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Abstract—This paper presents a multi-map recurrent neural
architecture, exhibiting self-organization to deal with the par-
tial observations of the phase of some dynamical system. The
architecture captures the dynamics of the system by building
up a representation of its phases, coping with ambiguity when
distinct phases provide identical observations. The architecture
updates the resulted representation to adapt to changes in
its dynamics due to self-organization property. Experiments
illustrate the dynamics of the architecture when fulfilling this
goal.
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I. INTRODUCTION

Artificial agents often deal with environments with no

known models. The environment can be considered as a dy-

namical system, whose phase changes over time. However,

the agent should execute the suitable action corresponding

to each phase of the dynamical system. The agent gets

observations on-line from a perceptive stream, and performs

a sequence of actions as a response to the input observations.

Observations may sometimes be ambiguous in the sense

that the agent perceive similar observations for different

system phases. However, the action to be taken relies rather

on the system phase than on the observation itself. For

the agent to perform the suitable action in the presence

of such ambiguity, it should know the system phase at

each time, or at least keep a reliable representation of it.

Reliable representations should be obtained from a bijective

mapping that can be implicit between the dynamical system

phase space and the agent’s representation space. Such built-

in representational space is required for the agent to take

the right action, using for example reinforcement learning

techniques.

Moreover, the underlying environment dynamics is not

always fixed, and its dynamics may be non-stationary. If the

agent builds a fixed representation of the world dynamics, its

performance will become poor when the dynamics changes.

Non-stationary evolution of the system phase requires the

agent to update its representation of the environment in an

on-line and unsupervised manner.

Let us consider the toy example of a simplified au-

tonomous power system where an artificial agent drives the

process of a hydroelectric station.

The electrical load changes with time, depending on the

consumption profile of the region it serves. The latter is a

dynamical system whose phase xt at a specific time t is the

consumers activity. From current phase xt of the system,

the agent gets an observation ot = O (xt) that is the current

power consumption value. The phase changes over time and

is ruled by a evolution function φt so that the next phase is

given by: xt+1 = φt (xt).
The consumption in short periods follows a regular dy-

namics, for example, consumption in day and night periods

almost repeats its same values on 24-hours intervals within

the same month, thus φt can be considered as fixed on short

time intervals like one month. However, the consumption

profile changes between summer and winter months. This is

related to the use of warming systems, and to the change in

consumption for lighting according to daytime length. On

the year scope, the evolution function φt is changing and

the dynamical system is non-stationary.

Let us first consider the case of short periods where

φt can be considered as fixed. Let us also suppose that

the consumption increases normally in the daytime to and

decreases at night. This means that the agent will get the

same observation ot1 = ot2 in two different times within

the 24-hours interval, each corresponding to a different phase

xt1 6= xt2, one when consumption increases and the other

when it decreases. Such observation is ambiguous, because

knowing it is not sufficient for the agent to anticipate the

system behavior which -in turn- is necessary to drive the

station. Therefore, the first task of the agent is to distinguish

the actual phase starting from ambiguous observations. A

straightforward solution is to build distinct internal represen-

tations x̂ corresponding to distinct system phases x in such

a away that x̂t1 6= x̂t2 correspond to xt1 6= xt2 although the

agent observes ot1 = ot2. This means setting up a bijective

mapping between the internal representation of the agent and

the dynamical system phase space. Fig. 1 shows a schematic

of the process of a dynamical system phase representation

extraction.

On the other side, the evolution function φt changes on

a year scope. The second task of the agent is to follow the

changes in the system dynamics throughout the year, i.e.
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Figure 1. Dynamical system phase extraction.

to update its internal representations of the succession of

phases while the dynamics changes, thus tracking the non-

stationary behavior of the dynamical system.

This work presents an unsupervised method for the on-line

extraction of an adaptive representation of a non-stationary

dynamical system phase. The extracted representation forms

a bijective mapping between the representation space and the

system phase space. The proposed architecture depends on

recurrent neural networks employed to build self-organizing

maps (SOMs). The latter uses a neural field as a competition

process that controls learning.

In the literature of recurrent neural networks considering

the temporal dimension of the input, most works using

self-organization rather focused on the clustering of input

sequences [1], [2] than on setting up a mapping of the

system dynamics generating these sequences. Some other

works [3] focused on setting up an on-map representations to

inputs, and used the difference in representations on the map

to compare input temporal sequences. Reservoir computing

approach [4] aims basically to set up a mapping between the

input phase space and the reservoir state space. This resides

in the mapping in a supervised way the relevant states in the

large reservoir state space to the input space. However, the

use of supervised learning leaves it necessary to re-train the

model each time the system dynamics changes.

II. THE ARCHITECTURE

The proposed architecture is based on bijama model

[5] developed in our team. bijama is inspired from

biological information about the cerebral cortex. It enables

building 2D-neural assemblies called maps, analogical to

cerebral cortex structure. Each map contains a group of

units inspired from a functional view of cortical columns.

Units process external and internal signals carried out by

connections. The proposed architecture consists of three

maps, interconnected as illustrated in Figs. 2 and 3. The

main map in the architecture is called the input map. This

map receives the input stream values ot and builds a spatial

coding of the state x̂t corresponding to the actual dynamical

system phase xt. In fact, this coding resides in the map

activity profile, as show further. The other two maps are the

delay map and the associative map. They are intermediate

structures that form with the input map a macroscopic recur-

rent pathway. This pathway re-injects the input map activity
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Figure 2. Model architecture. Input map and delay map are connected
via one-to-one connections, other connections are one-to-many connections
organized in strips. For unit q, Iq is the strip of kind I handled by q.

in its dynamics via strip-like connections. The interest of

the intermediate architecture is to consider the past of the

input stream in current map response. Units within a map

are interconnected. Each unit is connected to others by

an on-center/off-surround kernel [6], [7], giving the map a

neural field structure. Neural fields are differential equations

that describe the spatio-temporal evolution of a competitive

process within a population. The neural field used here

[7] executes competition between map units activities. It is

parametrized so that lateral competition results in a single

activity bump on the map. The bump-shaped global activity

is used to guide the process of self-organization. This is

rather difficult as explained in [7]. In bijama model, the

evaluation of units activities follows an asynchronous and

parallel scheme [5] not detailed here. Evaluation of all the

units occurs at discrete time instances which are called time

steps.

In addition to intra-map connectivity between units, there

exist inter-maps connections as mentioned previously. Each

unit at a position p in a map is connected to units at positions

q belonging to a partial region in the remote map. This

region has the shape of a strip as shown in Fig. 2. The

strip-shaped region related to p is referred to as Sp, and the

positions within the strip as q ∈ Sp.

The connection between a position p in the local map

and a position q in the remote map handles a weight s̄t
pq

which is modified via a learning rule at every time step.

These connections are called cortical connections. The unit

p, manipulating cortical connections in strip Sp, handles a

vector of weights S̄t
p =

(

s̄t
pq

)

q∈Sp

. The set of strips Sp for

p in some map is referred to as S generally, but in Fig. 2

S should be replaced by A, I,D according to the name of

the map the strips originate from.

Each strip has an orientation ψS measured as the angle



of the axis connecting the center position of both local and

remote maps. In figure 2, ψA = 90◦ is represented for strip

A, and it can be seen that ψI = ψD = 0◦ since strips I
and D are horizontal. The width of the strip-shaped region

is referred to as the ρS (see Fig. 2). The remote value of

some unit q read through a connection is a scalar activity

noted ut
q. The unit p thus perceives a vector St

p =
(

ut
q

)

q∈Sp

of some remote units activities via the strip Sp.

In bijama model, a unit is modeled as a stack of

modules as shown in Fig. 3. Each module handles a set of

scalar values. These values can be computed from external

inputs provided to the unit, or from scalars handled by other

modules in the unit. Module stacks are the same for all

units within a map, providing the map with a functional

homogeneity. Fig. 3 facilitate the reading of the following

description.

Let us start by describing the stack of the input map units

in light of its function. Units in this map receive two entries:

external input ot and strips from the associative map (see

strips noted A on Fig. 2). The map output is an activity

bump which current position will be used to represent x̂t as

explained later.

The unit stack is composed of several modules. The lower

one is the thalamic module which computes a similarity

value θt
p by matching the external input ot against some

stored prototype ωt
p:

θt
p = e−

(ot
−ωt

p)
2

2σ2 (1)

Above the thalamic module is the cortical module. It com-

putes the similarity ctp,A between the strip weight vector Āt
p

and the strip activity vector At
p of the strip Ap handled by

unit p:

ctp,A =

〈

At
p.Ā

t
p

〉

max
(

∥

∥Āt
p

∥

∥

2
, B

) (2)

Where B is a numerical constant.

θt
p and ctp,A are combined in a third module called cortico-

thalamic merging, in order to determine the participation of

thalamic and cortical modules in the competition described

next. The combination is given by:

νt
p =

√

θt
p.β + (1 − β).ctp,A (3)

Where β is a constant.

The latest value is passed to the neural field module which

computes the unit activity ut
p, so that the ut

p profile within

the map is a bump arising around the highest νt
p.

The value of ut
p is then used to modulate learning in tha-

lamic and cortical modules. For thalamic learning, weights

are updated as follows:

ωt+1
p = ωt

p + αω.u
t
p.(o

t − ωt
p) (4)
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Figure 3. Module stacks of the units in the three maps and their cortical
inter-connections.

Where αω is a fixed thalamic learning rate for all input map

units. On the other hand, the same rule is applied for cortical

learning for each connection weight in the strip Ap:

āt+1
pq = āt

pq + αS .u
t
p.(u

t
q − āt

pq) (5)

αS being a unified fixed learning rate for all S ∈ {A, I,D}.

The second map in the architecture is the delay map. Its

units are connected to the input map units via one-to-one

scheme, so that each unit in the delay map is connected to

the unit in the input map having the same coordinates. The

role of the delay map is to copy the input map activity and

delay it for a period T of time. There is no lateral connection

neither neural field modules in this map. The stack of a

unit in this map has two modules: a copy module that reads

its value from an input map unit on the other side of the

cortical connection and a FIFO module which implements

a T -length queue. For each position q in the input map and

the corresponding position p in the delay map the delay map

activity is ut
p = ut−T

q .

The last map in the architecture is the associative map.

Units in this map receive as inputs the activity of the input

map (via strip I in Fig. 2) in addition to a delayed copy of

this activity from the delayed map (via strip D in the same

figure). The neural field of the associative map performs

lateral competition between its units. The resulting activity

is then re-injected in the input map dynamics through A
strip.

In this map, the two lower modules of a unit q handle the

strips Iq and Dq emerging from the input map and the delay

map respectively. They compute the corresponding matches

ctq,I and ctq,D similarly to equation 2. These two modules

are then combined in a third module called cortico-cortical

merging, and computes a scalar as follows:

µt
q =

√

ctq,I .c
t
q,I + noiseµ (6)

The value µt
q is the actual input to the neural field of the

associative map, which in turn computes the unit activity



ut
q. Cortical learning for strip I and D connections occurs

similarly to equation 5. Noise helps boosting the associative

map activity in units receiving null cortical activity. This is

necessary to avoid drastic bump eliminations in the input

map.

The proposed architecture does not require any knowledge

about the dynamical system neither about the observation

stream, it is thus model free. As there is no need for any

parameter adjustment during learning, the architecture is

able to follow the changes in the dynamical system. This is

why the learning rates in the architecture are fixed values:

There is no coarse-mapping and fine-tuning learning stages

that are often used in architectures based on self-organizing

maps [8].

III. EXPERIMENTS

In this section, the goal is to test the architecture capability

to find a suitable representation of the dynamical system

phases, as well as the adaptation of such a representation to

some changes in the evolution function φt. The architecture

should set up a representation from the ambiguous observa-

tions provided by the dynamical system. The building up of

such representation actually occurs in the input map. This is

performed by the spatio-temporal self-organization of both

the thalamic and the cortical weights [9]. Let us consider the

system phase at time τ to be xτ . When the phase is observed

it gives the observation O (xτ ), provided as an input to the

input map in the architecture. Like in Kohonen maps [10],

each input value is presented to all the units in the input map.

A single input O (xτ ) is presented and maintained during

several time steps. This gives time for the neural field to

form the bumps and for thalamic and cortical learning to

occur. It appeared experimentally that a quite small T = 24
value was suitable for the experiment. In this experiment,

τ is incremented every T time steps. and the input O (xτ )
is presented to the input map during these T time steps, so

that:

ot = ot+1 = · · · ot+T−1 = O (xτ ) and ot+T = ot+T+1 =
· · · ot+2T−1 = O

(

xτ+1
)

, etc.

The T used here is the same as the delay map FIFO

length. This means that the input map activity is delayed

until the next input O
(

xτ+1
)

is sampled.

At the end of each T time steps, the neural field results in

a stable bump. For further analysis of the map behavior, let

us compute the barycenter Gτ of the activity u of all units

in the map. It is computed as follows:

Gτ =
∑

p

ut
p.p/

∑

p

ut
p (7)

Giving p ∈

{

(i, j) :

√

(i−R)
2

+ (j −R)
2
< R

}

, R is the

radius of the input map, and t is the time step at the end of

T interval.

When a group of l barycenter (l = 50) are computed, they

are organized in a list P τ = {Gτ−l+1, Gτ−l+2, · · · , Gτ}
that form a path of successive bump positions. This will be

drawn on the map snapshot as shown in Fig. 4.

In experiments, artificial observations are used as inputs.

They are two series of values in the range [0..1]. Values

in each series are fed to the architecture one by one

periodically. The first series is (S1 = ABCDEFEDCB)

and the second one is (S2 = ABCBAFEDEF ) where

the values are coded as follows: (A = 0, B = 0.20, C =
0.40, D = 0.60, E = 0.80, F = 1).

Ambiguous values exist in both input series. Some input

values (D for example in S1) are preceded by different

values (once by C and once by E). Thus, the same ob-

servation could corresponds to two distinct states of the

dynamical system. The proposed architecture is expected

to resolve this ambiguity and find distinct representations

for the same input value according to its temporal context,

more specifically, in S1 it should find two representations for

each input except for A and F which are always preceded

by the same series of values. Similarly, for S2 it should

find two representations for each value except for C and

D. Furthermore, the architecture should update the way it

maps the real system phase xt over its surface, i.e. the way

it determines the states x̂t representing xt, when the input

series switches from S1 to S2. The robustness to noise is

tested by perturbing each observation by a noiseo value

before being presented to the architecture.

The architecture is trained on the first series S1 for a

period τ s of time, then the input is switched to the second

series S2 for the rest of experiment time. This simulates

the change in the dynamical system evolution function at

time τ s.

System evolution as a response on both input series is

shown in Fig. 4. Fig. 4(a) shows the first stages of the self-

organization process. On the left of the map, initialization

with random ωt
p is still visible (noisy grey-scaled area), while

on the right, ωt
p values are spatially organized (continuous

variation of shade).

Along the experiment time, the duplication of states rep-

resentation related to the same ot occurs as self-organization

sets up. This can be seen by comparing Fig. 4(b) to Fig. 4(a).

Fig. 4(b) shows that the map exhibits better spatially

dispersed thalamic regions handling each a different range

of ot values. Six grey-scale regions can be distinguished,

they correspond to the six values of input. Each unit in the

map belongs to some region handling some ot. This means

that the map is fully recruited.

Each input is assigned to a thalamic region corresponding

to its value. A region could be split into two regions corre-

sponding to the same ot value (as for the region encoding

C values). However, the representation held by each region

resolves the ambiguity of the observation in the input series.

For example, the two phases that give the D observation
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(a) Map activity as a response to S1 after τ = 25 × l i.e t =

τ × T = 30000 time steps.
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(b) Map activity as a response to S1 after τ = 438 × l i.e.
t = τ × T = 525600 time steps.
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(c) Map activity as a response to S2 after τ = 602 × l i.e.
t = τ × T = 722400 time steps. Second input series.
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(d) Map activity as a response to S2 after τ = 872 × l i.e.
t = τ × T = 1046400 time steps. Second input series.

Figure 4. Status of the input map during the system evolution as a response for both input series. Grey-scaled values are the ω prototypes (black for 0,
white for 1). P τ is represented with a poly-line, linking successive positions Gτ−l+1, Gτ−l+2, · · · , Gτ , that are localized on the figures with red dots.
The higher figures represent the map response on the first input series S1 = ABCDEFEDCBA. The two lower figures represent its response on the
second input series S2 = ABCBAFEDEF . Step number t are computed with l = 50 and T = 24.

have two representations in a region corresponding to the

same thalamic value. Each representation corresponds to the

observation in a different context, one representation for D
preceded by C and the other for D preceded by E. There-

fore, the architecture has built two distinct representations

for two different system phases although they correspond to

the same D observation. Nevertheless, A and F have unique

representations as they are not ambiguous. Thus, successive

bump positions (red dots) actually correspond to each term

in the input sequence (i.e. to the phases x), in spite of the

redundancy of some terms in the sequence. More precisely,

the poly-line that appears in the figure is formed by l = 50
points corresponding each to one Gτ . As sequences contain

10 items, l = 50 points shows five consecutive repetitions

of full sequences. The motivation for computing Gτ points

is to show the temporal succession of states. Each point in



the poly line corresponds to a representation x̂t of a single

phase of the dynamical system xt. Clusters of points can be

distinguished along the poly-line. Clusters result from the

repeated visits of some state. At some position in the map

(e.g. point E-left on Fig. 4(b)), there are rather clusters of

Gτ . They are always well localized, meaning that every visit

of the corresponding phase in the sequence leads to similar

bump positions. This is an indication of the stability of x̂t

representation.

Fig. 4(c) shows the map state after switching to the next

input series S2. The past organization of the map which was

fitting S1 does not fit S2 anymore. For example, the input F
was corresponding to one representation on the map, while

it is ambiguous now in S2.

In Fig. 4(d), it can be seen that the map has re-organized

to re-assign its regions to different thalamic values than in

the case of S1. New stable clusters of points are found, and

the path formed by them expresses a stable correct represen-

tation of S2. Two special cases should be emphasized: while

F was not ambiguous in S1 and was corresponding to one

representation on the map, it is ambiguous in S2, and the

map has re-organized to find two distinct representations.

The same is true for A. The second case is the case of

D which was ambiguous is S1 and corresponding to two

representations, but it corresponds to one representation in

S2 where it is not ambiguous. Noise was always present in

both input series values and didn’t affect the architecture

ability to find a suitable mapping.

The experience was launched with numerical values for

the dynamical system as follows: τ s = 25000 and noiseo is

sampled from a uniform random noise U [−0.05, 0.05].

Architecture numerical values was initialized as follows:

R = 15 for all maps, u0
p = 0, ω0

p and ā0
pq, ī

0
pq, d̄

0
pq are

initialized to uniform random values from U [0, 1], σ = 0.07,

αω = αS = 0.0416, B = 10, β = 0.25, noiseµ was sampled

from a uniform random distribution U [0, 0.1], ρI = ρA =
ρD = 5. ψI = 90◦, ψA = 90◦, ψD = 0, T = 24, and

l = 50.

IV. CONCLUSION AND FUTURE WORK

Considering the obtained results, it was experimentally

shown that the proposed architecture is able to self-organize

in order to set up a suitable representation that maps in a

bijective way to the phase of a dynamical system, and to

overcomes the ambiguity of observations. The architecture

was also able to adapt on-line to the changes in the system

dynamics, without the need to re-parametrization during

simulation. There is no conditions on the dynamical system,

meaning that it is a model-free architecture. The architecture

has also exhibited the full recruitment of the resource map

units, besides to the capability to re-organize them to adapt

to the changing dynamics of the concerned system, ending

by setting up an adaptive representation.

Future work will be oriented in two main directions.

First, the robustness of the spatio-temporal self-organizing

process has to be investigated with much larger maps since

scalability condition still need to be investigated, allowing

the representation of more complex dynamical systems.

With more available space on the map surface, the ar-

chitecture should be able to represent richer systems, or

several separate systems at once. Second, the longer term

purpose of our work is to set up Markovian state space

from partial observations, allowing an agent to schedule ac-

tions in Partially Observable Markovian Decision Processes

framework. This implies considering actions rather than just

observing the world transitions, which requires extensions

of the architecture proposed in this paper.
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