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Cascade High Gain Predictors for
a Class of Nonlinear Systems

Tarek Ahmed-Ali, Estelle Cherrier, and
Francoise Lamnabhi-Lagarrigue

Abstract—This work presents a set of cascade high gain predictors to
reconstruct the vector state of triangular nonlinear systems with delayed
output. By using a Lyapunov-Krasvoskii approach, simple sufficient con-
ditions ensuring the exponential convergence of the observation error to-
wards zero are given. All predictors used in the cascade have the same struc-
ture. This feature will greatly improve the easiness of their implementation.
This result is illustrated by some simulations.

Index Terms—Cascade systems, high gain observer, time-delay systems.

I. INTRODUCTION

In this technical note, the design of nonlinear observers for non-
linear systems with delayed output measurements is investigated. This
problem appears in many control systems areas, such as networked con-
trol systems, where the data are transmitted through a communication
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channel which introduces a delay between the sensors and observers.
Note that in the linear case and when the delay is constant, this problem
has been solved by the well-known Smith predictor [1]. In the nonlinear
case, only a few works can be found in the literature. We can mention
[2] where a solution based on chained observers has been proposed
for a class of nonlinear systems. The authors used Gronwall lemma,
to derive sufficient conditions on the delay and on the number of ob-
servers in the chain which guarantee exponential convergence of the
observation error. The structure of the observers used in the chain is
designed recursively and grows step by step. After this, some restric-
tive conditions of the above approach have been relaxed in [3]. More
recently, in [4] another predictor for linear and nonlinear systems has
been presented. This predictor is a set of cascade observers. Sufficient
conditions based on linear matrix inequalities are derived to guarantee
the asymptotic convergence of this predictor. In [5], the authors de-
veloped a cascade predictor for any constant delay based on the high
gain observer framework developed in [6], [7], and extended to finite
time observer in [8]-[10]. The authors of [5] proposed, for specific high
gain observer (with specific vector gains), simple relations between the
delay and the number of observers in the cascade. The result of [5] has
been used in [11] to derive an output feedback controller for a class
of nonlinear systems with delayed input. In [12], the authors showed
that the results contained in [5] can be extended to time varying-delay
and sampled-data cases only for one observer and if the delay is suf-
ficiently small. In the present technical note, we will generalize the
results contained in [5] and [12] by using more general observer gains
which guarantee exponential convergence in the free-delay case. More
precisely, we derive an explicit number of observers depending on the
delay and on the gains of the observers to ensure exponential conver-
gence of the estimated state at time ¢ towards the true state at time ¢
in the presence of any constant measurement delay. Compared to [2]
and [3], this work can be viewed as an alternative method which uses
only one structure of observers to reconstruct the systems states. This
technical note is organized as follows : In the next section, we present
the class of considered systems and the different assumptions. In the
third one, we present the proposed observers and derive the conditions
of their convergence. These results are illustrated in the last section,
throughout an academic example.

II. PRELIMINARIES AND NOTATIONS

First some mathematical notations which will be used throughout
the technical note are introduced.

¢ The euclidian norm on R™ will be denoted by ||.||.

 The matrix X7 represents the transposed matrix of X

* Amin(P) and Amax () are the minimum and maximum eigen-

values of the square matrix P.

e I, is the (n,n) identity matrix.
In this technical note, we consider the following class of nonlinear sys-
tems:

T =Az + o(zr. )

y=Cz(t—1) (D
where
0 1 0 0
0 0 1 0
A=1|[: o 1 0 2
Do 1
0 0

C=(10 ... 0) 3)

and

o1(z, )
o(x,u) = . 4
On ()

The term 7 represents the measurement time delay which is supposed
known, z(t) = (z',...,2") € R" is the vector state which is sup-
posed unavailable. The output y(¢) € R is a linear function of the state
x at time ¢ — 7. The input « belongs to U which is a compact set in R.
The functions ¢;, ¢ = 1,...,n are supposed smooth. Throughout
the technical note, we assume that the following hypotheses are satis-
fied:
‘H1. The functions ¢;(x, ) are triangular in =, i.e:

st =0 k=i..n-L )

‘H2. The functions ¢;(x,u) are globally Lipschitz, uniformly in
u with respect to z, i.e.

33>0 such that V(z,z") ER" x R", Vu €U,
6i(x.u)=¢i(a" )| <Plle=2a'll i=1.....n.  (6)

Note that the vector ¢(x, v) may contain also linear parts which
are not represented by the term Azx.
This class represents the class of uniformly observable systems. It has
been shown [6], [7] that these models concern a wide variety of sys-
tems, such as bioreactors\cdots

III. MAIN RESULTS

Let us consider an arbitrary constant time delay 7 affecting the output
measurement of system (1). The proposed predictor for system (1) is a
set of m cascade high gain observers which use delayed output. Each
of them estimates a delayed state vector with a smaller delay 7/m.

In order to present the proposed predictor, we use the following con-
venient notations adopted from [2]:

xj(t)=w(t—T+j%> and Uj(t)=u(t—’r—|—j%>

where j = 1,....m.
Then the proposed predictor can be written in the following form,
forj =1,....,m:

i = Ab 4 6(F1.u) —AT'K <C:i~1 <t - %> - y(t)>
gi(t) = Can(t)
:.i]' = Az; + é(ij,ﬂj)—@ﬁ_lff <C:@j <t— %) —g]]'_l(t)>
L g;(t) = Caj(t)
@)
where ¢ is a positive constant satisfying ¢ > 1, the vector ' =

(k1,..., kn)T is chosen so that the matrix A — K C' is Hurwitz and
A is a diagonal matrix which has the following form :

1
9—_1> ®)

We will show that the vector #;(¢) estimates the delayed state x;(¢),
j=1,....m — 1and %, (¢) estimates x(t).

Remark 1: As we can see all observers used in (7) have the same
structure. This property will greatly improve the easiness of implemen-
tation.

A = Diayg <1"“’9i—1"‘



Before proving the exponential convergence of the proposed cascade
observers, we consider the case when the delay is sufficiently small and
can be time-varying. Then only one high gain observer is required to
estimate the state of system (1).

Lemma 1: Consider the following observer:

i = Ad 4 o(d,u) — AT KC@E(t = 7(t) — 2t = 7(1)))  (9)

and suppose that the delay 7(¢) is time-varying, piecewise-continuous
and bounded. Then for sufficiently large ¢, there exists a positive con-
stant 7y such that V7(¢) € [0, 1], observer (9) converges exponentially
towards system (1).

Proof: First let us denote the observation error as & = & — x.
Then we will have
&= A+ o(i,u) — (e u) — AT KCi(t — 7(1)).  (10)
If we apply the relation
t .
z(t) =zt —7(t))+ / z(s)ds (11)
Jt—7(t)
then we have
iP=(A-0AT'KCO)F
t
+o(#,u) — d(e,u) + AT KC i(s)ds. (12)

t—7(t)

Let us consider the change of coordinates # = Az#, and using the fact
that AAA™" =6 A and CA = CA™' = C, then system (12) can be
rewritten in the following manner:

2 =0(A—- KOz + A(é(2,u) — ¢(z,u))
10K #(s)ds.

t—7(t)

13)

In order to derive an upper bound 7, for the delay 7(¢), to ensure the
exponential convergence to zero of the error z, we use the following
Lyapunov-Krasovskii functional [13]:

13

W(:E)::ETP:E+/ /||:i(5)||2dgds (14)

Ji—711 Js

where the matrix P is a symmetric positive definite matrix, solution of
the following algebraic Lyapunov equation:

PA-EKO)+(A-KO'P<—pl, p>0. (15

The functional (14) can be written after some manipulations as follows:

t
W(z) =:ETP:E—|—/ (s —t + 1) 2(s)|)ds. (16)
t—T1q

If we compute its time derivative, we obtain

W <8z"(P(A- KC)+(A- KC)'P)z
+ 227 PA(6(#,u) — 6(x, u))

+ 203" PKC i(s)ds
t—7(t)

t
FnllE)) - / 1 (s) 12 ds. a7
t—T71

Using (15), we have

W < — pb|z|]” + 22" PA(6(é,u) — ¢(x,u))

t

+ 203" PKC P(s)ds
Jt—r(t)
t
el = [ s as)
Jt—T1
with
¢1(£7 u) - (151(55, u)
A(d(d,u) — oz, u)) = ) o (19)
T (0n (@, 0) = On(a,u))
Using the Lipschitz property, then we can write:
1 .
| et = et 20)
Using the fact that # > 1, then we deduce that
1 i
‘ Gt (03 u) = i) ‘ <aSEr e
k=1

where (% — 2*) = #*~'Z*. From this, and since 1/ 22:1 (z%)? <

[|Z|], then we can write

\ o (i) = o) { <lel izt @
and
A (6(#,u) = oz, u)) ||F < 0|2 (23)
This leads to
1227 PA(6(#,u) = 6(x, u) || € 2Amax(P)nB|Z|*.  (24)
From this, we will have
W < — ul|2]1” + 2Amax(P)v/n 3| 2|
+ 203" PKC tt P(s)ds
bnlli = [l Pds s

Now, let us remark that from (13) and by using Holder’s inequality, it
comes

[EON” < 267[1A = KOl + 2Amax(P) /05|12
20K |*n(1)* (26)
where n(t) = 6 _f:_r(t) #(s)ds.
Using Young inequality, then we obtain

t
203" PKC P(s)ds

t—7(t)

O, 2 .
< 7”||:v||2 + N_H)‘?nax(P)”'A”2”77(t)”2' X))



Using this and (25), then we will have

. [
W< = 2121l + 20 (P) V|2
2 2 (12 2
+ g s PET (o)l
+ 21107 A = KC|l 4 2 max(P)v/n3)? || 2]

t
+2n |l K (Pl ~ / [1(5)11ds. (28)
Ji—T11

To prove the above Lemma 1, it is sufficient to find conditions which
guarantee the following inequality
W4 elW <0 with Ve> 0. 29)

Indeed, from the above inequality and the definition of (14), we can
write

TP < W(F) < W(E(to))e (710, (30)
Then we deduce that
Wzt
e < YU —crz—to) 31

v/ Amin(P)

Let us be interested again in (29). From (28), we can write
. 0
Wt W < = FEIE + 20 (P) V|2

2 . _
+ Ekim(P)llﬂ IZ (17 + eAmax (P)|Z1*

+ 21607 [| A = KC|| 4 2 max(P) V5] || 2]
+ 2 | K[ {ln(0)]®

t t
+en / ()2 ds — / () [Pds. (32)
Jt—T1 Jt

—r
If we use the Jensen’s inequality, we derive

L 1
i ds >
R CIRE

From this, we deduce that

lln()II*.

(33)

W+ eW < — ”2—9 — 2Amax( P)v/n 3

— 2016 [[|A = KC + 2Xman( P)V )

— Amax(P) p |7

2710

—{1-2X . (P)|K
M m

¢
— 210 8%|| K||* = en / lZ(s)]|*ds.  (34)
Ji—T11

Then, the exponential convergence to zero of the observation error
7 is guaranteed if the following inequalities hold:

82— 2 Amax(P)y/n3 = 27102 (|| A = KC||+2Amax(P) /03]
—EAmax(P) > 0

L =20 (DK% = 21 8| K|* — € > 0.

! (35)

We can easily see, that by choosing 7, = /67 and by setting e — 0
the above inequalities will be equivalent to

805 9 N (P34 20[[| 4 = KC|| + 2 (P) /5]

62 > 202, (P K176 + 20| K

(36)
Note that it is obvious that the inequalities (36) are verified for any
positive constant u by choosing sufficiently large values of 6. |

To summarize Lemma 1, it gives the maximum delay supported by
observer (9) which enables #(t) — =(t), once # has been fixed ac-
cording to conditions (36). To cope with a larger measurement delay,
we propose in next paragraph a procedure to estimate x(¢), based on a
cascade of high-gain observers: each observer will estimate the state at
a given fraction of the output delay.

A. Cascade High Gain Observers

After proving that the convergence of the observer (9) requires a
small delay, we will see that when the delay is arbitrary long and con-
stant, a set containing a sufficient number of cascade high gain ob-
servers (7) can reconstruct the states of system (1).

Theorem 1: Let us consider system (1), then for any constant and
known delay 7, there exist a sufficiently large positive constant § and
an integer m such that the last observer in (7) converges exponentially
towards the system (1).

Proof: The convergence of the cascade observer will be proved
step by step :
Step 1: We consider the first observer in the cascade

b= AR 4 6(i1,u ) — AT KC (;,:«1 (t— %) —a(t - T)) . (37

We remark that (¢ — 7) = z1(¢ — 7/m) and consequently, if we
choose ¢ sufficiently large, and by choosing the integer i such that
m > (6%/p)7, then & (t) converges towards =, (t) = =(t — 7 +
T/m) = z(t — (m — 1)7/m).

Indeed, we are brought back to conditions of Lemma 1, since the
delay to cope with is now 7 /m, which is assumed smaller than /6>

Step j: Ateach step (j = 2,...,m), we estimate the delayed
state x(t — 7 + j7/m) by using the following observer:

By = Ayt 00 uy) = 087 KC (35 (1= 2 ) =m0 . G8)

It is not difficult to see that by considering the observation
error vector £; = &; — x;, if we add and subtract the term
AT PK Cx;—(t) in the previous equation, we obtain

:-E]' = Az; + ¢(:E:]',u]') - @(:C]',u]') - HAil.[fC:E]' (t - %)
+FIAT K CEji ().

If we consider the following change of coordinates 7; = Az ;, we will
have:

T =0(A = KC)&j + A(d(ij,u;) — oxj,uj))
+OKC

t—7/m

Pi(s)ds+8KCT; . (39)

In order to prove by recurrence the convergence of the error z;, we
suppose that the observation error z;_1 (¢) converges exponentially to-
wards zero.
Then we consider the following Lyapunov-Krasovskii functional
t
W;(z;) = :E?P:E]' + /

t—1/m

(s=t+Z) s ()Pds — 40)
m



Then its time derivative satisfies the following inequality:

W, < — pollz; |
+27] PA(S(ij.u;) = 6(xj.u;)) + 205 PKCj
t

+ 20, PKC

LN T - 2
S st g

t
- / 175 (5)|[%ds. 1)
Jt—71/m

Now, by using Holder’s and Young’s inequalities, we derive the fol-
lowing inequalities:

[12511” < 367 (14 = KC|l 4+ Vg Amax (P17 11°
A3IE N s I+ BIK 6% 12— |1
Zj(s)ds and

(42)

where, 7, (t) = 6 [

—7/m

t
29:EJTPKC (xj_l +/ :'nj(s)ds> < ’;_9”@”2
t

—7/m
10| K> X2, (P
L A (P)
I
Using (42) and (43), we derive

[l (017 43)

121 1”

4 K|)* Alaxc (P
¢ AKX

Wj+6Wj <- %9 - 2)\maX(p)\/Eﬁ
3T 2 - 2
= A = KOl + Vi Amax (P)]
— Amax(P) 31 |”

46

2
— 1= N PIE P = 3K () 67
I m m

T
— —
m

t
/ 175 (5)|2ds
Ji—T11

[HQIII&"IIQA?W(P)
I

3T 2 = 2
- LS L [T

Then, we can say thatif m > (% /)7 and if the following inequalities
are satisfied:

118 > 2{2 A max ()0 343l | A= KC[| 4/ Amax (P)]?

+eAmax(p)}
67 > 4N2 (P)||K||?6 + 3| K||°® + ep with

45)
e>0

we will have

: 49| K|)° N2 o (P
i < a4 |1 e

3T 2| - 2
2 ||k k. @
+ SN N7l @6)

Using the comparison Lemma [14], we conclude that if ;1 converges
exponentially towards zero, then #; converges also exponentially to-
wards zero. Note that conditions (45), also ensure the convergence of
the first observer (j = 1), then we deduce, recursively, that all obser-
vation errors converge exponentially towards zero. |

From this, we can say that for all constant delay T and for all ¢
satisfying conditions (45), there exists a number of cascade observers
m > (6% /p)7 such that all observation errors converge exponentially
towards zero.

Remark 2: The global Lipschitz condition can be relaxed if we sup-
pose that the vector state x(¢) belongs to a compact set {2, of R". As
in [15], if o(x, ) is a C"* function, then we replace the terms ¢ (&, u)
by ¢(a(;),u) where o is a saturation function defined on the set 2.

the output

1.5 T \ \ T
: i
05 4
0 4
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1k |
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Fig. 1. Noisy delayed output measurements ¥.

x_1 in solid line and \hat x_1 in dashed line
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15 L L I
0 5 10 15 20 25 30 35 40 45 50

Fig. 2. Evolution of the first state for 7 = 0.25 s with one observer.

Remark 3: The implementation of our observer can be realized by
using a numerical integration of a delayed differential equation (for
example the dde routine of Matlab can do this). The measures which are
given by sensor are inherently delayed and they represent the delayed
output. They will be used only by the first observer in the cascade.

IV. EXAMPLE

To illustrate the obtained results, consider the following nonlinear
system, affected by delayed measurements:

T (t) = xa(t)
T2(t) = —21 () + 0.5 tanh(z ()22 (¢)) + z1 (F)u(t) .
y(t) =i (f = 7)
The input is «(¢) = 0.1sin(0.1¢). System (47) belongs to the consid-
ered class of triangular systems with Lipschitz nonlinearities (1).

The initial conditions for the system and for the (cascade) observer(s)
have been chosen as

o) = < 0.5

47)

—0.5)’ -f<t>=<3), Vi€ [-m0.  (48)
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