
HAL Id: hal-00652438
https://centralesupelec.hal.science/hal-00652438

Submitted on 15 Dec 2011

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

A Non-Parametric Approach to Approximate Dynamic
Programming

Hadrien Glaude, Fadi Akrimi, Matthieu Geist, Olivier Pietquin

To cite this version:
Hadrien Glaude, Fadi Akrimi, Matthieu Geist, Olivier Pietquin. A Non-Parametric Approach to
Approximate Dynamic Programming. ICMLA 2011, Dec 2011, Honolulu, Hawaii, United States.
pp.1-6. �hal-00652438�

https://centralesupelec.hal.science/hal-00652438
https://hal.archives-ouvertes.fr


A Non-Parametric Approach to Approximate Dynamic
Programming

Hadrien Glaude∗, Fadi Akrimi∗, Matthieu Geist∗† and Olivier Pietquin∗†
∗SUPELEC (IMS Research Group)
†UMI 2958 (GeorgiaTech - CNRS)

2 rue Edouard Belin - 57070 Metz (France)
Email: firstname.lastname@supelec.fr

Abstract—Approximate Dynamic Programming (ADP) is a machine
learning method aiming at learning an optimal control policy for a
dynamic and stochastic system from a logged set of observed interactions
between the system and one or several non-optimal controlers. It defines
a class of particular Reinforcement Learning (RL) algorithms which is
a general paradigm for learning such a control policy from interactions.
ADP addresses the problem of systems exhibiting a state space which is
too large to be enumerated in the memory of a computer. Because of this,
approximation schemes are used to generalize estimates over continuous
state spaces. Nevertheless, RL still suffers from a lack of scalability to
multidimensional continuous state spaces. In this paper, we propose the
use of the Locally Weighted Projection Regression (LWPR) method to
handle this scalability problem. We prove the efficacy of our approach
on two standard benchmarks modified to exhibit larger state spaces.

I. INTRODUCTION

Reinforcement Learning [1] is concerned with learning by interac-
tions how an agent ought to take actions in a stochastic environment
so as to adopt an optimal behavior. An interaction can be described
as a modification of the state of the environment as an effect of
an action performed by an intelligent agent. After each interaction,
the intelligent agent is provided with a immediate numerical reward
which indicates how good it was to perform the action in the given
environment state. The optimal behavior is the one that maximizes
some function of the long-term cumulative reward. Originally, this
optimal control problem was solved by formulating the it as a Markov
Decision Process (MDP) [2]. An MDP is a tuple {S,A, T,R, γ}
where S is the set of the possible environment states, A is the set
of agent actions, T is a family of transition probabilities describing
the one-step dynamics of the environment, R is the reward func-
tion associating a reward to each state transition, and γ is some
discounting factor described later. If all these quantities are known,
Dynamic Programming (DP) [2] provides an exact solution to the
control policy optimization. However, an exact representation of the
MDP is not tractable for large environments since the enumeration of
all the possible states is not feasible and the transition probabilities
cannot be estimated for every transition. So it is not suitable for
real applications. Thus many solutions have been proposed to deal
with some approximations of the MDP among which Approximate
Dynamic Programming (ADP) methods [3], [4].

Least Square Policy Iteration (LSPI) [5], is such an ADP al-
gorithm which combines value-function approximation with linear
architectures and approximate policy iteration. It is a batch algorithm
learning from a fixed set of logged interactions. The approach was
motivated by the Least Square Temporal Difference (LSTD) [6]. The
approach proposed here finds its inspiration in [7], where the authors
have studied performances of the combination of an approximate
value function approximation [8] algorithm (Fitted-Q) with tree-
based regressors. Although ADP has known dramatic improvements
during the last decade, it still suffers from a lack of scalability and is

still unable to handle multidimensional continuous state spaces with
many dimensions, especially if some dimension are irrelevant for the
control problem [9]. In this article we study the performances of the
combination of the Fitted-Q algorithm with an efficient regressor
widely-used in robotics, namely the Locally Weighted Projection
Regression (LWPR) [10]. The ability of LWPR to locally select the
useful dimensions will be used to scale-up to large state spaces with
the Fitted-Q algorithm.

This paper is organized as follows. In Section II, we describe
the reinforcement learning theory, introduce the concept of the Q-
function and the value function and explain the Fitted-Q iteration
algorithm. In Section III, we describe the Locally Weighted Projection
Regression (LWPR) algorithm and its advantages. In Section IV, we
present the different configurations we tested to combine the Fitted-
Q iteration algorithm and LWPR. Section V is dedicated to the
experiments where we apply the Fitted-Q iteration algorithm used
with LWPR to solve the inverted pendulum problem and the mountain
car problem. In order to assess the performance of our approach
in high dimensional problems we run experiments on the Cartesian
product of problems and on problems with noise components. Section
VI concludes our work and also provides our main directions for
further research.

II. REINFORCEMENT LEARNING THEORY

As described in Section I, reinforcement learning aims at designing
algorithms by which an intelligent agent learns to behave consistently
in some environment, from its interaction with this environment
or from observations gathered from the environment. After each
interaction, the intelligent agent observes a reward or a penalty,
finding the optimal control policy is then realized by maximizing
the cumulation of these rewards in the long term. The quality of the
control is often described by a value function V which associates to
each state of the system the expected accumulated rewards starting
from that state and then following the policy. Our study focuses
mainly on an off-policy learning in batch mode, which means that the
optimal policy is learned using recorded data generated by a random
or a non optimal policy (off-policy), and without new interaction with
the environment.

A. Value function and Q-function

We consider an agent operating in discrete time, observing at time
t the environment state st, taking an action at, and receiving back
information from observing the environment (the next state st+1 and
the instantaneous reward rt). After some finite time, the experience
the agent has gathered from interacting with the environment may
thus be represented by a set of four-tuples (st,at,rt,st+1)t=0,··· ,T .
The value function V evaluates the expected reward in the long term
in each state (∀s ∈ S) following the policy π.



V πγ (s) = Eπ[

∞∑
k=0

γkrt+k+1(st, at)|s0 = s] (1)

where S is the state space and γ is a discount factor (0 ≤ γ < 1)
that weights short-term rewards more than long-term ones.

Although state-values suffice to define optimality, we can use a
local value function of the long term reward if a particular action is
chosen (∀s ∈ S,∀a ∈ A),

Qπγ (s) = Eπ[

∞∑
k=0

γkrt+k+1(st, at)|s0 = s, a0 = a] (2)

where A is the action space. The optimal policy π∗ is the policy that
maximizes Vγ(s) for each state s.

V ∗γ (s) =max
π

V πγ (s) = max
a∈A

Q∗γ(s, a) (3)

Q∗γ(s, a) =max
π

Qπγ (s, a) (4)

B. Value iteration with approximation

The Value Iteration with Approximation algorithm, more known
as the Fitted-Q Iteration algorithm as described in [7], computes
an approximation Q̂∗(s, a) of the optimal Q-function from a set of
four-tuples F = {(slt,alt,rlt,slt+1),l=1,...,#F}. From this, a policy π̂∗

is derived by selecting the greedy action according to the Q-function:
π̂∗(s) = argmaxaQ̂

∗(s, a).
For a temporal horizon of N steps, we define the sequence of

QN -functions on S ×A by

Q0(s, a) =0

∀N > 0 QN (s, a) =(HQN−1)(s, a) (5)

This set of functions should converge to the optimal Q-function,
defined as the (unique) solution of the Bellman equation

Q(s, a) = (HQ)(s, a)) (6)

where H is the Bellman operator mapping any function K : S×A→
R and defined as follows

(HK)(s, a) = E[r(s, a) + γmaxa∈AK(s, a, a′)] (7)

At each step this algorithm may use the full set of four-tuples gathered
from observations of the system together with the function computed
at the previous step to determine a new training set which is used
by a supervised learning (regression) method to compute the next
function. It produces a sequence of Q̂N -functions, approximations
of the QN -functions defined by eq. (5). This is summarized in the
following algorithm:

Inputs: a set of four-tuples F and a regression algorithm (LWPR in
our case).
Initialization: Set N to 0. Let Q̂N be a function equal to zero
everywhere on S ×A.
Iterations:
Repeat until stopping conditions are reached
- N ← N + 1.
- Build the training set TS = {(il, ol), l = 1, ...,#F} based on the
the function Q̂N−1 and on the full set of four-tuples F :

il =(slt, a
l
t)

ol =rlt + γmaxa∈AQ̂N−1(s
l
t+1, a)

- Use the regression algorithm to induce from TS the function
Q̂N (s,a).

A stopping condition is required to decide at which iteration (i.e.,
for which value of N) the process can be stopped. A simple way to
stop the process is to define a priori a maximum number of iterations.
Another possibility would be to stop the iterative process when the
distance between Q̂N and Q̂N−1 drops below a certain threshold.

III. LOCALLY WEIGHTED PROJECTION REGRESSION

In this section, the description of LWPR is largely inspired by [10].
As mentioned earlier, the Fitted-Q Iteration algorithm needs a func-
tion approximation scheme to induce an estimate Q̂N (s,a) from the
training set TS.

LWPR is an algorithm for incremental non-linear function ap-
proximation in high-dimensional spaces with locally redundant and
irrelevant input dimensions. LWPR is widely used in robotics. At its
core, it employs non-parametric regression with locally linear models.
In order to stay computationally efficient and numerically robust, each
local model employs the partial least-square regression (PLS) [11] to
perform the linear regression analysis on a small number of selected
directions in input space.

The advantage of using LWPR is that it learns rapidly with
learning methods based on incremental training, uses statistically
sound stochastic leave-one-out cross validation for learning without
the need to memorize training data, adjusts its weighting kernels
based on only local information in order to minimize the danger of
negative interference of incremental learning, has a computational
complexity that is linear in the number of inputs, can deal with a
large number of - possibly redundant - inputs by locally reducing
input dimensions, and does not need an a priori information about
the structure to be approximated.

In order to reduce dimensionality, a weighted PLS is locally used.
PLS recursively computes orthogonal projections of the input data
and performs single-variable regressions along these projections on
the residuals of the previous iteration step.

For non linear function approximation, the core concept of the
LWPR is to find approximation by means of piecewise linear models
called receptive fields. Learning involves automatically determining
the appropriate number of receptive fields, the region of validity and
if wanted the size of each receptive field. The prediction step is then
a weighting between local receptive fields predictions.

A measure of locality for each data point, the weight wi, is
computed from a Gaussian kernel

wi = exp(−1

2
(x− ck)TDk(x− ck)) (8)

where D is a positive semi-definite distance metric that determines
the size and shape of the neighborhood contributing to the local model
and c the center of the receptive field. w is also called the activation
of a receptive field.

Given a query point x, every linear model calculates a prediction
ŷk(x). The total output of the learning system is the normalized
weighted mean of all K linear models

ŷ =

∑K
k=1 wkŷk∑K
k=1 wk

(9)

The distance metric D and, hence, the locality of the receptive
fields, can be learned for each local model individually by stochastic
gradient descent in a penalized leave-one-out cross-validation cost



function

J =
1∑M
i=1 wi

M∑
i=1

wi(yi − ŷi,−i)2 +
P

N

N∑
i,j=1

D2
ij (10)

where M denotes the number of data points in the training set.
The first term of the cost function is the mean leave-one-out cross-
validation error of the local model (indicated by the subscript i, −i)
which ensures proper generalization. The second term, the penalty
term, makes sure that receptive fields cannot shrink indefinitely in
case of large amounts of training data.

This cost function adjusts also the PLS axis and makes possible
the adding and the removal of receptive fields in a relevant way.

IV. EXPLORED LEADS

There are several ways to combine LWPR with the Fitted-Q
algorithm among which we selected some which are explained
hereafter. First and foremost, at each iteration the training set is
presented only once in the exact same order to the LWPR algorithm.
In [10], the author advises to present the training set many times in
a random order if there are not enough samples.

As we first consider problems with discrete actions, we chose not to
regress on action dimensions. Instead of having one regressor working
on the input space composed by state-action pairs, our algorithm uses
as many regressors as there are actions. Each regressor takes the state
space as input. This choice is motivated by two reasons. First, it may
be irrelevant to interpolate between actions because it implies a metric
to exist between those. For example, if we consider a robot, grabbing
an item and moving to the north have no relationship. Secondly,
LWPR tries to reduce the number of dimensions of the input space by
selecting some relevant dimensions through the PLS regression. But,
with this process, there is no guarantee to select at least one action
dimension. So, for a specific state, if no action dimension is selected
by the regressor, the optimal policy will choose a random action.
Therefore, with continuous actions, keeping or not action dimensions
in the input space should be more closely examined.

Without an a priori on the state space, we remark that normalizing
the input gives better results, even in presence of irrelevant dimen-
sions, otherwise dimensions with high variations will be privileged.
Indeed, the penalty terms in eq. 10 tends to produce round receptive
fields by penalizing ellipsis with a big eccentricity. That is why,
D = dI , where D is the distance metric, I is the identity matrix
and d is a scale parameter. The value of d determines the initial size
of receptive fields.

One of the most important parts of our researches was to figure
out what are the consequences of allowing the LWPR algorithm to
update D. As we explain in the previous section, the matrix D defines
the distance metric. By default, D is optimized at each step of the
Fitted-Q algorithm by a gradient descent. But keeping D constant
has some advantages, even if the mean squared error of the LWPR
increase. As the training set F is presented to the incremental LWPR
algorithm with the same order at each iteration of Fitted-Q, the set of
receptive fields, which is built from the training set, does not change
over iterations. In other words, let H be the hypothesis space, so
that ∀i, Q̂i ∈ H . This property ensures a better stability of the value
iteration algorithm [7]. The complexity of H is determined by the
constant size of receptive fields, which is set at the initialization.

On the other hand, letting the algorithm update D ought to lead to
better results in theory. Indeed, in this case, the algorithm searches
Q̂ in a higher complex space. To avoid overfitting LWPR minimizes
the cost J , which is the sum of two costs. The first one is a
cross validation leave-one-out cost. The second is bound to the

size of receptive field. Thus the regression tries to minimize the
mean squared error without having too small receptive fields – i.e.
having too many receptive fields (e.g. one for each sample). The
complexity of H is related to the number of receptive fields. When
D is optimized over iterations, the initialization of D is less critical.
But the penalty term, which controls the complexity of H , must
be chosen adequately because it determines the complexity of H .
The penalty term can be determined either from assessments of the
maximal local curvature of the function to be approximated [12] or
empirically.

An important point to make is that H have to be complex enough
not only for estimating accurately Q∗ but also each Qi to ensure a
proper convergence.

Some others less important features of LWPR need to be clarify.
We treated the distance metric and all related quantities as diagonal
matrices because all tested problems are simple enough to avoid using
this computationally expensive feature.

Another parameter is the weight activation threshold wgen. If
a training example has a maximal activation below wgen, a new
receptive field is added. Thus wgen is related to the overlap between
receptive fields. The higher wgen, the more receptive fields will
overlap and the more numerous they will be. So, wgen is bound
to the complexity of H , but it also smooths Q̂. After some empirical
tries, we kept the default value of 0.2.

To update the distances metrics, we choose to use second order
adaptation of learning rates by the Incremental Delta Bar Delta
(IDBD) algorithm, in order to avoid tuning α – the learning rate
parameter.

On-line Fitted-Q iteration
As LWPR allows incremental learning we developed an off-policy

online mode Q-learning with approximation algorithm. Instead of
constructing a set of inputs and outputs using on the transition training
set, the Bellman operator and the previous approximation ˆQi−1, this
version will update the approximation of Q at each transition. Thus,
the approximation of Q is constantly improved and the training set
is seen many times in the same order. The algorithm is described
below:

Inputs: a set of four-tuples F and an incremental regression
algorithm.
Initialization: Let Q̂ be a function equal to zero everywhere on
S ×A.
Repeat until stopping conditions are reached:
For each four-tuple (st,at,rt,st+1) of F :
- Build (i, o) as :

i =(st, at)

o =rt + γmaxa∈AQ̂N−1(st+1, a)

- Use the incremental regression algorithm to learn (i, o).

This algorithm should work because the LWPR algorithm uses a
forgetting factor to update a local model with a new training sample.
While the convergence of this algorithm is far to be established,
performances could be much better. In Section V, we present some
results with the on-line version.

V. RESULTS

In this section, we present results of three versions of the algorithm
combining LWPR and Fitted-Q on three problems described below.
The three versions of the algorithm are: “Fitted-Q + LWPR” with a



constant distance metric (D), “Fitted-Q + LWPR” with an updated
D and the “Online Fitted-Q + LWPR” with a constant D.

We focus on the role of two parameters. The first is the size of the
training set expressed as the number of random trajectories generated.
The initial states distribution and the maximum length of a random
trajectory is precised for each problem. The second stands for the
complexity of the hypothesis space. In the case of D is not updated,
the complexity of H is set by the distance metric. In the other case,
the complexity is controlled by the penalty term (P in eq. (10)).

A. Problems tested

In order to assess the performance of our algorithm, we have run
tests on three different problems.

The mountain car problem in which a car with limited power is
held between two mountains. The goal is to find a policy that helps the
car reach the top of one mountain by moving backward and forward
repetitively in order to gain enough energy to reach the top. The
state is composed of the position and the speed of the car between
the mountains and there are three possible actions: moving forward,
moving backward and doing nothing. State of the art shows a lot
different versions of this problem [1]. In our version, the car has to
reach the right mountain which corresponds to the position 0.5 with
a positive speed. The maximum speed limit is 0.07, the minimum is
−0.07. The position is between −1.2 and 0.5. Speed and position
are updated by the following equations,

st+1 = st + 0.001 ∗ a− 0.0025 ∗ cos(3 ∗ pt),
pt+1 = pt + st+1,

where a can take the value −1 for moving backward, 0 for doing
nothing and 1 for moving forward.

The inverted pendulum problem is the classic problem of the
inverted pendulum laying on a cart (see [5]). The states are the
angular positions and speed of the pendulum, and the algorithm seeks
to find a policy which assures the stability of the system by choosing
at each step one of the actions: move right, move left and do nothing.

The Cartesian product of several problems is the combination of
two or more problems. We defined the noise problem as a problem
with an unique action and a one-dimension state space. After each
action, the state change randomly. As we normalized the state space
before the learning, the standard deviation of the state space has no
influence. The Cartesian product of two problems is defined by a
states space equals to the cartesian product of the states spaces of
the two subproblems and likewise for the actions. The combination
of easy problems with noise problems, let us to analyze the ability
of LWPR through the PLS to eliminate irrelevant dimensions. We
resolved the problem of one pendulum with one to four noise
components, the states space is the product of the two states spaces
and likewise for the actions.

B. Inverted pendulum

For this problem we set the maximum length of trajectories to 3000
steps. Initial states for producing random trajectories of the training
set and for computing evaluation criteria are randomly generated near
the equilibrium according to a uniform distribution. The support of
this distribution is [-1e-3;1e-3]

We used the inverted pendulum problem as a first test bench for
each version of the algorithm. However, the inverted pendulum is too
easy to solve and is not suitable for assessing performances.

Anyway, we give some results with the three versions of the
algorithm in Table I. On ten runs, we have counted how many of

them have terminated in less than 200 iterations of Fitted-Q with a
policy keeping the pendulum in equilibrium during 3000 steps.

TABLE I
NUMBER OF SUCCESSFUL RUNS ON TEN

Size of the training set 50 100 200
LWPR + Fitted-Q constant D 0 0 6
LWPR + Fitted-Q D learning 0 2 5
Online version 2 5 9

The version of the algorithm which updates D at each iteration
showed some stability problems. In fact, the algorithm converges
really fast in the beginning and then diverges. More explicitly, at
each iteration we computed the mean length of trajectories by starting
from a random states and then by following the current policy. In
maximum ten iterations, the algorithm reaches a very good policy –
the mean length of trajectories is equal to the max length. And then,
during next iterations, performances of the current policy decrease.
Moreover, the performances of the policy seems really sensitive to
the training set and to the set of parameters.

The online version is really performing well for this simple
problem but this version shown some troubles with more complex
problems as the mountain car (see Section VI).

C. Mountain car

For this problem we set the maximum length of trajectories to
200 steps for the training set and to 2000 for calculating evaluation
criteria. Initial states for producing random trajectories of the training
set and for computing evaluation criteria are randomly generated
according to an uniform distribution covering all permitted speeds
and positions.

We mainly conducted benchmarks on the mountain car problem
because its complexity let to scale the performance of each version
of the algorithm with different parameters. Results are summarized
in plots. To mesure performances of the “Fitted-Q + LWPR” with a
constant D algorithm, for each couple of parameters, we run eight
simulations and then computes the means for each evaluation criteria.
For the “Fitted-Q + LWPR” with an updated D, we run only two
simulations for each couple of parameters.

1) Evaluation criteria
There are many methods to evaluate the performances of an

algorithm that have been used in the literature, we considered two of
them, a policy evaluation criterion and the Bellman residual.

Policy evaluation The policy evaluation criterion computes the
average time for a policy to reach the solution. It is the expectation
of the number n of steps needed to reach the goal without exceeding
a maximum number of steps, E[n]. This score does not take into
account inconclusive trajectories – i.e trajectories that do not reach
the goal without exceeding the maximum number of steps. We
approximate the expectation by generating a random set of starting
states independently from the training set, with the same distribution
than the one used to generate the training set. The size of the
evaluation set is 500. Results are shown on Figures 1 and 2. One can
see that learning the size of the receptive fields induces instability of
the results. Anyway, the number of steps to solve the problem is very
satisfying (only 40 to 60 steps which is really low compared to state
of the art [13], [14]) Notice that the scales are not identical between
the two graphs.

Bellman residual The Bellman residual (BR) criterion as described
in [7] is defined as the difference between the two sides of the
Bellman equation (eq. (6)), the Q-function being the only function



Fig. 1. Constant D : Expectation of the length of trajectories function of the
training set size

Fig. 2. Learning D : Expectation of the length of trajectories function of the
training set size

leading to a zero Bellman residual for every state-action pair. To
estimate the quality of a function Q̂, we exploit the Bellman residual
concept by associating to Q̂ the mean square of the Bellman residual
over the set S × A, value that will be referred to as the Bellman
residual (BR) of Q̂. In order to estimate the Bellman residual, we
use an independently generated set of state-action pairs. States are
generated with the same distribution than the one used to generate
the training set. Actions are generated with an uniform distribution.

BR of Q̂ =

∑
(s,a)∈(S×A)(Q̂(s, a)− (HQ̂)(s, a))2

#(S ×A) (11)

Results are shown on Figures 3 and 4. Here again, instability is
brought by the learning of the receptive fields shape. Yet, the Bellman
residual’s value is around 10−6 which can be considered as very good
relatively to the state of the art given the number of samples (in [7]
the BR is around .15).

D. Inverted pendulum with noise

To assess performances of the combination of Fitted-Q with LWPR
in environment with irrelevant inputs, we compute the average length
of trajectories following the policy returned after 300 iterations of
LWPR + Fitted-Q with a constant D learning with a training set

Fig. 3. Constant D : Evolution of the Bellman residual function of the
training set size

Fig. 4. Learning D : Evolution of the Bellman residual function of the
training set size

composed of 5000 random trajectories starting from a random state.
In our experiments, D = 5 ∗ I and the evaluation set is composed
of 500 starting states. For both learning and evaluation set, starting
states are generated near the equilibrium as mention for the inverted
pendulum without noise. In order to be independent of the training
set, we averaged over four runs with different training sets and
evaluation sets. Results are given in the Table II.

TABLE II
POLICY EVALUATION ON INVERTED PENDULUM WITH NOISE

Problems Average length of trajectories
One pendulum with three noise problems 1791
One pendulum with four noise problems 1757

This is a quite hard problem in RL because it is a 4 (resp. 5)
dimensional problem in which only one is useful [9]. Our algorithm
manages to solve the problem and a deeper analysis shows that only
relevant dimensions are selected by LWPR to control the pendulum.

VI. CONCLUSION AND FUTURE WORKS

The main issue in reinforcement learning is the gap between
theoretical results, performances on toy problems and applications
on real life due to the curse of dimensionality and noises. These



problems have motived the uses of LWPR, which is well-known to
be efficient in robotics where the high dimensional inputs contains
a lot of noise, or irrelevant dimensions, and redundant informations.
In this paper, we have shown that an approach combining Fitted-
Q and LWPR works well and leads to competitive results on toy
problems with irrelevant inputs and on high dimension toy problems.
Combining Fitted-Q and LWPR has raised many decisions that we
tried to assess by a good understanding of the workings of LWPR. We
especially discuss the complexity and the stability of the hypothesis
space throughout the iteration of Fitted-Q.

Our experiments show that this approach can be exploited with
good results. The basic version of the algorithm without updating the
Distance matrix have competitive performances. On two toy problems
– inverted pendulum and mountain car – the algorithm is able to learn
a very good policy from a small learning set of random trajectories.
The scalability of the algorithm has also been demonstrated by our
experiments on cross problems.

Experiments with a Distance matrix updated at each iteration
have pointed out some stability issues. We think that instability is
caused by changes in the structure of the approximation model during
executions. Finally, runs with the online version of the algorithm can
lead to good results in a impressive small number of iterations. But on
complex problem which required a important number of iterations in
order to propagate the reward from the final state to other initial states,
like the mountain car problem, the algorithm may tend to converge
to a very bad solution. Actually, the algorithm tend to approximate
the Q-function by a plane. We believe that this problem is caused
by competition between the two learning phenomena. The first is
achieved by LWPR. The second is provided by Fitted-Q.

But it remains a lot of leads to explore in order to improve the
performance of our implementation.

As the initialization of D, and P when D is updated, is crucial for
the convergence. We thought about using an heuristic to find a good
one. This heuristic would be based on the mean distance between
each pairs of successive states of the training transitions set. In the
case where D is kept constant, by modifying the LWPR algorithm,
we can set the value of D for each receptive fields. For example,
the size of each new receptive field could be initialized to a slightly
larger area than the mean area covered between two successive states
of which one of them is close to the center of the new receptive field.
When D is updated, we can still use the heuristic described above
for the initialization of new receptive fields during the first iteration
of Fitted-Q. For each next iteration, the size of each new receptive
field could be initialized with the one of the nearest receptive field
in the model of the previous iteration.

In future works, it would be interesting to find a theoretical proof
of convergence, at least in the case where D is not updated. This
could be help to understand stability issues when D is updated. If
problems of stability are too important, when D is updated, fixing
the structure of receptive fields, beyond certain number of iteration
of Fitted-Q, could be a good idea.

As evoked previously, we chose to not regress on action dimensions
in case of discrete actions. For continuous action, there are some
possibilities. The first one is to include action dimensions in the
regression. But as explained before, the PLS could misunderstand
the importance of action dimensions during the dimension reduction.

An another one is to use clustering in actions space. We could
then apply the previous method on each class and employ another
regression algorithm to interpolate between classes.

The last idea that could be tested is to present to the regression
the learning data many times in a random order. Indeed, even if it

increases the computation time, this method is advised in [10]in case
of small learning sets.

After some researches and improvements it could be very interest-
ing to assess the performance of the combination between Fitted-Q
and LWPR, on more complex problems with redundant dimension
and on real problems, for instance in robotics, because this approach
as well as the on-line version seem very promising.

VII. ACKNOWLEDGEMENT

The authors want to thank the European Fund for Regional
Development for funding within the framework of the INTERREG
IV A Allegro Project as well as the Région Lorraine.

REFERENCES

[1] R. S. Sutton and A. G. Barto, Reinforcement Learning: An Introduction,
3rd ed. The MIT Press, March 1998.

[2] R. Bellman, Dynamic Programming. Dover Publications, 1957.
[3] R. Bellman and S. Dreyfus, “Functional approximation and dynamic

programming,” Mathematical Tables and Other Aids to Computation,
vol. 13, pp. 247–251, 1959.

[4] M. Geist and O. Pietquin, “Parametric Value Function Approximation:
a Unified View,” in Proceedings of the IEEE Symposium on Adaptive
Dynamic Programming and Reinforcement Learning (ADPRL 2011),
Paris (France), April 2011, pp. 9 – 16.

[5] M. G. Lagoudakis and R. Parr, “Least-squares policy iteration,” J. Mach.
Learn. Res., vol. 4, pp. 1107–1149, December 2003.

[6] S. J. Bradtke and A. G. Barto, “Linear Least-Squares algorithms for
temporal difference learning,” Machine Learning, vol. 22, no. 1-3, pp.
33–57, 1996.

[7] D. Ernst, P. Geurts, and L. Wehenkel, “Tree-based batch mode reinforce-
ment learning,” J. Mach. Learn. Res., vol. 6, pp. 503–556, December
2005.

[8] G. Gordon, “Stable Function Approximation in Dynamic Programming,”
in Proceedings of the International Conference on Machine Learning
(ICML), Bonn, Germany, 1995.

[9] A. Nouri and M. Littman, “Dimension reduction and its application
to model-based exploration in continuous spaces,” Machine Learning,
vol. 81, pp. 85–98, 2010.

[10] S. Vijayakumar, A. D’souza, and S. Schaal, “Incremental online learning
in high dimensions,” Neural Comput., vol. 17, pp. 2602–2634, December
2005.

[11] H. Wold, Multivariate Analysis. New York: Academic Press, 1966, ch.
Estimation of principal components and related models by iterative least
squares, pp. 391–420.

[12] S. Schaal and C. G. Atkeson, “Receptive Field Weighted Regression,”
ATR Human Information Processing Laboratories, Tech. Rep. TR-H-
209, 1997.

[13] M. Geist, O. Pietquin, and G. Fricout, “Bayesian reward filtering,” in
Recent Advances in Reinforcement Learning, S. Girgin and colleagues,
Eds. Springer Verlag, 2008, vol. 5323, pp. 96–109, revised and selected
papers of EWRL 2008.

[14] ——, “Tracking in reinforcement learning,” in Proceedings of the 16th
International Conference on Neural Information Processing (ICONIP
2009), vol. 5863, Part I. Springer LNCS, 2009, pp. 502–511, ENNS
best student paper award.


