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Updating the gain of global finite-time high gain observers

Laurent Burlion, Tarek Ahmed-Ali and Françoise Lamnabhi-Lagarrigue

Abstract— Recently, new results about semi-global and global
finite-time observation have been obtained by the use of
continuous high gain observers. In this paper, we propose
to extend these results by studying ”time-varying high gain”
observers and by providing new update laws : first, we adapt the
law introduced by L. Praly in the case of asymptotic observation
to the finite-time case and we prove that the updated high gain
remains bounded. Secondly, we propose a new update law which
guarantees the high gain’s value tends asymptotically to 1.

I. INTRODUCTION

Over the past few decades, the problem of finite-time

observation of non linear systems has received a lot of

attention. Except a few other results, there are mainly two

classes of finite-time nonlinear observers that have been

widely studied.

First, discontinuous finite-time sliding mode observers have

deserved a lot of attention : a lot of papers using classical

sliding observers can be found in the literature [14] − [17].
Sliding mode observers is still an active field of research and

more recently higher order sliding observers have also been

introduced (see for instance [18], [19]).

Secondly, spurred by the work of Bhat and Bernstein [1]

on the finite time stabilization of a double integrator, a

continuous homogeneous observer has been proposed for a

large class of nonlinear second order systems [6]. This led

to the development of the wide branch of continuous finite-

time nonlinear observers.

The homogeneous domination approach was soon introduced

in order to deal with higher dimensional uncertain nonlinear

systems : its principle is to dominate the nonlinearities by

introducing a scaling gain into the homogeneous observer.

This enabled to solve the problem of finite-time output

feedback stabilization of more and more complex classes of

nonlinear systems [8], [13].

Meanwhile, another type of finite-time observer was intro-

duced for a class of linearizable nonlinear system [10] and

soon extended to observe uniformly observable systems in

a semi-global [9] and global [12] ways . In all these design

methods, the gain of the observer is fixed and must be chosen

sufficiently large (so in a conservative way). However, in

the asymptotic stabilization case, there exist some results to

adapt the gain of high gain observers when the unknown

nonlinear functions have an unknown growth rate [5] or when

this rate depends on the measured output [4].
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Recently, in [11], an update law whose gain is an exponential

function with arbitrary growth rate has been combined with

the semi-global finite time observer of [9] to obtain a global

result. Since, the resulted law is exponential and the uncertain

nonlinear terms are bounded by a perfectly known Lipschitz

condition, we think this observer deserves many extensions.

Therefore, in this paper, we consider the problem of updating

the gain of global finite time high-gain observers for a class

of uncertain nonlinear system whose uncertain nonlinear

terms have an unknown growth rate which depends on the

output. We obtain two possible update laws : the first one

is a natural extension of the law introduced in [4] at the

difference that some terms of this law serve to dominate

some homogeneous factors outside a compact set around

the origin. It is proved that the high gain remains bounded

when the state and input of the observed nonlinear system

are bounded. Then, a second update law is proposed and

provides a gain which not only remains bounded under the

same conditions than above but also tends asymptotically to

1.

This paper is organized as follows. Some basic notations and

definitions followed by the problem formulation are given in

Section 2. In Section 3, we present our observer and some

hypotheses. Then, we provide the adaptation laws and prove

our main results in Section 4. We then illustrate our results on

a numerical example in Section 5 and compare our adaptation

laws.

II. PRELIMINARIES

Let R (resp. N ) denote the set of real numbers (resp.

natural integers). In this paper, we interest us to nonlinear

SISO systems of dimension n ∈ N .

A. Notations

Given α ∈ R+\{0}, y ∈ R, we note :

⌈y⌋α := |y|αsign(y)

For a given vector x := [x1, . . . , xn]
T ∈ Rn, ∀j ≥ i, we

note

xi,j := [xi, xi+1, . . . , xj ]
T

We use the following notation for a given n × n diagonal

matrix

diag(a1, . . . , an) :=







a1 0 0

0
. . . 0

0 0 an
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B. Finite-Time Stability

In this paper, we interest us to finite time stability and

stabilization results which have the merit to provide contin-

uous time observer and controller by using a mix between

Lyapunov theory and geometric homogeneity. We invite the

reader which is not familiar with the basic definitions of

homogeneity to look at the work of [2] or [12].

Nevertheless, let us briefly recall a basic result about Finite

Time Stability (See [2] for more details) that will be useful

in this paper.

Theorem : Suppose there exist a possibly non Lipschitz

vector field f on Rn, a C1 positive definite function V :
Rn → R and positive real numbers a > 0, 1 > β > 0 such

that :

∀x ∈ Rn, V̇ (x) = LfV (x) ≤ −aV β(x)

then the origin is GFTS (Globally Finite Time Stable) under

the vector field f .

C. Problem position

Throughout this paper, we consider the following class of

nonlinear systems :














































ẋ1 = x2 + f1(x1)
ẋ2 = x3 + f2(x1, x2)
...

ẋi = xi+1 + fi(x1, x2,i)
...

ẋn = u+ fn(x1, x2,n)
y = x1

(1)

where x = [x1, . . . , xn]
T ∈ Rn, u ∈ R and y ∈ R are

respectively the state, input and output of this nonlinear

system ; where the unknown functions fi’s are characterized

by the following assumption [H1] :

|fi(x1, x2,i)− fi(x1, x2,i − z2,i)| ≤
∀i∈[2,n]

γ(y)
∑

k=2:i

|zk|

where γ ≥ 0 with γ(0) = 0.

Our aim is to design a global finite-time observer for

this class of nonlinear systems.

III. GLOBAL FINITE-TIME OBSERVER

Let us note

ξi := xi − x̂i

where x̂ denotes the state of a nonlinear high gain observer

defined by:










































˙̂x1 = x̂2 + f1(x1) +
ko,1

2 L(⌈ξ1⌋α1 + ξ1)
˙̂x2 = x̂3 + f2(x1, x̂2) +

ko,2

2 L2(⌈ξ1⌋α2 + ξ1)
...
˙̂xi = x̂i+1 + fi(x1, x̂2,i) +

ko,i

2 Li(⌈ξ1⌋αi + ξ1)
...
˙̂xn = u+ fn(x1, x̂2,n) +

ko,n

2 Ln(⌈ξ1⌋αn + ξ1)

• where [ko,1, . . . , ko,n] ∈ Rn will be defined later

• where 1 > (α1, . . . , αn) > 0 is decreasing and will be

defined later.

• where L ≥ 1 is time varying (L̇ will be designed later)

Let us also introduce the following change of coordinates :

∀i ∈ [1, n], εi =
ξi

Li−1+b

We note : δfi := fi(x1, x2,i)− fi(x1, x̂2,i).
We rewrite the hypothesis [H1] in the new coordinates (this

will be useful in the proof of our main result)

∀i ∈ [2, n], |δfi| ≤ γ(y)
∑

k=2:i

Lk−1+b|εk|

where b > 0 is defined later.

In these coordinates, the dynamics of the observer error is

written :






































































ε̇1 = Lε2 − ko,1

2 L(L(α1−1)b⌈ε1
⌋α1

+ ε1)− b L̇
L
ε1

ε̇2 = Lε3 − ko,2

2 L(L(α2−1)b⌈ε1
⌋α2

+ ε1) +
δf2
L1+b

−(1 + b) L̇
L
ε2

...

ε̇i = Lεi+1 − ko,i

2 L(L(αi−1)b⌈ε1
⌋αi

+ ε1) +
δfi

Li−1+b

−(i− 1 + b) L̇
L
εi

...

ε̇n = −ko,n

2 L(L(αn−1)b⌈ε1
⌋αn

+ ε1) +
δfn

Ln−1+b

−(n− 1 + b) L̇
L
εn

(2)

A. Additional Hypotheses :

Let us note C = [1 0 . . . 0] and A the matrix defined by

(A)i,j = δi,j−1 (where δi,j is the Kronecker delta).

Let a > 0, we choose Q = QT > 0 such that there exists

1 > q > 0 s.t

ATQ+QA− CTC ≤ −2aQ ; qIn ≤ Q ≤ In (3)

We then define (ko,1, . . . , ko,n) > 0 by:

[ko,1, . . . , ko,n]
T = Q−1CT

Let us also note D = diag(0, 1, . . . , n − 1). We suppose

there exists b > 0 such that:

−bQ ≤ DTQ+QD ≤ bQ (4)

Remark : in practice, we solve the LMIs associated to

hypothesis (3) and then we search b > 0 in order to satisfy

hypothesis (4).

IV. MAIN RESULTS

Let us note :

|ε1|# := max{|ε1|α1 , |ε1|αn}
c1,n := min{3c1, cn} and c1,n := max{3c1, cn}

kB :=
3n

a
max
i∈[1,n]

ko,i
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cB :=
(n− 1)2√

q

(

1 + max
i∈[2,n]

1

ci

)

Let us now present our first result :

Theorem 1: Let us suppose the state of system (1)

remains bounded by a given bounded controller u ; under the

hypotheses [H1], (3), (4), there exists α < 1 such that system

(2) is Globally Finite Time Stable when we use the following

adaptation law :

L̇ = −1

b
L

(

a

3
(L− 1− L|ε1|#)−

(

cB

c1,n
+ 2

n− 1√
q

)

γ(y)

)

(5)

with L(0) = 1.

Moreover, this law guarantees that L remains bounded.

proof : it is somewhat technical but relies on the fact

that we prove these results in several steps, taking in mind

the fact that if we prove global asymptotic stability and

finite-time stability in a neighborhood of the origin, we

obtain global finite time stability. (See for instance, Lemma

1 of [12])

A. Global Asymptotic Stability

Under the hypotheses [H1], (3), (4), let us first study the

asymptotic stability.

Let us consider the following candidate Lyapunov function

Vo(ε) = εTQε

where Q satisfies (3).

∀i, αi ≤ 1, we interest us to the following quantity

B(ε) := εTQ













ε2 − ko,1L
(α1−1)b ⌈ε1⌋α1

. . .

εi+1 − ko,iL
(αi−1)b ⌈ε1⌋αi

. . .

−ko,nL
(αn−1)b ⌈ε1⌋αn













• When ε ∈
{

ε ∈ Rn s.t
√

Vo(ε) > kB

}

we have:

B(ε) ≤ εTQAε+ n
√

Vo max
i∈[1,n]

ko,i|ε1|#

≤ εTQAε+
a

3
|ε1|#Vo

• When ε is in the following complementary set

C1 :=
{

ε ∈ Rn s.t
√

Vo(ε) ≤ kB

}

Since when α = 1, ∀ε ∈ Rn, B(ε) ≤ 0 and C1 is a

compact set, we know from the tube Lemma [3] that

there exists 1 > ᾱ1 > 0 such that ∀α ∈]1− ᾱ1, 1[,

∀ε ∈ C1, B(ε) ≤ 0

So we conclude, that there exists 1 > ᾱ1 > 0 such that

∀α ∈]1− ᾱ1, 1[,

∀ε ∈ Rn, B(ε) ≤ max{0, εTQAε}+ a

3
|ε1|#Vo

Therefore, when α ∈]1− ᾱ1, 1[, we can write :

V̇o ≤ LεT (QA− CTC)ε+ LB(ε)

+2εTQ















0
. . .

δfi
Li−1+b − (i− 1) L̇

L
εi

. . .
δfn

Ln−1+b − (n− 1) L̇
L
εn















− 2b
L̇

L
εTQε

≤ LεT (QA− CTC)ε+ Lmax{0, εTQAε}
+
a

3
L|ε1|#Vo + 2

n− 1√
q

γ(y)Vo

−2
L̇

L
εT (QD + bQ)ε

≤ Lmax

{

−aVo −
1

2
εTCTCε,−2aVo

}

+
a

3
L|ε1|#Vo + 2

n− 1√
q

γ(y)Vo

−2
L̇

L
εT (QD + bQ)ε

≤ −
[

a

(

1− 1

3
|ε1|#

)

L− 2
n− 1√

q
γ(y)

]

Vo

− L̇

L
b

[

2− sign

(

L̇

L

)]

Vo

If we apply the adaptation Law (5), we get after a few

computations (remark that it is easy to prove that this

adaptation law guarantees that ∀t ≥ 0, L(t) ≥ 1 and so

we can use −(2L+ 1) ≤ −3):

V̇o ≤ −aVo −
cB

c1,n
γ(y)Vo

≤ −aVo

so the system is GAS (and so, it will stay inside the ball B1

defined below within a finite time)

B. Proof inside B(1) := {ε s.t |εi| ≤ 1}
Secondly, we interest us to the ball B(1)
1) First subsystem: First we consider the following vector

field fα:






































ε̇1 = ε2 − ko,1L
(α1−1)b ⌈ε1⌋α1

ε̇2 = ε3 − ko,2L
(α2−1)b ⌈ε1⌋α2

...

ε̇i = εi+1 − ko,iL
(αi−1)b ⌈ε1⌋αi

...

ε̇n = −ko,nL
(αn−1)b ⌈ε1⌋αn

As in [10], we define, (r1, . . . , rn) > 0 and (α1, . . . , αn) > 0
such that :







ri+1 = ri + d, 1 ≤ i ≤ n− 1
αi = ri+1

r1
, 1 ≤ i ≤ n− 1

αn = rn+d
r1

(6)

These equations simply say that the vector field fα is

homogeneous of degree d with respect to the weights
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(r1, . . . , rn).

Let us take a real number 0 < α < 1.

We set: r1 = 1, r2 = α, d = r2 − r1 = α − 1 and we

recursively prove that: ri = (i − 1)α − (i − 2) 1 < i ≤ n

and, αi = iα− (i− 1) 1 < i ≤ n.

Since r1 > . . . > rn, in order to guarantee ∀i, ri > 0, we

will also need to assume that :

α >
n− 2

n− 1
= 1− 1

n− 1

Let us now define :Vz(α, ε) := zTQz where zi = ⌈εi⌋
1

riπr

and where πr =
∏

i=1:n−1

ri.

Let us also note : ci =
1

riπr

It is obvious that Vz is homogeneous of degree 2
πr

with

respect to the weights (r1, . . . , rn). and that LfαVz is homo-

geneous of degree 2
πr

+ degree(fα) =
2
πr

+ d = 2
πr

+α− 1
with respect to the weights (r1, . . . , rn).
By using Lemma 4.2 of [2],

−β1(α,L)V
β
z (ε) ≤ LfαVz(ε) ≤ −β2(α,L)V

β
z (ε)

where β :=
deg(LfαVz)

deg(Vz)
= 1+ πr

2 (α−1) < 1 because α < 1

and where β1(α,L) := − min
{z s.t Vz(α,ε)=1}

LfαVz(α, ε) > 0

and β2(α,L) := − max
{z s.t Vz(α,ε)=1}

LfαVz(α, ε) > 0. ( we

easily prove it when α = 1 (asymptotic case) and we then

use the same proof than [11])
2) Full system: Since ∀ε, the following quantity is nega-

tive when α = 1

Bz(ε) := zTQ













c1|ε1|c1−1 (ε2 − ko,1ε1)
. . .

ci|εi|ci−1 (εi+1 − ko,iε1)
. . .

cn|εn|cn−1 (−ko,nε1)













moreover, since B(1) is compact, we know from the tube

Lemma [3] that there exists 1 > ᾱ2 > 0 such that:

∀ε ∈ B(1), ∀α ∈]1− ᾱ2, 1[, Bz(ε) ≤ 0 (7)

Therefore, if 1 > α > max
(

1− 1
n−1 , 1− ᾱ2

)

, we can write

:

V̇z ≤ −β2(α,L)V
β
z (ε) + LBz(ε)

+2zTQ



















c1|ε1|c1−1
(

−b L̇
L
ε1

)

. . .

ci|εi|ci−1
(

δfi
Li−1+b − (i− 1 + b) L̇

L
εi

)

. . .

cn|εn|cn−1
(

δfn
Ln−1+b − (n− 1 + b) L̇

L
εn

)



















≤ −β2(α,L)V
β
z (ε)− 2

L̇

L
zT (QD + bQ)×







c1 0 0
...

. . .
...

0 0 cn






z + 2zTQ

















0
. . .

ci|εi|ci−1
(

δfi
Li−1+b

)

. . .

cn|εn|cn−1
(

δfn
Ln−1+b

)

















First, since the cis are positive and increasing and by using

(4), we have:

• if L̇
L
≥ 0

−2
L̇

L
zT (QD + bQ)







c1 0 0
...

. . .
...

0 0 cn






z ≤ −cnb

L̇

L
Vz

• if L̇
L
≤ 0

−2
L̇

L
zT (QD + bQ)







c1 0 0
...

. . .
...

0 0 cn






z ≤ −3c1b

L̇

L
Vz

Due to space restriction, the right term of the last two

inequalities is given by −bc# L̇
L
Vz where c# := cn +

1
2

(

1− sign( L̇
L
)
)

(3c1 − cn).

By Young’s inequality:

|εi|ci−1|εk| ≤
ci − 1

ci
|εi|ci +

1

ci
|εk|ci

Hence, ∀i ∈ [2, n]:

|εi|ci−1 δfi

Li−1+b
≤ γ(y)

∑

k=2:i

Lk−i−2|εi|ci−1|εk|

≤ γ(y)

(

ci − 1

ci
(i− 1)|εi|ci +

1

ci

i
∑

k=2

|εk|ci
)

≤ γ(y)

(

(n− 1)
√
z′z +

1

ci

i
∑

k=2

|εk|ci
)

Since, ∀i ≥ k, ci ≥ ck ≥ 1 and ε ∈ B(1), we have :

|εk|ci ≤ |εk|ck

So, ∀i ∈ [2, n]:

|εi|ci−1 δfi

Li−1+b
≤ γ(y)

(

1 + max
i∈[2,n]

1

ci

)

(n− 1)
√
zT z

Thus, we obtain:

V̇z ≤ −β2(α,L)V
β
z (ε)− bc#

L̇

L
Vz

+γ(y)
(n− 1)2√

q

(

1 + max
i∈[2,n]

1

ci

)

Vz

We identify the coefficient cB and we thus obtain :

V̇z ≤ −β2(α,L)V
β
z (ε)−

(

bc#
L̇

L
− cBγ(y)

)

Vz (8)

C. Conclusion of the proof of Theorem 1

To sum up, we applied the adaptation law (5):

L̇ = −1

b
L

(

a

3
(L− 1− L|ε1|#)−

(

cB

c1,n
+ 2

n− 1√
q

)

γ(y)

)

with L(0) = 1.

Moreover, there exists 1 > α > max
(

1− 1
n−1 , 1− ᾱ1, 1−

ᾱ2

)

> 0 such that:
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• system (2) adapted by this law is GES.

• ∀ε ∈ B1, applying the adaption law to equation the (8),

we obtain:

Vz := z(ε)TQz(ε)

V̇z ≤ −β2(α,L)V
β
z (ε) +

a

3
c#(L− L|ε1|# − 1)Vz

−2c1,n
n− 1√

q
γ(y)Vz

≤ −β2(α,L)V
β
z (ε) +

ac1,n

3
LVz

First, using the first Lyapunov function Vo, we proved the

system is GES so there exists a finite time such that the

system enters the ball B1 without leaving it anymore.

Inside this ball :

• we need to consider the following set :

C2 :=

{

ε s.t
ac1,n

3
Vz(ε) ≤ min

L≥1

β2(α,L)

2L
V β
z (ε)

}

If L remains bounded (as we will prove after), this set

is not a zero measured set (i.e it is bigger than {0n}).

Since the system is GES, there exists a finite time such

that the system enters the set B1

⋂ C2 without leaving

it anymore.

Since in this set we have:

V̇z ≤ −β2(α,L)

2
V β
z

we conclude that system (2) converges to the origin in

a finite time.

Thus, we proved the system is GFTS.

Moreover, provided y remains bounded and since L(0) = 1,

the adaptation law form guarantees that L remains bounded.

Indeed, since ε1 tends to 0 within a finite time, L can increase

with a bounded rate within a finite time and after, LL̇ < 0
if

L > 1 +

(

cB

c1,n
+ 2

n− 1√
q

)

γ(y(t))

the right term is bounded because γ(y) remains bounded, so

after a finite time L decreases if it is superior to a bounded

value.

Let us now stem our second result which is an extension of

the previous one :

Theorem 2: Let us suppose the state of system (1) remains

bounded by a given bounded controller u ; if the hypotheses

[H1], (3), (4) are satisfied, there exists α < 1 such that system

(2) is Globally Finite Time Stable when we use the adaptation

law (5) when ε1 6= 0 and :

L̇ = −L

b

[a

3
(L− 1)

]

when ε1 = 0 (9)

with L(0) = 1.

Moreover, this law guarantees that L tends asymptotically to

1.

Sketch of the proof: We use almost the same computations

than the ones carried in the proof of theorem 1.

If we apply the adaptation Law (5) when ε1 6= 0 and (9)

otherwise, after some computations, we get:
{

V̇o ≤ −aVo if ε1 6= 0

V̇o ≤ −
(

a− 2(n−1)√
q

γ(y)
)

Vo if ε1 = 0

When ε1 = 0, the Lyapunov function can increase but the

system can not remain on the set Sc = {ε1 = 0 ; ε2,n 6= 0}
during a non zero length time interval. We prove it

by contradiction : suppose the system remains on this

set during a non zero measured time interval, we have

ε1 = ε̇1 = . . . = ε
(n−1)
1 = 0 but because of equation (2),

this implies that ε2 = . . . = εn = 0 which contradicts the

fact that ε ∈ Sc. We say that the error system ’globally

decreases at almost every time’.

As for Theorem 1, we will finally come to the

following conclusions : there exists 1 > α >

max
(

1− 1
n−1 , 1− ᾱ1, 1− ᾱ2

)

> 0 such that:

• system (2) adapted by the law of theorem 2 GA

decreases at almost every time.

• ∀ε ∈ B1, applying the adaption law to equation (8), we

obtain :

V̇z ≤ −β2(α,L)V
β
z (ε) +

ac1,n

3
LVz if ε1 6= 0

If ε1 = 0, we also have:

V̇z ≤ −β2(α,L)V
β
z (ε) +

(

ac1,n

3
L+ cBγ(y)

)

Vz

≤ −β2(α,L)V
β
z (ε) + L

(

ac1,n

3
+ cBγ(y)

)

Vz

Let us define the following set:

C3 :=

{

ε s.t
ac1,n

3
Vz(ε) + cBmax

t≥0
γ(y(t)) ≤

min
L≥1

β2(α,L)

2L
V β
z (ε)

}

Since the system GA decreases at almost every time,

it will enter the set B1

⋂ C3 in a finite time without

leaving it anymore. Since in this set, we have :

∀ε1, V̇z ≤ −β2(α,L)

2
V β
z (ε)

we conclude that system (2) converges to the origin in

a finite time.

Thus, we proved the system is GFTS. Moreover, provided

y remains bounded and since L(0) = 1, we prove that L

remains bounded as in the proof of theorem 1. Moreover,

since ε1 and its time derivatives are equal to 0 after a finite

time, the adaptation law (9) guarantees that L tends to 1.

V. ILLUSTRATIVE EXAMPLE

We illustrate the effectiveness of our design on the fol-

lowing two dimensional nonlinear system:






ẋ1 = x2 + x2
1

ẋ2 = u+ x2
1 cosx2

y = x1
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Choosing γ(y) = y2, it is easy to see that assumption [H1]

holds.

Then we choose α = 4
5 , a = 1

2 , we solve the LMIs given

by (3) and (4) and we obtain :

Q =

[

0.5865 −0.3787
−0.3787 0.6530

]

and q = 0.1054, ko1 = 2.7261, ko2 = 1.5811, b = 2.2646
We apply an input u such that the state and the input of the

system we want to observe remain bounded.

• Figure 1 shows the observer error when we apply the

adaptation 1 : the error goes to 0 in finite time and L

remains bounded. More specifically, in this example, L

oscillates like y (which oscillates between two bounds).

• Figure 2 shows the observer error when we apply the

adaptation 2 : the error goes to 0 in finite time and the

fact that γ(y) does not go to 0 does not prevent L from

asymptotically tending to 1.

(Remark : if the initial error of the observer is large, we will

need to choose bigger value of α sufficiently close to 1 (but

still inferior to 1) so that the observer still converges).

So, this numerical result illustrates what we have theoreti-

cally proved in this paper.

Fig. 1. With the adaptation Law 1

Fig. 2. With the adaptation Law 2

VI. CONCLUSIONS AND FUTURE WORK

This paper has addressed the problem of updating the

gain of a global finite-time high gain observer. Using the

separation principle for this specific class of triangular sys-

tems and adding a few hypotheses on the fis, it may be

quite straightforward to build a finite time controller and

to combine it with our observer in order to get an output

feedback which renders the system GFTS and such that the

time-varying high gains of both controller and observer are

bounded (and can even tend to 1).
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