasy, (10)

where the generic element ofΦasy is given by

Φasy(i, j) =
∑

ρ∈P(i+j)

Kρ,ωr
|ρ|−1Pρ + σ2

∑

ρ∈P(i+j−1)

Kρ,ωr
|ρ|−1Pρ

= mi+j + σ2mi+j−1,

and
φasy(i) =

∑

ρ∈P(i)

Kρ,ωr
|ρ|−1Pρ = mi.

This means that we can write the equation (10) in the following form











m1

m2

...
mK











=











m2 + σ2m1 · · · mK+1 + σ2mK

m3 + σ2m2 · · · mK+2 + σ2mK+1

...
...

...
mK+1 + σ2mK · · · m2K + σ2m2K−1























β̂
(1)
asy

β̂
(2)
asy

...
β̂
(K)
asy













Note that we have substitutedE
[

tr
(

PVHV
)n]

with
[

tr
(

PVHV
)n]

,
which is valid due to almost sure convergence [7].

5. NUMERICAL RESULTS

In this section, we present simulations of the above result.Simu-
lations show the validity of our approximation. Documentation of
code for computing the moments of Vandermonde matrices can be
found in [8].
In the Figure 2, we have plotted, increasingM andN , the error

||G−Gasy ||2F whereG =
(

P1/2VHVP1/2 + σ2I
)−1

P1/2VH

andGasy =
∑K

i=1 β̂
(i)
asy(P

1/2VHVP1/2)i−1P1/2VH . The ra-
tio between the increasing M mobile users and N receiving anten-
nas is assumes to be equal to1/5, 1, 7/5. In Figure 3,||G||2F and
||Gasy ||2F are plotted with increasingM andN with ratio1/5, and
with approximation orderK = 5.

In Figure 5, we have plotted the SINR per user, increasing
the number of receiving and mobile users with given ratio equal
to 1/5, 1, 7/5. In particular, the SINR of userℓ (ℓ = 1, . . . ,M )

reads SINRℓ =
|gℓh

H
ℓ |2

∑
M
i=1, i6=ℓ

|gℓh
H
i

|2+σ2 wheregℓ is theℓ-th row of

the matrixGasy andhℓ is the ℓ-th column of the matrix product
P1/2V. Figure 4 shows good results for order of approximation
K = 4. In all simulations, we assume the powerP = IM , variance
noiseσ =

√
0.5, wavelenghtλ = 2, and distance between receiving

antennasd = 1.
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Fig. 2. ||G − Gasy||2F is plotted increasingM andN with ratio
1/5, 1, 7/5.
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6. CONCLUSION

In this paper, we have designed a low-complexity linear MMSEre-
ceiver through random matrix theory and polynomial expansion de-
tectors. In particular, we have used recent asymptotic results on the
moments of random Vandermonde matrices with entries on the unit
circle to approximate the optimum weights of the polynomialre-
ceiver. Simulation results are presented in order to confirmthe va-
lidity of our approximation.
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[3] R. Muller and S. Verdú, “Design and analysis of low-complexity
interference mitigation on vector channels,” Aug. 30 2001.

[4] Ø. Ryan and M. Debbah, “Asymptotic behaviour of random
vandermonde matrices with entries on the unit circle,” 2009.

[5] R. Bains and R. Muller, “On sampling issues of a virtuallyro-
tating mimo antenna,”International ITG / IEEE Workshop on
Smart Antennas (WSA), Reisensburg, Germany, 2006.
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