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Abstract—In this paper, recent results in game theory and
stochastic approximation are brought together to mitigate the
problem of femto-to-macrocell cross-tier interference. The main
result of this paper is an algorithm which reduces the impact
of interference of femtocells over the existing macrocells. Such
algorithm relies on the observations of the signal to interfer-
ence plus noise ratio (SINR) of all active communications in
both macro and femtocells when they are fed back to the
corresponding base stations. Based on such observations, femto
base stations learn the probability distributions over thefeasible
transmit configurations (frequency band and power levels) such
that a minimum time-average SINR can be guaranteed in the
macrocells, at the equilibrium. In this paper, we introduce the
concept of logit equilibrium (LE) and present its interpretation
in terms of the trade-off faced by femtocells when experimenting
several actions to discover the network, and taking the action
to maximize their instantaneous performance. Finally, numerical
results are given to validate our theoretical findings.

I. I NTRODUCTION

Recently, a new type of indoor Base Station (BS), called
femtocell, has gained the attention of the industry [1] due to
the enormous benefits it brings to both end-users and network
operators. For instance, end-users can enjoy better signal
qualities due to the reduced distance between the transmitter
and the receiver, resulting in higher throughputs, power and
battery savings. From the operator’s point of view, femtocells
will extend the indoor coverage, enhance system capacity, and
share the spectrum in a more efficient manner [2]. However,
these benefits are not easy to accomplish, and there are
challenges that mobile operators must address before success-
fully deploying femtocell networks. Among these challenges,
there is thecross-tier interference between macrocells and
femtocells which highly impact the quality-of-service (QoS)
of the already existing networks. Therefore, distributed and
efficient self-organization strategies need to be designedin
order to make the deployment of femtocell networks feasible.
Many results exist along this direction, e.g., see [3], [5] among
others. In [3] and [5], aQ-learning based algorithm was
investigated in the context of network selection for hetero-
geneous wireless networks, and channel selection in multi-
user cognitive radios, respectively. In [6], a reinforcement-
learning framework based onQ-learning was studied for inter-
ference mitigation among femtocells. Nevertheless, the above-
mentioned works often require information exchange among
transmitters, which represents a non-affordable increment of
signaling messages.
In this paper, we propose a fully decentralized method for
interference minimization/mitigation from the femtocellBS
(FBS) to the macrocell user equipments (MUEs), i.e., our
interest focuses in the downlink interaction between femto-
and macrocell systems, as shown in Fig. 1. The underlying
assumption over which our work relies on is that, the feedback

Fig. 1. Network topology with one macrocell underlaid with three femtocell
networks. MUE and FUE stand for macro/femtocell user equipment, respec-
tively. MBS and FBS stand for macro and femtocell base station, respectively.

messages from MUEs to their corresponding macrocell BS
containing their instantaneous signal to interference plus noise
ratio (SINR) can be decoded by all FBSs. The repetitive
observation of the SINR is used by the FBS to dynamically
configure how often different frequency bands are used such
that, a minimum time-average SINR level can be guaranteed to
the MUEs. Our proposal combines recent results in game the-
ory, learning theory, and stochastic approximation to address
such an issue.
This paper is organized as follows. In Section II, the system
and game model are presented. Section III describes how FBSs
can build a reliable image of the average state of the network
based on noisy observations of the SINR of the active user
terminals in the downlink. Section IV describes a learning
algorithm for interference mitigation, which is the main result
of this paper. Numerical results are presented in Section V.
Finally, Section VI concludes this paper.

II. M ODELS

A. Notations

Boldface lower case and lower case symbols represent
vectors and scalars. Given a random variablez, the expectation
with respect toz is denoted byEz [.]. The indicator function is
denoted by1{condition} and it equals1 (resp.0) whencondi-
tion is true (resp. false). Given a finite setA, △(A) represents
the set of all probability distributions over the elements of
the finite setA. Let the vectore(S)

s =
�
e
(S)
s,1 , ..., e

(S)
s,S

�
∈ R

S

denote thes-th vector of the canonical base spanning the space
of real vectors of dimensionS. Here,∀n ∈ {1, ..., S} \ {s},
e
(S)
s,n = 0 ande

(S)
s,s = 1.

B. System Model

Consider a set ofM = {1, . . . , M} macrocell base stations
(MBS) each one operating over an exclusive fixed frequency
band and serving their respective macrocell user equipments



(MUEs) using a time division multiple access (TDMA) policy.
At each time interval, each MBS serves one of its correspond-
ing MUE aiming to guaranteing a minimum time-average
SINR over their communication duration. We assume that
there exists a setS = {1, . . . , S} of S frequency bands
over which MBS can operate. LetΓ(m)

0 , m ∈ M, denote
the minimum time-average SINR offered by MBSm over
its corresponding fixed frequency band. Consider now a set
K = {1, . . . , K} of K femtocells underlaying theM -cell S-
frequency band macrocell system. Each femtocell can use any
of the available frequency bands to serve its corresponding
femto end-users (FUE) as long as it does not induce a lower
time-average SINR than the minimum required by the MUE,
i.e.,Γ(1)

0 , . . . , Γ
(M)
0 . At each time interval each FBS serves one

FUE over one of the available channels following a TDMA
policy.

Let t ∈ {1, . . . ,∞} be a discrete time index. For all
(j, k, m) ∈ M2 × S, h

(s)
1,j,k represents the channel realization

between MBSk and MUE j over channelm at time t. For
all (j, k, m) ∈ K × M × S, h

(s)
2,j,k represents the channel

realization between MBSk and FUEj over channels at time
t. For all (j, k, m) ∈ M×K×S, h

(s)
3,j,k represents the channel

realization between FBSk and MUEj over channels at time
t. Finally, for all (j, k, m) ∈ K2 × S, h

(s)
4,j,k represents the

channel realization between FBSk and FUEj over channels
at timet. Denote byh(t) the vector of all channel realizations
at time t. All channel realizations, i.e., each component of
h(t), are independent and identically distributed following a
probability distribution which is a parameter of the network.
Let the finite set denoted byH be the set of all possible vectors
h(t), for all t > 0. Finally, channel realizations at timet are
independent of those at timet − 1, for all t > 0.

Let pk,max and p0,m, with k ∈ K and m ∈ M, be the
maximum transmit power of FBSk and MBSm, respectively.
For all k ∈ K, let the S-dimensional vectorpk(t) =�
p
(1)
k (t), ..., p

(S)
k (t)

�
denote the power allocation vector of

FBS k ∈ K at time t. Here p
(s)
k (t) is the transmit power

of femtocell k over frequency bands at time t. All FBS
are assumed to transmit only over one frequency band at
each timet at a given power level not exceedingpk,max. Let
Lk ∈ N be the number of discrete power levels of FBSk, i.e.,
pk,max

Lk
, . . . , pk,max. For all (k, ℓ, s) ∈ K × {1, . . . , LK} × S,

denote by theS-dimensional vector

q
(ℓ,s)
k =

ℓ

L
pk,maxe

(S)
s , (1)

the power allocation (PA) vector when FBS transmits over
channels at power levelℓ. Denote also byq(0,0)

k , with k ∈
K, the S-dimensional null vector, i.e.,q(0,0) = (0, . . . , 0) ∈
R

(S). Thus, FBSk hasNk = Lk · S + 1 possible PA vectors,
q(0,0), q

(1,1)
k , . . . , q

(Lk,S)
k .

For all (k, s) ∈ K × S, let γ
(s)
k be the SINR of FUEk at time

t and for allm ∈ M, let γ
(sm)
0,m be the SINR of the MUE in

the macrocellm at time t. Let also the setMs ⊂ M, with
s ∈ S, be the set of MBS using channels. Then, we can write

that

γ
(s)

k
(t)=

p
(s)

k
(t)
��h(s)

4,k,k
(t)
��2

σ
(s)2

k
+

X
m∈Ms

p0,m

��h(s)

2,k,m
(t)

��2+

X
j∈K\{k}

p
(s)

j
(t)

��h(s)

4,k,j
(t)

��2
(2)

and for allm ∈ M,

γ
(sm)
0,m

(t)=
p0,m

��h(sm)
1,m,m

(t)
��2

σ
(sm)2

0,m
+

X
j∈Msm\{m}

p0,j|h(sm)

1,m,j
(t)|

2
+

X
i∈K\{k}

pi,max|h(sm)

3,m,i
(t)|

2
,

(3)
where for allm ∈ M, sm is the channel used by MBSm and

σ
(sm)
0,m

2
and σ

(sm)
k

2
is the noise power over MUEm and the

noise power over FUEk on the frequency bands.
All FBSs are interested in optimizing a given interference
minimization/mitigation metric denoted byφ : RS·K+M → R,
which determines at each instantt the impact of the interfer-
ence on the macro system based on the observation of all the
SINR levelsγ(s)

k andγ
(sm)
0,m , with (k, s) ∈ K×S andm ∈ M.

Later, we provide explicit expressions forφ depending on the
interest of all FBSs.

C. Game Theoretic Model

The interference minimization problem described in the
previous section can be modeled by a stochastic game made
of a sequence of strategic games played at different states,
e.g., channel realizations. Let us denote byG(h(t)) =
(K, {Ak}k∈K, {φ}k∈K) the static strategic game and let us
denote byG = {G(h(t))}t>0 the stochastic game where at
each timet, the gameG(h(t)) is played, witht ∈ {1, . . . ,∞}.
We describe in detail both formulations.

1) Short Term Formulation:Let us describe the network
during the interval fromt − 1 to t by the gameG(h(t)) =
(K, {Ak}k∈K, {φ}). Here,K represents the set of FBS in the
network. For allk ∈ K, the set of actions of FBSk is the
set of power allocation vectors, i.e.,Ak = {q

(ℓ,s)
k : ℓ ∈

{0, . . . , Lk}, ands ∈ S}. Finally, φ : H× A1 × AK → R+

is the payoff or interference minimization metric of all fem-
tocells.

At each timet > 0 and for all k ∈ K, FBS k chooses
its action from the finite setAk following a probability dis-
tribution πk(t) =

�
π

k,q
(0,0)

k

(t), π
k,q

(1,1)

k

(t), ..., π
k,q

(Lk,Sk)

k

(t)
�

whereπ
k,q

(lk,sk)

k

is the probability that femtocellk plays action

q
(lk,sk)
k at time t, i.e.,

π
k,q

(lk,sk)

k

= Pr
�
pk(t) = q

(lk,sk)
k

�
. (4)

where (lk, sk) ∈ {1, ..., LK} × S ∪ {(0, 0)}. In the follow-
ing, we describe the long-term gameG, and we introduce
the method which each FBS uses to choose the probability
distributionπk(t), at each timet.

2) Long-Term Formulation: The long-term behavior of
the network is modeled by the succession of static strate-
gic gamesG = {G (h(t))}t>0. This succession produces
a Markov gameG = {G(h(t))}t>0, where at each stage
t the gameG(h(t)) is played assuming that the network
is described by the vectorh(t). According to the system
model, the actual state of the networkh(t) follows a Markov
chain with transitions following the rule,∀

�
h′, h′′� ∈ H2,



Pr
�
h(t) = h

′
��h(t − 1) = h

′′
�

= Pr
�
h(t) = h

′� = πh′ .
Here, πh′ , for all h′ ∈ H, are parameters obtained from
previous channel modeling studies. Note that transitions be-
tween states are independent of the actions of the transmitters.
This assumption might appear restrictive, however, it perfectly
models the time-varying nature of wireless channels, whichare
independent of the transmit configurations of radio devices.
The gameG = {G(h(t))}t>0 proceeds in infinitely many
stages. At each staget ∈ {0, . . . ,∞}, FBSs choose their
corresponding actionsp1(t), . . . , pK(t). When doing so,
each FBSk observes a noisy samplẽφk(t) of the cor-
responding instantaneous interference minimization metric
φ(h(t), pk(t), p−k(t)), i.e.,

φ̃k(t) = φ(h(t), pk(t), p−k(t)) + εk,pk(t)(t), (5)

where,∀(ℓk, sk) ∈ {1, . . . , Lk} × S ∪ {(0, 0)}, and∀k ∈ K,
ε

k,q
(ℓk,sk)

k

(t) is the realization at timet of a random variable

ε
k,q

(ℓk,sk)

k

which represents the additive noise on the observa-

tion of the instantaneous performanceφ(t) when FBSk plays

actionq
(ℓk,sk)
k . Here, we assume thatE

h
ε

k,q
(ℓk,sk)

k

i
= 0.

Our behavioral assumption is that all FBS are interested
on choosing the probability distributionπk(t) ∈ △ (Ak) to
optimize the time-average interference minimization metric at
each timet > 0, i.e., φ̄k(t), which is calculated empirically
based on the observations̃φk(t) as follows,

φ̄k(t) =
1

t

tX
n=1

eφk(n). (6)

To choose the optimal probability distributionπk(t), the
FBS relies on estimations of the time-average interference
minimization metric obtained with each of its actions. For
all (ℓk, sk) ∈ {1, . . . , Lk} × S ∪ {(0, 0)}, let φ̂

k,q
(ℓk,sk)

k

(t),
be the estimation of time-average interference minimization
metric obtained by playing actionq(ℓk,sk)

k . This estimation is
calculated as follows,

φ̂
k,q

(ℓk,sk)

k

(t) = 1
T

k,q
(ℓk,sk)

k

(t)

tX
n=1

φ̃k(n)1�
pk(n)=q

(ℓk,sk)

k

©,(7)

where,T
k,q

(ℓk,sk)

k

(t) =
tX

n=1

1�
pk(n)=q

(ℓk,sk)

k

©. Once theNk-

dimensional vector of estimations of FBSk is obtained, i.e.,
φ̂k =

�
φ̂

k,q
(0,0)

k

, φ̂
k,q

(1,1)

k

, . . . , φ̂
k,q

(Lk,S)

k

�
for all k ∈ K,

it is used to determine the optimal probability distribution
πk(t) =

�
π

k,q
(0,0)

k

, π
k,q

(1,1)

k

, . . . , π
k,q

(Lk,S)

k

�
at each timet.

For doing so, we define the functionβk : RNk → △ (A). Note
that the probability distributionβk

�
φ̂k(t)

�
must take into

consideration that, FBSs must experiment between different
actions such that the estimation vectorφ̂k(t) is improved at
each timet, but also FBSs must optimize their respective
interference minimization metric. In the following, we present
the existing trade-off between both goals which might appear
at a first glance as two antagonic processes.

III. E XPLORATION VS. PERFORMANCEOPTIMIZATION

As shown in Sec II-C, all FBSs face a trade-off between
optimizing their time-average utility by taking the actionthat
does it at each timet, and trying out different actions so
as to improve the estimation of the time-average interference
mitigation metric obtained with each action. This implies that
a reasonable behavioral rule would be to choose the actions
which yield high payoffs more likely than actions yielding low
payoffs, but in any case, always letting a non-null probability
of playing any of the actions. Following the results in [8], [9],
the behavioral rule described above can be modeled by the
probability distributionβk(φ̂k(t)) satisfying,

βk(φ̂k(t)) ∈ arg max
πk∈△(Ak)

h X
pk∈Ak

πk,pk
φ̂k,pk

(t) + κkH(πk)
i

(8)
whereH represents the Shannon entropy function. In general,
given a probability measureπ1, ..., πN over an set ofN
elements, it follows that

H(π1, ..., πN ) = −
NX

n=1

πn ln(πn). (9)

For all k ∈ K, the parameterκk > 0 represents the interest of
FBS k to choose other actions rather than the optimal one in
order to improve the time-average interference minimization
metric.
The unique solution to the right hand side of the optimization
problem in (8) is written as:

βk(φ̂k(t))=

�
β

k,q
(0,0)

k

(φ̂k(t)),β
k,q

(1,1)

k

(φ̂k(t)),...,β
k,q

(Lk,S)

k

(φ̂k(t))

�
,

(10)
where for allk ∈ K and for all (ℓk, sk) ∈ Lk × S ∪ {(0, 0)}
andk ∈ K:

β
k,q

(ℓk,sk)

k

(φ̂k(t)) =
exp

�
1

κk
φ̂

k,q
(ℓk,sk)

k

(t)
�P

pk∈Ak
exp

�
1

κk
φ̂k,pk

(t)
� , (11)

whereβ
k,q

(ℓk,sk)

k

(φ̂k(t)) > 0, with strict inequality regardless

of the estimation vector̂φk(t), with t > 0. Equation (11) is
known in the game theoretic jargon assmoothbest response
[7] and implies a different concept of equilibrium with respect
to the classical Nash equilibrium. This equilibrium, known
as logit equilibrium or Boltzmann-Gibbs equilibrium [12] is
defined as follows,

Definition 1: (Logit Equilibrium) : Consider the Markov
gameG = {G(h(t))}t>0. The mixed strategy profileπ∗ =
(π∗

1, ..., π
∗
K) ∈ △ (A1) ,× . . . ,×△ (AK) is a logit equilib-

rium, if ∀k ∈ K,

π∗
k = βk

�óφk

�
π∗

−k

��
, (12)

where the Nk dimensional vector óφk (π−k) =�óφ
k,q

(0,0)

k

(π−k) , óφ
k,q

(1,1)

k

(π−k) , . . . , óφ
k,q

(Lk,S)

k

(π−k)
�

is the expected interference minimization metric, i.e., for all
k ∈ K and for all (ℓk, sk) ∈ {1, . . . , Lk} × S ∪ {(0, 0)}),óφ

k,q
(ℓk,sk)

k

(π−k)=Eh

24 X
p−k∈A−k

� Y
j∈K\{k}

π∗
j,pj

�
φ(h,q

(ℓk,sk)

k
,p−k)

35.



Note that Def. 1 implies a fixed point equation as in
the case of the classical Nash equilibrium [10], e.g., let

β : R

P
K

j=1
Nj → △ (A1)×, . . . × △ (AK) be defined as

follows,

β(π) =
�
β1

�óφ1 (π−1)
�

, . . . , βK

�óφK (π−K)
��

.

Thus, if π∗ is a logit equilibrium then,π∗ = β (π∗).
It is also important to remark that whenκk → 0, the

resulting probability distribution approaches the best response
(BR) correspondence. First, let us define the best response
correspondence as follows:

Definition 2: (Best Response Correspondence): Consider
the Markov gameG = {G(h(t))}t>0. For all k ∈ K, the
best response correspondance in pure strategiesBRk : H ×Q

i∈K\{k} △ (Ai) → Ak is defined as follows:

BRk(h(t), π−k(t)) =

arg max
qk∈Ak

X
p−k∈A−k

�
φ(h(t),qk,p−k)

Y
j∈K\{k}

πj,pj
(t)

�
. (13)

Now, we show how both smooth best response (11) and the
best-response (13) are related when the perturbation (entropy
term in (8)) vanishes.

Theorem 1:(Theorem2 in [9]) Consider the Markov game
G = {G(h(t))}t>0. Then, for allk ∈ K and for all(ℓk, sk) ∈
Lk × S ∪ {(0, 0)}, it holds that:

lim
κk→0

β
k,q

(ℓk,sk)

k

�óφk (π−k)
�

=

1�
q
(ℓk,sk)

k
∈BRk(π

−k)
©

|BRk (π−k)|
. (14)

The proof of Theorem 1 follows the same arguments that the
proof of Theorem2 in [9] . Theorem 1 implies that as long
as the perturbation vanishes, the mixed strategies obtained by
using the smooth best-response approach a uniform probability
distribution over all the actions of the best response at a given
time t.

Conversely to the vanishing perturbation case, whenκk →
∞, the resulting probability distribution approaches the uni-
form probability distribution over all the set of feasible
frequency-bands and power-levels sets. In the following sec-
tion, we introduce a novel technique for achieving LE for a
given set of constantsκ1, . . . , κK .

IV. A CHIEVING THE LOGIT EQUILIBRIUM (LE)

In this section, we focus on the procedure used by FBSs
to achieve a logit equilibrium for a given constant set of
parametersκk, with k ∈ K. We present the main result of
this paper in the following proposition.

Proposition 1 (Achieving the LE): Consider the game
G = {G(h(t))}t>0. Assume that the estimation of the
time-average interference minimization metric and the mixed
strategy of FBSk are calculated as follows,∀k ∈ K and

∀(ℓk, sk) ∈ {1, . . . , Lk} × S ∪ {(0, 0)},8>>>>><>>>>>:
φ̂

k,q
(ℓk,sk)

k

(t) = φ̂
k,q

(ℓk,sk)

k

(t−1)+

α(t)

1�
pk(t)=q

(ℓk,sk)

k

©
π

k,q
(ℓk,sk)

k

(t)

�
φ̃(t)−φ̂

k,q
(ℓk,sk)

k

(t−1)

�
,

π
k,q

(ℓk,sk)

k

(t) = π
k,q

(ℓk,sk)

k

(t−1)+

λ(t)

�
β

k,q
(ℓk,sk)

k

(φ̂k(t))−π
k,q

(ℓk,sk)

k

(t−1)

�
,

(15)
where, φ̂k(0) ∈ R

Nk and πk(0) ∈ △ (Ak) are arbitrary
initializations andλ and α are learning rates chosen such
that

lim
T→∞

TX
t=0

α(t) + λ(t) = +∞ (16)

lim
T→∞

TX
t=0

α(t)2 + λ(t)2 < +∞, and, (17)

lim
t→∞

λ(t)

α(t)
= 0. (18)

Then, both learning processes in (15) converge for allk ∈ K,
and it holds that,

lim
t→∞

πk(t) = π∗
k, (19)

lim
t→∞

φ̂
k,q

(ℓk,sk)

k

(t) = óφk(π∗
−k), (20)

where π∗ = (π∗
1, . . . , π

∗
K) is a LE of the gameG =

{G(h(t))}t>0.
The proof of Prop. 1 follows the same steps of the proof of
Prop.3 in [9] and can be described in three steps. First, the pro-
cesseŝφ1(t), . . . , φ̂K(t) and the processesπ1(t), . . . , πK(t)
can be written as two stochastic approximation (SA) algo-
rithms φ̂(t) and π(t) by stacking them as a single vectors.
Second, both SA algorithms satisfy the standard conditions
to approximate them by two ordinary differential equations
(ODE) [11]. Finally, using (18), it can be assumed that the
processφ̂(t) sees the processπ(t) as almost time-invariant,
and the processπ(t) sees the procesŝφ(t) as always calibrated
to the current value of the former. Applying this reasoning to
the asymptotic analysis of the ODEs leads to the proof of
Prop. 1.

V. SIMULATION RESULTS

Consider only one macrocell per frequency band and as-
sumeS = 4 available frequency bands, i.e.,M = S = 4. The
macrocell system is underlaid withK = 2 femtocells. We
assume that femtocells haveL = 3 transmit power levels and
the average signal-to-noise ratio for the macro- and femtocells
are 20 dB and 10 dB per frequency band, respectively.
More precisely,∀(k, s) ∈ K × S, SNR

(s)

k
=

pk,max

σ2
k,s

=10dBs and

∀m ∈ M, SNR(sm)
m =

p0,m

σ2
0,m

=20dBs. The minimum SINR of

the macrocells are given byΓ0 = (8, 9, 12, 13) dB. The
interference minimization/minimization metric adopted in this
numerical example is the following:

φ(h(t), pk(t), p−k(t)) =PK

k=1

PS

s=1 γ
(s)
k (t).

QM

m=1 1
�
{γ

(sm)
0,m

(t)>Γ
(sm)
0,m

}
	. (21)



This metric at a given instantt is different from zero only
if all the MBSs satisfy at timet the minimum SINR level
required for their own communications. The non-zero value
represents the sum of the achieved SINR of all the FBS in the
system. Hence, as long as all MBSs see their QoS requirement
satisfied, FBSs obtain a positive reward. This models a certain
altruism from the behavior of the FBSs which sacrifice their
performance to guarantee the QoS of the macrocell system.
Many other interference minimization functions can be devised
to model the problem depending on particular features of the
network. However this is out of the scope of this paper.

In Figure 2, the evolution of the probability distribution over
the set of actions taken by both FBSs is shown. As time goes
by, FBSk = 1 increases the probability to transmit with the
maximum power level on frequency bands = 1, while the
probability of transmitting on other bands decreases. On the
other hand, the probability that FBSk = 2 transmits with
maximum transmit power level on carriers = 2 increases with
time, whereas the probabilities of transmitting over the other
frequency bands decrease. It can also be seen that although
femtocells do not communicate with each other, they coordi-
nate their access to the spectrum by using different frequency
bands with very high probability. Note also thats = 1 and
s = 2 are the frequency bands where the corresponding MBS
demands the lowest SINR level. Figure 3 shows the evolution
of the corresponding ergodic transmission rate for both FBS.
Finally, the evolution of the ergodic transmission rate of the
macrocells is shown in Figure 4. Clearly, all requirements are
satisfied for the macrocell system.
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Fig. 2. Evolution of the probability distribution over the set of actions of
femtocell 1 (left) and femtocell2 (right).

VI. CONCLUSIONS ANDFUTURE WORK

In this paper, the cross-tier interference mitigation was
studied in the framework of cognitive femtocells. Here, the
behavior of femtocells aiming to avoid interference over the
existing macrocells has been tackled using the fact that SINR
messages fed-back from the end user terminals to their corre-
sponding base stations can be decoded by all femtocells. Based
on those observations, the behavior of femtocells is modeled
by a smooth best response with respect to their expected
interference minimization metric. This behavioral rule has
been shown to lead the network to converge towards a logit
equilibrium, where FBSs perfectly balance their willingness
of experimenting several actions to discover the network, and
adopting the actions for performance optimization. In our
future work, we will investigate the possibility of improving
the convergence speed as well as studying other learning
mechanisms in the context of femtocell networks.
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Femto k = 2 on s = 1

Femto k = 2 on s = 2

Femto k = 2 on s = 3

Femto k = 2 on s = 4

Fig. 3. Evolution of the ergodic transmission rate of femtocell 1 (left) and
femtocel2 (right).
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Fig. 4. Evolution of the ergodic transmission rate of the macrocell.
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