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Abstract—This paper introduces a generalization of the
notion of Nash equilibrium (NE), namely quantal response
equilibrium (QRE). In the QRE, radio devices choose their
transmit/receive configuration taking into account that
the estimation of their own performance contains a noise
component. Here, it is shown that the notion of QRE neatly
models decentralized self-configuring networks (DCSN)
where feedback messages are impaired by quantization
noise or decoding errors. The main contribution of the
paper is twofold. First, we show that under the presence
of noise in the estimation expected utility, the notion of NE
no longer holds, as players cannot be considered rational.
Second, we introduce a learning technique that converges
to a QRE in a fully decentralized fashion. We present
numerical results in the context of a channel selection
problem in a parallel multiple access channel in order
to illustrate our theoretical results.

I. INTRODUCTION

Game theory is by now accepted as one of most suited
theories for the study of decentralized self-configuring
networks (DSCN) [1]. In particular, the concept of Nash
equilibrium (NE) [2] has played a key role in the
performance analysis of DSCN. The interest on NE
relies mainly on two reasons. First, it is a network
state at which the transmit configuration of each radio
device is optimal with respect to the configurations
adopted by all the other devices. Second, the NE can
be the result of the interaction of several radio devices
following particular behavioral rules, for instance, best
response dynamics, fictitious play, etc, [3]. From this
point of view, radio device or network designers can
develop algorithms that allow DCSN to achieve NE in a
fully decentralized way [1]. Nonetheless, the application
of the notion of NE in DSCN is largely constrained
by several real-implementation constraints. As a first
constraint, we identify the fact that radio devices are
assumed rational. That is, radio devices must be capable
of reliably determining the performance they achieve by
playing each of their actions (transmit configurations).
This assumption clearly does not always hold, since
often this procedure involves feedback messages that are
subject to quantization and decoding errors. Thus, the
assumption of rational radio devices simply fails. Some

references, where rationality is the main assumption,
are for instance [4], [5] in the analysis of interference
channels and [6], [7] in the analysis of the multiple
access channels.

In this article, we introduce the idea of quantal response
equilibrium (QRE) [8], [9], which can be considered
as a generalization of the notion of NE. At the QRE,
players choose their actions taking into account that the
observed utility contains an unknown noise component.
This implies that players are not always able to choose
the action that maximizes their individual utility. Indeed,
the noise component might lead them to choose any
of their feasible actions. As a result, the assumption of
rationality is no loger needed, which makes this notion of
equilibrium better suited for DCSN. The notion of QRE
can be specialized for certain particular types of noise.
For instance, when the noise component added to the
observed average utility follows a Gumble distribution,
the QRE is reduced to the notion of logit equilibrium
(LE) [10] already used in [11] in the context of spectrum
sharing. Another special case, the probit equilibrium,
appears when the noise is Gaussian distributed [10].

The main contribution of this article is a game theoretical
framework based on the notion of QRE to study DSCN
when radio devices are not fully rational due to the
imperfect estimation of their individual performance.
This comprehends mainly the case of noisy feedback.
We also show that the QRE, as the NE, can be learnt by
radio devices in a fully decentralized manner. We provide
some behavioral rules than convergence to QRE.

The sequel of this paper unfolds as follows. In Sec.
II, we present the general system model which is later
described by a one-shot game. In Sec. III, we introduce
the notion of QRE. In Sec. IV, we present a behavioral
rule that allows players to achieve QRE in the general
context of DCSN. In Sec. V, we present some numerical
examples to illustrate our results in the context of a
parallel multiple access channel. Finally, in Sec. VI, we
state our conclusions.
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II. NOTATION AND GAME THEORETIC MODEL

A. Notation

In the sequel of this paper, vectors and scalars are
respectively denoted by boldface lower case symbols
and lower case symbols. The expectation operator with
respect to a random variable x is denoted by Ex [·].
The indicator function is denoted by 1{condition} and it
equals 1 (resp. 0) when condition is true (resp. false).
The set of non-negative and strictly positive integers
is denoted by N = {0, 1, 2, . . .} and N1 = N \ {0},
respectively. The space of real vectors of dimension
n ∈ N is denoted by Rn. Let X be a finite set. We
denote by 4 (X ) the unit simplex over the elements
of X , that is, the set of all probability distributions
over the elements of the set X . The cardinality of X
is denoted by |X | ∈ N and the set of all subsets of X
including the set X itself is denoted by 2X . We denote by
{e(N)

1 , . . . e
(N)
N } the set of vectors of the canonical base

spanning the space of the N -dimensional real vectors.
Here, ∀n ∈ {1, . . . , N}, e(N)

n =
(
e

(N)
n,1 , . . . , e

(N)
n,N

)
, and

∀s ∈ {1, . . . , N} \ {n}, e(N)
n,s = 0 and e(N)

n,n = 1. Given a
vector a = (a1, . . . , aN ) in a given space of dimension
N ∈ N, we denoted by a−n, with n ∈ {1, . . . , N},
the vector a−n = (a1, . . . , an−1, an+1, . . . , aN ) in the
corresponding space of dimension N − 1. With a slight
abuse of notation, we often write a = (an,a−n) to
highlight the n-th component of the vector a.

B. Game Theoretical Model

Assume that the game in normal form G =(
K, {Ak}k∈K , {uk}k∈K

)
models a DSCN. The set K =

{1, . . . ,K} contains the indexes of all transmit-receiver
pairs. A transmitter-receiver pair k, with k ∈ K, chooses
its transmit/receive configuration out of a set of Nk pos-
sible choices. We denote the n-th choice by A(n)

k and the
set of all possible choices by Ak = {A(1)

k , . . . , A
(Nk)
k }.

Here, a transmit/receive configuration describes, for in-
stance, a particular power allocation policy, modulation-
coding scheme, decoding order, scheduling policy or any
combination of these parameters. In the following, we re-
fer to the transmit-receiver pairs and their corresponding
transmit/receive configurations as players and actions,
respectively. An action profile of the game G is a vector
a = (a1, . . . , aK) ∈ A, where A 4= A1× . . .×AK . The
utility function uk : A → R, for all k ∈ K, measures the
benefit (in the sense of Morgestein - von Neumann [12])
player k obtains when it plays a specific action given the
actions adopted by all the other players. Typical utility
functions in DSCN are transmission rates, bit error rates,
spectral efficiency, etc. See [13] and references therein.
The game G is played as follows. Player k chooses
its action ak following a probability distribution πk =

(
πk,A(1)

k

, . . . , π
k,A

(Nk)

k

)
∈ 4 (Ak). Here, ∀k ∈ K and

∀nk ∈ {1, . . . , Nk}, πk,A(n)

k

represents the probability

that player k plays action A(nk)
k ∈ Ak, i.e.,

π
k,A

(nk)

k

= Pr
(
ak = A

(nk)
k

)
. (1)

A vector πk is often called mixed strategy of player k.
The expected utility ūk : 4 (A1)× . . .×4 (AK)→ R

of player k is defined as follows,

ūk(πk,π−k) =
∑

a∈A

Ñ
K∏

j=1

πj,aj

é
uk(ak,a−k). (2)

The information available for player k is a vector,

ūk(·,π−k) =
(
ūk
(
e

(Nk)
1 ,π−k

)
, . . . , ūk

(
e

(Nk)
Nk

,π−k
))
,

(3)
where, ūk

(
e

(Nk)
m ,π−k

)
is the utility that player k hope

to achieve by playing the action A(m)
k when all the other

players play the mixed strategies π−k. However, the
actual utility achieved by player k by playing action
A

(m)
k is a random variable ũk(ek,m,π−k) obtained as

follows,

ũk(ek,m,π−k) = ūk(ek,m,π−k) + εk,A(m)

k

, (4)

where, ∀k ∈ K and ∀m ∈ {1, . . . , Nk}, εk,A(m)

k

is the
realization of a random variable which represents an
additive noise on the expected utility ūk. Sources of
such noise are the quantification of the control vari-
ables such as transmit power, or decoding errors on the
feedback messages used to build the vector ūk(·,π−k).
In this work, it is assumed that the additive error is
independently and identically distributed (i.i.d) for all
the players.
The behavioral assumption is that, player k must choose
the action A(nk)

k , where nk satisfies

nk ∈ arg max
m∈{1,...,Nk}

ũk(ek,m,π−k), (5)

given that all the other players play the complementary
mixed strategy profile π−k. It is very important to
note that such a maximization problem must be carried
out without knowing the exact realization of the noise
component. Note also that in the absence of the noise
component, this behavioral rule corresponds to a ficti-
tious play [14].
Under these assumptions, it becomes clear that players
are unable to choose the action that maximizes the truth
utility ūk. Indeed, the noisy component can lead players
to take any of their actions. In the following section,
we introduce the game theoretical tools tackling such
scenario.
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III. EQUILIBRIUM NOTIONS

In this section, we introduce the notion of QRE and a
special case known as logit equilibrium.

A. Quantal Response Equilibrum
For doing so, we first focus on the determina-

tion of the mixed strategy πk that player k must
use to select its action ak in order to maximize
its actual utility function ũk given a vector ūk =
(ūk(ek,1,π−k), . . . , ūk(ek,Nk

,π−k))). Thus, consider
the vector ξk =

(
ξk,A(1)

k

, . . . , ξ
k,A

(Nk)

k

)
∈ RNk and

let ξ
k,A

(nk)

k

, with nk ∈ {1, . . . , Nk}, be distributed
according to a joint distribution with density function
fk, where the marginal of fk exists for each ξ

k,A
(nk)

k

,

with nk ∈ {1, . . . , Nk} and E
[
ξk,A(n)

k

]
= 0. When fk

satisfies these conditions, fk is said to be admissible [9].
Now, assuming that the truly achieved utility follows the
form of (4), the best response can be obtained as follows.
Let E

k,A
(nk)

k

: RNk → RNk specify the set of errors that

lead player k to choose action A
(nk)
k , for all k ∈ K

and for all nk ∈ {1, . . . , Nk}. Hence, given a vector
ūk (·,π−k) = (ūk (ek,1,π−k) , . . . , ūk (ek,Nk

,π−k)), it
yields

E
k,A

(nk)

k

(ūk (·,π−k)) =
¶
ζk ∈ RNk : ∀m ∈ {1, . . . Nk},

ūk (ek,nk
,π−k) + ζ

k,A
(nk)

k

> ūk (ek,m,π−k) + ζk,A(m)

k

}
.

Thus, the probability distribution over the set of actions
Ak which maximizes the chances that player k chooses
the action which brings the highest (expected) utility
based on the vector ūk (·,π−k), can be determined by
using the function βk : 4 (A1) × . . . × 4 (Ak−1) ×
4 (Ak+1) × . . . × 4 (AK) → 4 (Ak) , where, given
a explicit form for the expected utility ūk, it follows
that βk (π−k) =

(
βk,A(1)

k

(π−k) , . . . , βk,A(Nk)

k

(π−k)
)

and ∀n ∈ {1, . . . , Nk},

βk,A(n)

k

(π−k) =

∫

ζ∈E
k,A

(nk)

k

(ūk(·,π−k))
fk (ζ) dζ. (6)

Such probability distribution βk (π−k) is known as the
statistical reaction function (SRF) or quantal response
function (QRF) [9].
Finally, we define the QRE as follows.

Definition 1 (Quantal Response Equilibrium):
The strategy profile π∗ = (π∗1, . . . ,π

∗
K) ∈

4 (A1) × . . . × 4 (AK) is a quantal response
equilibrium of the game G =

(
K, {Ak}k∈K , {uk}k∈K

)
,

if for all k ∈ K,

π∗k = βk
(
π∗−k

)
. (7)

It is important to remark that Def. 1 implies a fixed
point equation. For instance, let ζ : 4 (A1)×, . . . ×

4 (AK) → 4 (A1) × . . . × 4 (AK) be defined as
follows,

ζ(π) = (β1 (π−1) , . . . ,βK (π−K)) . (8)

Then, if π∗ is a logit equilibrium it holds that π∗ =
ζ (π∗). This observation leads to the following result.

Theorem 2 (Existence of the LE [9]): The game G
has at least one QRE.
The proof of Theorem 2 (in [9]) relies on the fact that
the mapping ζ is a continuos mapping from a compact
convex set into itself. Thus, by Brouwer’s fixed point
theorem, there exists at least one π∗ such that π∗ =
ζ (π∗). In the following, we deal with a particular case
of QRE, known as logit equilibrium [10].

B. Logit Equilibrium
Assume now that the noise components

ξk,A(1)

k

, . . . , ξ
k,A

(Nk)

k

follow a Gumbel distribution
(GD) with location and shape parameters µ ∈ R and
1
γk
∈ R+, respectively. That is,

Pr
(
ξk,A(k)

k

< z
)

= exp (− exp (γk(µ− z))). (9)

The relevance of the GD is that it models the maximum
value of a set of independent and identically distributed
random variables. From (6), it follows that the SRF can
be written as follows,

β
(γk)

k,A
(nk)

k

(π−k) =
exp

(
γkūk(e

(nk)
k ,π−k)

)

Nk∑

m=1

exp
(
γkūk(e

(m)
k ,π−k)

) , (10)

where the index (γk) is used to differentiate the particular
case from the general case in (6). In the next section, we
provide some behavioral rules that allow achieving QRE
in a fully decentralized fashion.

IV. LEARNING QRE
In the following, we basically focus on the design of

the behavioral rules that allow radio devices to achieve
a logit equilibrium. Note that this assumes that the
noise component in (4) follows a Gumble distribution.
Nonetheless, the same analysis hold for other assumption
on the noise distribution as long as the density fk
aforementioned is admissible. Before we start, let the
logit function β̃ : RN+1 → 4 (Ak), with parameter
x ∈ R+, be defined as follows,

β̃ (x,y) =
Ä
β̃1 (x,y) , . . . , β̃N (x,y)

ä
, (11)

with β̃s (x,y) =
exp (x ys)

NK∑

m=1

exp (x ym)

, y = (y1, . . . , yN ), s ∈

{1, . . . , N} and N ∈ N. We relate the smoothed best
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response in (10) with (11), as follows,

β
(γk)
k (π−k) = β̃ (γk, ūk (·,π−k)) . (12)

Using these elements, our main result in this section is
summarized in the following theorem.

Theorem 3: Let the following algorithm be defined,
for all k ∈ K and for all nk ∈ {1, . . . , Nk} and n ∈ N1,
as follows,

ū
k,A

(nk)

k

(n) = ū
k,A

(nk)

k

(n− 1) +

αk(n)1{
ak(n)=A

(nk)

k

} (ũk(n)

−ū
k,A

(nk)

k

(n− 1)
)
,

π
k,A

(nk)

k

(n) = π
k,A

(nk)

k

(n− 1) +

λk(n)
Ä
β̃nk

(γk(n), ūk(n))

−π
k,A

(nk)

k

(n− 1)
)
,

γk(n) = γk(n− 1) + νk(n)Ψk(n),

where, (γk(0), ūk(0),πk(0)) ∈ R+ ×RNk

+ ×4 (Ak) is
an arbitrary initialization of player k, Ψk : R → R is
a positive continuos non-decreasing function and for all
(j, k) ∈ K2,

(i) lim
T→∞

T∑

t=1

αk(t) = +∞, lim
T→∞

T∑

t=1

αk(t)
2 < +∞

(ii) lim
T→∞

T∑

t=1

λk(t) = +∞, lim
T→∞

T∑

t=1

λk(t)
2 < +∞

(iii) lim
T→∞

T∑

t=1

νk(t) = +∞, lim
T→∞

T∑

t=1

νk(t)
2 < +∞

(iv) lim
n→∞

λj(n)

αk(n)
= 0, lim

n→∞
νj(n)

λk(n)
= 0,

(13)
and either,

(a) ∀k ∈ K, λk = λ or

(b) ∀k ∈ K \ {K}, lim
n→∞

λk(n)

λk+1(n)
= 0.

(14)

Then, if the algorithm (13) converges, it holds that,

lim
n→∞

πk(n) = π∗k, (15)

lim
n→∞

ū
k,A

(nk)

k

(n) = ūk(ek,A(nk)

k

,π∗−k), (16)

where π∗ = (π∗1, . . . ,π
∗
N ) ∈ 4 (A1)× . . .×4 (AK) is

a (unique) NE.
The reasoning behind the proof of Theorem 3 uses
elements of stochastic approximations [15] and in par-
ticular, the notion of multiple time scales as introduced
in [16] and [17]. A formal proof of Theorem 3 will
be provided in a future publication. Here, we limit
our analysis to some numerical examples to justify the
validity of our results due to the space constraints.

Note that Theorem 3 states that the learning process
converges, if it does, to a NE instead of a QRE. This
effect is due to the fact that the parameter γk depends
on time and it is forced to grow to infinity, which im-
plies that the SRF asymptotically approaches a uniform
distribution over the actions which maximize ūk given
π−k. Thus, one can state that if the noise component
can be faded out in time, a NE selection process arises
naturally since the NE to which the system converges
is determined by the initial state of the network. This
implies using additive noise to solve the problem of
equilibrium selection.
If on the contrary, the noise component can not be
altered, as it models external variables, then it implies
that Ψk(n) = 0, for all n ∈ N1. In this case, the
system converges to a logit equilibrium with parameters
γ1, . . . , γK , which is, in deed the result stated in [17].
In the following, we provide some numerical results to
illustrate our theoretical results.

V. NUMERICAL RESULTS

Consider a parallel multiple access channel with a
set K = {1, . . . ,K} of transmitters. Each transmitter
sends private information to the receiver by using a
set S 4= {1, . . . , S} of orthogonal channels. Here, the
orthogonality is assumed in the frequency domain. All
channels are available to all the transmitters and thus,
communications are subject to mutual interference. The
receiver implements single user decoding. The aim of
each radio device is to select a single channel and a
power level such that its individual (Shannon) transmis-
sion rate is maximized. Note that under this formulation
transmitting at the maximum power is a dominant action,
and thus, at the (Nash) equilibrium those actions should
not be used.
An action or power allocation (PA) vector for transmitter
k ∈ K is any vector

pk(n) = (pk,1(n), . . . , pk,S(n)) ∈ Ak,

where, ∀k ∈ K,

Ak =
{
p

(s)
k = pk,max es : ∀s ∈ S, es = (es,1, . . . ,

es,S) ∀r ∈ S \ s, es,r = 0, and es,s ∈ [0, 1]} .

Thus, the utility of radio device k can be written as
follows,

uk(pk(n),p−k(n)) =
∑

s∈S
log2 (1 + γk,s(n)) [bps/Hz],

where the bandwidth per channel is normalized to 1Hz.
and γk,s(n) is the signal-to-interference plus noise ratio
(SINR) seen by player k over its channel s at time n.

In Fig. 1, we show the average sum Shannon rates
(network spectral efficiency) as a function of the number
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of players K, with S ∈ {2, 4, 8}. Therein, we assume
that players are able to know the exact realization of
the noise component and thus, they can play the action
which maximizes the truth utility ũk. Note how the
existence of the noise component makes the players
to take different actions and thus, achieve a different
performance in terms of ūk.

In Fig. 2, we show the convergence of the strategy
of player 1. Note that since γk is time dependent,
and thus, the noise component can be faded out in
time, the dynamics converges to a NE after a short
transient. Indeed, the transmitters end up transmitting
at the maximum power using different channels, which
correspond to a NE.

VI. CONCLUSIONS

In this paper, we have presented a mathematical
framework to study the effect of bounded rationality in

wireless communications. The notion of quantal response
equilibrium has been introduced in order to model the
fact that players are not able to properly estimate their
own utility and thus, they are subject to choosing other
actions than the optimal one. Here, we have also pre-
sented a behavioral rule which allows the networks to
achieve LE or NE in a fully distributed manner, relaying
only in the observation of the utility function.
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