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Abstract—This paper presents a self-organizing architecture
made of several maps, implementing a recurrent neural net-
work to cope with partial observations of the phase of some
dynamical system. The purpose of self-organization is to set
up a distributed representation of the actual phase, although
the observations received from the system are ambiguous (i.e.
the same observation may correspond to distinct phases). The
setting up of such a representation is illustrated by experiments,
and then the paper concludes on extensions toward adaptive
state representations for partially observable Markovian deci-
sion processes.
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I. INTRODUCTION

In the design of artificial agents evolving in some envi-

ronment, one has to deal with information streams. Sensors

provide input streams to the information processing system

of the agent, and actuators actually produce a stream of

actions performed in order to exploit the environment. Such

an action stream is actually the output of the agent to the

environment. The coupling of the agent and the environment

through such information and energy streams is obvious for

any biologist who analyzes the behavior of some animal.

Nevertheless, in the field of Computer Science and Machine

Learning, computation is often considered off-line, for tech-

nical reasons. The typical case is the use of data sets to train

the models, before actually using the trained models on-line.

This paper is a contribution to the part of Computer Sci-

ence that is rather involved in the design of situated systems,

thus actually focusing on the process of streams of informa-

tion. In that sense, it is related to reinforcement learning

approaches, that deal with sequential decision making of

an agent continuously interacting with its environment, as

well as temporal systems like recurrent neural networks that

handle sequences of input. Indeed, the model proposed here

allows to extract the phase of some dynamical system from a

sequence of observations computed from that phase. Let us

illustrate the need for such a feature from a straightforward

toy example.

Let us consider an animal perceiving the temperature T
of the floor. Let us suppose that any temperature T > T0 is

dangerous to it. In our example, the temperature oscillates

periodically between high and low values (for night and

day). The whole solar system configuration is the phase of

the environment, noted xt here. It evolves in a deterministic

way, according to Newton’s law. The phase evolution is thus

driven by a transition function φ such as ∀t, xt+dt = φ(xt).
The temperature perceived by the animal is an observation

of the solar system, that can be expressed as T t = O (xt)
where O is the observation function, see figure 1. The sun

position in the sky P t = O′(xt) would have been another

observation of the solar system phase. Let us now consider

a time t for which the temperature T t = T0−ǫ is just below

the threshold. Should the animal try to hide away from the

sun? The answer depends on the phase xt, from which the

animal could know if the temperature is currently decreasing

or increasing. The decision would have been easier from

the perception of sun position P t, since O′ is a bijective

function, and thus the values of P t allow to take the decision

directly from the current perception. If only T t is perceived

by the animal, an efficient behavior requires that the animal

is able to represent internally a value x̂t from which it can

take the right decision, since values of temperature may

be ambiguous (similar temperatures are observed twice a

day). T is thus said to be a partial observation of x. The

current value x̂t is inferred and updated from the successive

observations T t. It is not required that x̂ be the exact

representation of the phase x, i.e. the animal do not need to

know where the planets are, but x̂ has to be set up such that

a bijective observation function implicitly exists from x to x̂.

Partially observed environments are of interest in rein-

forcement learning domain. While the general trend is to

find x̂t before computing the corresponding value function

of each state, other works like [1] implement evaluation

with a recurrent network, but without explicitly extracting

some x̂t.

The neural architecture presented in this paper relies

on self-organizing neural networks in order to build such

an internal representation from ambiguous sequences of

observations. Many works in the literature try directly or

indirectly to find x̂t. Concerning the use of self-organizing

maps, many enhancements on Kohonen basic map [2] like

in [3], [4], [5] consider the temporal dimension of input

sequences but they deal with the recognition of manually
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Figure 1. Dynamical system phase extraction.
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Figure 2. Model architecture. Input map and delay map are connected
via one-to-one connections, other connections are one-to-many connections
organized in strips. For unit q, Iq is the strip of kind I handled by q.

extracted sequences, rather than on-line stream of inputs.

Reservoir computing methods [6] are closer to that pur-

pose, since they handle inputs from a stream one by one.

Readout units then search the huge reservoir states in order

to locate few significant states. The significant states repre-

sents the phases of the system that provide the inputs.

For the best of our knowledge, the present work is the first

attempt to find a mapping of a dynamical system phase space

using on-line self-organizing recurrent neural networks.

II. THE MODEL

As mentioned above, our goal is to design a system

that generates an internal representation of the dynamical

system phases from the stream of observations emerging

from it. Our model is an effort in this direction, inspiring

from biological information. It is based on the bijama

model [7], proposed and developed in our team. It enables

building computational cortical-like 2D-neural assemblies

called maps, made of computational units representing corti-

cal columns. Units allow to process in parallel external entry

and internal signals carried out by connections. A schematic

of the model is shown in Fig.s 2 and 3. The architecture

comprises three maps, namely the input map, the delay map,

and the associative map. The input map receives the external

input stream. Its activity is expected to represent at time t
the coding x̂t of the actual dynamical system phase xt.

The two other maps, the delay map and the associative

map are auxiliary maps that play the role of intermediate

structures for extracting x̂t from the input stream ot. Their

purpose is to re-inject the delayed activity of the input map

into its dynamics. This recurrent pathway actually reveals the

temporal dimension of the input stream. Map activities are

computed by a neural field. Each unit has lateral recurrent

connections to other units within the map, implementing

an on-center/off-surround connectivity [8], [9]. The field

performs lateral competition between units and computes

the activity of each one, so that the global map activity has

the shape of a bump (see dark meshes in Fig. 4). The bump

positions are actually the response of the map to its input.

Lateral competition, from which activity bumps emerge, is

used in the model in order to guide the process of self-

organization of inputs over the map surface. This is indeed

difficult with neural fields as explained in [9] from which

the neural field process used in this paper is taken. The

whole architecture evolution is controlled by successive time

steps. A time step is a discrete time instance at which the

activities of all units in all maps are evaluated once, using

an asynchronous evaluation scheme [9]. Another kind of

connectivity in the model is the inter-map connectivity. A

unit at the bi-dimensional position p in some local map can

be connected to a whole strip-shaped region Sp in some

remote map. Then unit p handles connections from the units

at positions q ∈ Sp in the remote map, as shown in Fig. 2.

Each connection in a strip between p and a remote unit q
handles a weight whose current value is s̄t

pq, so that the strip

Sp owned by p handles a vector of weights S̄t
p =

(

s̄t
pq

)

q∈Sp

.

Let us note S the set of strips received by local map

(S = A, I,D in Fig. 2). Inter-map connections are referred

to as cortical connections. Strips are characterized by their

width ρS and direction ψS relative to the horizontal axis

connecting the centers of the local and remote map. Let us

note the activity of the unit at position p at time t as ut
p, and

the vector of remote unit activities perceived at p through the

strip Sp as St
p =

(

ut
q

)

q∈Sp

. The computation of unit activity

using bijama is achieved using a stack of modules (see

Fig. 3). Each one handles a scalar value that may be received

as input or computed from lower modules in the stack. The

higher module (here, the neural field module) handles the

unit output that is the one actually accessed through cortical

connections.

Let us first describe the stack of modules used for the

units in the input map, see Fig. 3 and 4 while reading the

definitions which follow. In general terms, the input map, in

the one hand, receives external observations ot. In the other

hand it also receives strips (noted A) from the associative

map. It outputs an activity bump as a response. This activity

represents x̂t as will be shown later. The lower module is



referred to as the thalamic module. It handles the external

input ot, and matches it against a stored prototype ωt
p and

computes the similarity θt
p.

θt
p = e−

(ot
−ωt

p)
2

2σ2 (1)

The second module is referred to as the cortical module. It

handles the strip Ap emerging from the associative map, and

computes the matching ctp,A between the strip weight vector

Āt
p and the activity vector At

p. The matching is computed

as follows, where B is a numerical constant:

ctp,A =

〈

At
p.Ā

t
p

〉

max
(

∥

∥Āt
p

∥

∥

2
, B

) (2)

The third module is referred to as cortico-thalamaic

merging. It merges θt
p and ctp,A into one scalar νt

p as follows:

νt
p =

√

θt
p.β + (1 − β).ctp,A (3)

Where β is a constant. The value of νt
p forms the final input

ready to use by the neural field, i.e. the upper module, to

compute the unit activity ut
p.

The unit activity is used to modulate the learning. Tha-

lamic learning implies moving θt
p towards ot proportionally

to ut
p, as shown in (4).

ωt+1
p = ωt

p + αω.u
t
p.(o

t − ωt
p) (4)

Where αω is a fixed thalamic learning rate for all units.

On the other hand, cortical learning implies moving the

weight āt
pq of each connection included in the strip Sp

towards the cortical input ut
q, as shown by 5.

āt+1
pq = āt

pq + αS .u
t
p.(u

t
q − āt

pq) (5)

Where αS is a fixed cortical learning rate for all model

connections. The previous rule means that learning occurs

only in connections to active units in local maps.

The next map in the model is the associative map. Its

receives the actual activity of the input map as well as

its delayed activity exhibited by the delayed map, then it

performs lateral competition via the neural field, and re-

injects the result into the input map through the previously

mentioned A strips. The first module of a unit q of this map

handles the strip Iq emerging from input map and computes

the matching ctq,I . The second module handles the strip Dq

emerging from delay map and computes the matching ctq,D.

Both matching values are computed similarly to what was

shown in input map units, according to 2. The third module

is referred to as cortico-cortical merging. It merges ctq,I and

ctq,D in one scalar µt
q as follows:

µt
q =

√

ctq,I .c
t
q,I + noiseµ (6)
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Figure 3. Module stacks of the units in the three maps, and their cortical
inter-connections.

The purpose of noise is to boost the associative map activity

in units receiving null cortical activity before being injected

into the input map. The value of µt
q is actually the input to

the associative map neural field module which computes the

unit activity ut
q.

The last map in the model is the delay map. It receives a

unit-to-unit copy of the input map activity and delays it for

some period of T time steps, using a T -length FIFO queue.

Units in this maps have two modules. The first is the copy

module that copies ut
p from the input map. The second is

the FIFO module. Thus ut
p = ut−T

q where q is a position

in the input map and p the same position in the delay map.

There is no need for a neural field in this map.

As can be seen, the proposed architecture requires no

prior conditions on the input stream, nor on the underlying

dynamical system, it is thus a model free architecture. The

model does not require to adjust any parameter during

execution. Learning rates are thus constant. Moreover, there

is no need for resetting output bump activities u when a new

observation oτ+1 is presented.

III. EXPERIMENTS

In this section, the model is tested to validate its capability

to find an internal state representation of some unknown

dynamical system providing observations. A toy example

of dynamical system is used here to test the capacity of

spatio-temporal organization of the model. Let x ∈ C

represent the system phase, and let the transition function

be φ (x) = x.eiϕ. Let us consider that the system transition

occurs at instant τ , thus we can write xτ+1 = φ (xτ ) with

x0 = 0.5. Let the partial observation fed to the model be

O (xτ ) = 0.5+ℜ(xτ )+noiseo. Its values are kept in [0, 1].
The sampled stream values are perturbed by noise to test

the robustness to noisy observations.

The dynamical system phase can be thought of as the

position of a point moving in a steady speed on a circle,

and the observation is its noisy abscissa. This sinusoidal

observation is obviously ambiguous.



Figure 4. Activity of model maps modules.

In this experiment, τ is incremented every T time steps,

and each observation O (xτ ) is fed to the model during T
time steps, i.e. ot = ot+1 = · · · ot+T−1 = O (xτ ) and

ot+T = ot+T+1 = · · · ot+2T−1 = O
(

xτ+1
)

, etc. The reason

for that is to give enough time to the neural field to relax

and form an appropriate bump, as well as for cortical and

thalamic learning to influence significantly the weights. T
value is the same as FIFO length used in delay map units,

thus, it delays input maps activity until the next O (xτ ) is

sampled.

The input stream value ot is presented to all the units in

the input map as for Kohonen maps [2]. The map response

is computed as the barycenter position Gτ of the u activity

bump at the end of each chunk of T successive time steps.

It is computed as follows:

Gτ =
∑

p

ut
p.p/

∑

p

ut
p : p ∈ [1,M ]2 (7)

Where M is the dimension of the square surrounding the

round map. Each time that l barycenters are computed, they

are organized in a list P τ = {Gτ−l+1, Gτ−l+2, · · · , Gτ} of

positions forming l-length paths over the map as sketched

in Fig. 5. Successive paths allow to track the evolution of

the map state x̂t through time.

Fig. 5 shows the evolution through time of the input

map. At the experiment start, thalamic values ωt
p are random

and the activity is located in a limited regions on the map

as illustrates Fig. 5(a). Activity bumps start to disperse in

Fig. 5(b). At this stage, due to thalamic learning guided

by the neural field, thalamic values start to exhibit spatial

organization as the grey-scaled regions show. The reason is

that ωt
p mainly organize according to values of ot which

are in [0, 1]. Fig. 5(c) shows a better organization of the

thalamic values, and different regions appear, each handling

some different range of the ot values. Besides, it exhibits a

better dispersion of activity bumps in the each region.

At the end of learning, Fig. 5(d) shows that different grey-

scaled regions can be distinguished, indicating the spatial

self-organization of thalamic values.

The poly-line in the figure is formed by l = 50 points,

corresponding each to the representation x̂t of a dynamical

system phase xt. As can be seen, points are clustered along
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(b) Map activity after τ = 132× 50 i.e. t = τ × T = 158400 time
steps.
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(c) Map activity after τ = 360× 50 i.e. t = τ × T = 432000 time
steps.
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(d) Map activity after τ = 554× 50 i.e. t = τ × T = 664800 time
steps.

Figure 5. Status of the input map during the system evolution. Grey-scaled values are the ω prototypes (white for 0, black for 1). P τ is represented with
a poly-line, linking successive positions Gτ−l+1, Gτ−l+2, · · · , Gτ , that are localized on the figures with red dots.

the poly-line. One cluster is formed by repeated visits of the

same system state. This indicates the stable representations

of states in the map space. Each thalamic region corresponds

to a range of close observations values. Within each region

there exists the representation of 2 or more states. For

example, the black region corresponds to observation values

close to 1, nevertheless, it contains 3 distinct successive state

representations marked A,B,C. When a range of observations

is located in the middle of the input values range, points

(like D,E) express non-successive states corresponding to the

same observation range, but in different temporal context.

Such duplications of states, related to the same value of

O, are progressively performed while the whole architecture

gets organized. It removes observation ambiguity. Thus, the



ensemble of state representations x̂ (i.e. bump positions)

expresses a bijective mapping between the map surface

and the dynamical system phase space. This was possible

because the model allowed the previous state of the input

map to be considered in computing its new state, integrating

this way, its state history. The added noise to the input stream

did not affect the model capability to extract the mapping.

The experience was launched with numerical values for

the dynamical system as follows: ϕ = 2π/15 and noiseo is

sampled from a uniform random noise U [−0.05, 0.05].
Model numerical values was initialized as follows: M =

30 for all maps, u0
p = 0, ω0

p and ā0
pq, ī

0
pq, d̄

0
pq are initialized

to uniform random values from U [0, 1], σ = 0.07, αω =
αS = 0.0416, B = 10, β = 0.25, noiseµ is sampled from

a uniform random noise U [0, 0.1], ρI = ρA = ρD = 5.

ψI = 90, ψA = −90, ψD = 0, T = 24, and l = 50.

IV. CONCLUSION AND FUTURE WORK

In this paper, a recurrent neural architecture is proposed

for setting up a representation of the phases of a dynamical

system from the stream of partial observations of that

dynamical system. The phase extraction relies on three

self-organizing modules, whose self-organizing processes

are coupled via strip-like connections, according to the

bijama model. Experiments show that this fully unsuper-

vised architecture is able to self-organize so that the token

of hidden phases of the dynamical system are explicitly

built in the input map. Indeed, for each bump position in

that map, a phase of the dynamical system can be assigned.

Moreover, the topology preservation that is expected from

self-organizing maps actually stands here, since the input

map is still a continuous mapping of the space where the

observation lives (here the interval [0, 1]).
In the one hand, seminal works by Elman and Jordan [10],

[11] have already addressed the learning of a dynamical

system from the stream of observation, but this was obtained

from a supervised approach. In the other hand, as mentioned,

reservoir computing approaches relies on high dimensional

representation spaces to build an a priori set of states, from

which the ones corresponding to the actual phases of the

system can be extracted by readout units. In both cases, the

setting up of a phase representation is not explicit. Here,

the whole architecture adapts for extracting explicit phase

representation by self-organization.

Future work will investigate the potential of the model

self-organization features in both space and time when

applied to systems exhibiting non-stationary dynamics. The

goal is to see if the model would be able to recruit new

regions in the input map or release useless regions when

the dynamic change. Future work consists also in using the

representation built in the input map as a state space for

taking decisions within Markovian decision processes. In a

more integrated model, such cortical representations could

indeed feed actor and critic neural modules, inspired from

basal ganglia modeling [12], [13], with a Markovian state

space representation that is updated from the current partial

information provided by the robot sensors.
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