N

N

User Simulation in Dialogue Systems using Inverse
Reinforcement Learning
Senthilkumar Chandramohan, Matthieu Geist, Fabrice Lefevre, Olivier

Pietquin

» To cite this version:

Senthilkumar Chandramohan, Matthieu Geist, Fabrice Lefevre, Olivier Pietquin. User Simulation in
Dialogue Systems using Inverse Reinforcement Learning. Interspeech 2011, Aug 2011, Florence, Italy.
pp.1025-1028. hal-00652446

HAL Id: hal-00652446
https://centralesupelec.hal.science/hal-00652446
Submitted on 15 Dec 2011

HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est
archive for the deposit and dissemination of sci- destinée au dépot et a la diffusion de documents
entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non,
lished or not. The documents may come from émanant des établissements d’enseignement et de
teaching and research institutions in France or recherche francais ou étrangers, des laboratoires
abroad, or from public or private research centers. publics ou privés.

https://centralesupelec.hal.science/hal-00652446
https://hal.archives-ouvertes.fr

User Simulation in Dialogue Systems using Inverse Reinforcement Learning

Senthilkumar Chandramohan '3, Matthieu Geist ', Fabrice Lefevre ®, Olivier Pietquin 2

! Supelec - Metz Campus, IMS Research Group, France
2 UMI 2958 (CNRS - GeorgiaTech), France
3 Université d’ Avignon et des Pays de Vaucluse, LIA-CERI, France

lfirstname. lastname@supelec.fr 3firstname. lastname@univ-avignon. fr

Abstract

Spoken Dialogue Systems (SDS) are man-machine interfaces
which use natural language as the medium of interaction. Dia-
logue corpora collection for the purpose of training and evaluat-
ing dialogue systems is an expensive process. User simulators
aim at simulating human users in order to generate synthetic
data. Existing methods for user simulation mainly focus on gen-
erating data with the same statistical consistency as in some ref-
erence dialogue corpus. This paper outlines a novel approach
for user simulation based on Inverse Reinforcement Learning
(IRL). The task of building the user simulator is perceived as a
task of imitation learning.

Index Terms: Inverse Reinforcement Learning, User Simula-
tion, Spoken Dialogue Systems.

1. Introduction

User simulation for spoken dialogue systems (SDS) is a re-
search field aiming at generating artificial interactions so as
to automatically assess the quality of dialogue strategies [1]
or to train machine-learning-based dialogue management sys-
tems [2]. A majority of existing methods for user simulation
mainly focus on reproducing user behaviors which have the
same statistical consistency as in some dialogue corpus [3, 4, 5]
in addition to ASR/NLU error models [6, 7]. However, with
regard to man-machine interaction, human users tend to adapt
themselves according to the dialogue management engine while
corpora are usually obtained using a specific dialogue system. If
user simulation is used for training machine-learning-based di-
alogue systems [8], the dialogue management is continuously
modified and nothing guarantees that the user simulation re-
mains close to what the user behavior would be facing a novel
dialogue management strategy. This is also the case in human-
human interaction where the communicating subjects choose
what to say and how to say it based on the (alleged) ability of
the other subject. Thus, simulating the user behavior only based
on the frequency of occurrence of user acts (given the context)
may fail to simulate the human behavior precisely. Moreover,
statistical similarity is often used to assess the quality of user
simulation [9].

In this paper the task of simulating human users is perceived
as a sequential decision making under uncertainty problem and
the user, when deciding to generate a dialogue act in a given
context, is supposed to follow a long-term policy. One way to
estimate the user policy from a dialogue corpus (annotated in
user perspective) is to employ reinforcement learning (RL) [10]

The authors want to thank the European INTERREG IVa program
for funding (ALLEGRO project) and the Région Lorraine.

for policy optimization. However RL-based optimization re-
quires a reward function, describing how good it is for the user
to accomplish an action in a given context, to be defined in ad-
vance. Manually specifying the reward function of the user is
one possible option but is often an impossible task if the behav-
ior to be simulated is complex [11].

Here the task of simulating the user is defined as an
imitation learning problem. Inverse Reinforcement Learning
(IRL) [12] is employed to estimate the reward function of the
user (i.e., what satisfies the user when interacting with the ma-
chine). The estimated reward function is then used by a (direct)
RL algorithm for retrieving the strategy of the user which is
supposed to be optimal w.r.t. the inferred reward function. The
novelty of the proposed approach from the authors perspective
breaks down as follows: (i) user simulation is treated as a se-
quential decision making problem, (ii) IRL is used for the first
time in the dialogue management domain (to estimate the re-
ward function of the user) and (iii) the estimated objective func-
tion of the user can be used as a mean to assess the performance
of the user simulator [9]. Overall the primary contribution of the
paper is to settle the main framework of IRL-based user simu-
lation and demonstrate the feasibility of the method on a simple
problem.

The paper starts with a description of a formalism for mod-
eling sequential decision making in Section 2. Then formal de-
scription of IRL is presented in Section 3. Following which
casting the task of user modeling as a Markov Decision Process
(MDP) and employing IRL to learn the reward function of the
user is discussed in Section 4. Section 5 outlines the experimen-
tal setup for learning the user behavior of a hand-crafted user
model, along with the evaluation strategy. Eventually, Section 6
concludes and outlines the future directions of work.

2. Markov Decision Processes

In machine learning, the problem of sequential decision making
under uncertainty is generally treated in the framework of the
Markov Decision Processes [13]. Formally, an MDP is defined
as a tuple {S, A, P, R, v} where S is the state space, A is the
action space, P : S x A — P(S) a set of Markovian tran-
sition probabilities, R : S — R the reward function and v a
discount factor weighting long-term rewards. A learning agent
steps from state to state accomplishing actions. At any given
time step, the agent is in a state s; € .S and transits to s;41 ac-
cording to p(.|s;, a;) upon (choosing and) performing an action
a; € A according to a policy 7 : S — A. After each transition
the agent receives a reward r; = R(s;). The quality of the pol-
icy 7 followed by the agent can be quantified by the state-action

value function or Q-function (Q™ : S x A — R) defined as:

Q7 (s,a) = E[Z v'ri|so = s, a0 = a] (1)

=0

The optimal policy 7 is the one for which the Q-function is
maximum for each state-action pair: 7* = arg max, Q™ (s, a).
The optimal policy leads to an optimal Q-function Q*(s,a)
and 7*(s) = argmax, Q" (s,a). There exist many RL algo-
rithms to compute the optimal policy 7 [10] and the associated

Q" (s, a).

3. Inverse reinforcement learning

Given that the MDP framework is adopted, IRL [12] aims at
learning the reward or utility function optimized by an expert
from a set of observed interactions between this expert and
the MDP. However, this is an ill-posed problem and there ex-
ist several possible reward functions that can match the ex-
pert behavior [12]. Thus the primary focus of most existing
IRL algorithms is to retrieve some reward function (not nec-
essarily the true reward function) which can exhibit a behav-
ior similar to the expert’s behavior. Let us assume an MDP
defined by the tuple {S, A, P,v}/R, where /R means that
the reward function of the MDP is not available. Let the fea-
ture space of the reward function be defined using a vector ¢.
Then the reward function R of the MDP can be expressed as:
Ro(s,a) = 0T ¢(s,a) = S°F | 0:4:(s,a) (where 0 (resp. ¢)
is a vector of which the i*" component is 8; (resp. ¢:(s,a)).
Using this in Eq (1):

Q" (s,a) = E[>_~'0"¢(s,a)|s0 = s,a0 = a] = 67 u" (s, a)
1=0
@

where 1™ (s, a) is the feature expectation of the policy 7. Fea-
ture expectation in simple terms can be defined as the dis-
counted measure of features according to state visitation fre-
quency (based on when the state is visited in the trajectory). It
provides a compact yet simple mean to summarize the behav-
ior of the user observed in the form of trajectories. Given a set
of m trajectories (where Hj; is the length of the it trajectory)
from the expert (who acts based on some unknown policy),
the feature expectation 1™ (so, a) can be estimated by:

m H;
™ 1] 3
Wi(s0,a) = -3 > 1 b(si, i) 3)
1=0 t=0
The primary focus of IRL is to retrieve some reward func-
tion (through its parameters 0) used to predict a user behavior
(Trpredict) being similar to the behavior of the expert (Texpert)

R; (S, CL) = arg min{-](ﬂ-experty 7Tpredict)}

where J is some dissimilarity measure between the expert be-
havior and the predicted user behavior. From Eq (2) it can be
observed that comparing two different user behaviors (policies)
in terms of feature expectation is indeed comparing the behav-
iors based on their value function. Notice that from Eq (1), a
reward function that is non-zero only in some states can lead
to a @-function that is non-zero in every state. From the Q-
function, a greedy policy arg max, Q(s, a) can be inferred for
every state and therefore, IRL-based user simulation can gen-
eralize to unseen situations which is harder to obtain from tra-
ditional statistical simulation. Assuming that ||@|| < 1 (which

Expert Feature expectations Simulated
Data [Hexpert Hpredict Data

sas'
Samples|
Reward

@ function | Reinforcement
Joction
Learning

Figure 1: User simulation using imitation learning

-
. — B j@

is not restrictive: rewards are bounded and scale invariant), one
has ||Q7|| < ||#™||. Thus an easy way of computing the dissim-
ilarity between the expert behavior 7expers and the predicted
user behavior Tpredict 1S to compute a distance between their
feature expectations, that iS ftexpert and fipredict:

J(ﬂ-experh 71-plrcdict) = ”Mexpert — Mpredict ||2

Apprenticeship learning or imitation learning [11] focuses
on learning to imitate the behavior observed in the sample tra-
jectories. In this case IRL is used as a first step to retrieve the
underlying reward function of the expert, which in turn is used
in policy optimization to imitate the expert. Imitation learning
can be pictorially represented as shown in Figure 1.

4. User simulation using IRL

To begin with, the user modeling task is casted as an MDP: user-
MDP, where S is the state space of the user (formally defined
in Section 5), A is the set of all possible user acts. Let the state-
action space of the userMDP be defined by a vector of features
#: S x A — [0,1]%. Also it is assumed that a set of m dialogue
episodes (trajectories) from human users is made available. The
goal here is to build a user simulator which can imitate the be-
havior observed in the dialogue corpus. Let us term Thuman the
policy of the human users. Feature expectation fthuman can be
computed as shown in Eq (3). In the imitation learning algo-
rithm (Algorithm (1)), step 3 is an IRL step where, based on the
dissimilarity between the human and simulated user behavior,
the reward function of the human user is estimated. It searches
for the reward function which maximizes the distance between
the value of the expert and any policy computed in prior itera-
tions. The updated reward function is used to estimate the op-
timal behavior (policy for userMDP) of the simulated user in
step 6. Steps 3 to 6 are performed iteratively until some conver-
gence criteria is met, i.e. the distance between the human and
simulated user behavior is within an acceptable range £. Upon
convergence the algorithm outputs a set of policies II.

Algorithm 1 User simulation using imitation learning

1: Compute ftexpers from dialogue corpus
2: Initiate II with random policy 7predict = 7o and compute

N/predict
3: Compute ¢ and 6 such that

t= mgmx{ min OT(,U/expert_,u/predict)}S~t- H9H2 <1

Tpredict€I1
4: if t < ¢ then Terminate
5: end if
6: Train a new policy Tpredict for userMDP optimizing R =
07 ¢(s, a) with RL (LSPI).
7: Complne Hpredict for Tpredict » IT < Trpredict
Goto to step 3.

In order to simulate the user one can choose the best policy
from II based on its distance with flexpert OF choose to use mul-
tiple policies with an associated selection probability (explained
in Section 5). The algorithm does not guarantee to retrieve the
true reward function of the expert but to retrieve a reward func-
tion which can exhibit a similar behavior. Even though it may
seem that using the state visitation frequency in the form of fea-
ture expectation is comparable to existing approaches for user
simulation (such as the n-gram method), it is worth noting that
the feature expectation is not directly used. It is used to predict
a reward function which in turn is used to simulate the expert
behavior. Most existing ML based approaches for user simu-
lation focus on simulating the user at the transition level when
the primary focus of this work is to simulate user trajectories.
Also IRL user simulation generalizes through the value function
which is non-zero everywhere.

5. Experiment

In this last section, a simple experiment is presented that shows
the feasibility of the method. The goal of the experiment is to
learn a user model which can simulate the behavior of a hand-
crafted user model. To begin with, the state-action space of the
SDS and the userMDP are defined. Then the experimental setup
for training and evaluation of the IRL user model is described.

5.1. Town-Information dialogue system

The problem studied in this paper is a task-oriented, form-filling
dialogue system in the tourist information domain, similar to the
one studied in [14]. The aim of the dialogue system is to give
information about restaurants in a city based on specific user
preferences. It may be recalled that the imitation learning al-
gorithm outlined in Section 4 requires the feature expectation
(defined in Eq (3)) for a user behavior 7 to be computed. One
way to estimate this is to run a set of dialogue episodes between
the dialogue manager and the user simulator (using 7). The dia-
logue context is composed of the knowledge of 3 slots: location,
cuisine and price-range of the restaurant. The list of possible
system acts includes 13 actions: Ask-slot (3 actions), Explicit-
confirm (3 actions), Implicit-confirm and Ask-slot value (6 ac-
tions) and finally Close-dialogue. For the sake of simplicity a
hand-crafted dialogue policy is used for dialogue management.
The hand-crafted dialogue strategy tries to fill and confirm all
the 3 slots one after the other.

The task of user simulation is casted as an MDP. The state
of the user simulator is represented by the Information State
paradigm [15]. The user state is a summary of the dialogue
course from a user simulation’s perspective. Apart from encod-
ing the exchange of information between the user model and the
dialogue manager, the user state also includes the most recent
action performed by the dialogue manager. For the 3-slot town-
information dialogue problem the user model has the following
state representation: {System-Act} {Slotl} {Slot2} {Slot3},
where the system-act field takes values in 0:13 representing the
corresponding system acts defined above. Slotl, Slot2, Slot3
fields take values in 0:2; i.e. (0) the slot is empty (never pro-
vided by the user), (1) the slot has been provided by the user,
(2) the slot is confirmed. The action space of userMDP includes
the following 10 user acts: remain silent (Silent), provide-all-
values (AllSlots), provide-one-value (OneSlot: 3 actions), con-
firm slot value (Confirm: 3 actions), negate slot value (Negate:
3 actions) and hangup (CloseDialogue). The discount factor of
the userMDP is set to 0.95.

Table 1: Hand-crafted user behavior

SystemAct UserActs (probability)
Greet Silent (0.7) AllSlots (0.3)
AskSlot OneSlot (0.95) AllSlots (0.05)
Explicit-Conf Confirm (1.0)
Implicit-Conf OneSlot (0.9) Negate (0.1)
CloseDialogue Silent (1.0)

5.2. Learning to imitate

The main originality of this paper is to cast the user simula-
tion problem as an IRL problem. To exemplify the method, this
section describes how data generated from a hand-crafted (ex-
pert) user simulation can be used to perform imitation learning.
The user behavior to be imitated (expert policy for userMDP)
is detailed in Table 1. A set of trajectories is created using the
dialogue manager and the user simulation. Using the generated
data the feature expectation of the expert user behavior Texpert
is computed as shown in Eq (3). The computed feature expecta-
tion will be the ftexpert Since the task here is to imitate the expert
behavior. First a set of dialogue episodes are generated using the
userMDP with a fully random action selection Trandom and the
dialogue manager. The feature expectation of the random policy
can then be computed from the dialogue trajectories. Since the
necessary expert behavior is available in the form of dialogue
trajectories, flexpert Can be computed.

The reward function of the user simulation is estimated
based on the distance between the feature expectations of the
expert and simulated user behavior. At each iteration of imita-
tion learning the intermediate reward function is used to esti-
mate the optimal behavior for userMDP using LSPI [16]. No-
tice that LSPI is a batch algorithm which allows learning from
fixed sets of data (this is an important feature to extend the pro-
posed method to real applications). Upon convergence (£ set to
0.1) the best policy 7" of the userMDP (chosen from II based
on the least dissimilarity measure between Ty edict and Texpert)
will exhibit the expert user behavior.

5.3. Evaluation of user behavior

To facilitate evaluation, 1000 dialogue episodes are generated
using the dialogue manager, the trained IRL user simulation
and the expert user simulation (1000 episodes each). Figure 2
presents the average choice of user actions taken by the two dif-
ferent user simulations. The behavior of the expert user simula-
tion is stochastic (see Table 1) and the behavior of the IRL user
simulation is deterministic as only one of the policies retrieved
during training is used during evaluation. However it is also
possible to obtain a stochastic user behavior by employing a
policy mixer to pick up a different policy before starting each di-
alogue episode. Let the probability of choosing a policy wéredict
€ IIbe A; . The values of A1 .. ,, can be heuristically determined
using a Gibbs distribution: \; = e(—di/7)/>>7_, e(=d;/T),
where d; is the distance between fiexpert and u;redict estimated
during training. During the evaluation, 7 is set to 0.01 (ensures
that the policies closest to Texpers are given more preference).
Let the behavior of IRL user simulation which employs policy
mixer be termed as MixIRL-UserSim.

Using IRL to estimate the reward function of the user pro-
vides a unique opportunity to evaluate the simulated behavior
using the reward function itself. Since the reward function rep-
resents the intention of the user, the reward estimated using it
can be used to quantify the effectiveness of the user model to

4 T T T T

Hend Crfted- UsrSm e
IRL-UserSim
MixIRL-UserSim[1=0.01] mmm—

Average UserAct per Episode

15 b
s 1
i I I |]
L AL i

slent povideal provideone negate confirm hangup

Figure 2: Frequency of user actions per episode

Table 2: Hand-crafted vs IRL user behavior

UserSim Avglength | AvgReward
Hand-crafted 6.03 2.6
IRL 6.0 2.7
Mixed-IRL 5.5 2.9

simulate the user. Table 2 shows the average discounted re-
ward obtained by the user simulations based on the estimated
reward function. It can be observed that the rewards obtained by
the IRL user simulations and the hand-crafted user simulation,
along with the average dialogue lengths, are almost the same,
whereby consolidating the hypothesis of similar behaviors.

A similarity measure suggested by [17] is used to compare
the behaviors. This metric is used to measure the correlation
between the trajectories of the expert user model, 7. and the
IRL user model, 7,:

. 1< 1
Sim(mhe, Tirl) = n ; T+ rank(ar)

with n the number of user acts observed in the trajectory gener-
ated by the expert user model. Ranking of user acts (selected by
mhe) based on their -value (obtained using @-function of the
IRL used model) gives an indication to what extent the user acts
selected by the expert model correlates with the learned IRL
user model. Upon comparing the expert user model with the
IRL user model, the similarity measure is found to be 0.48 for
IRL-UserSim and 0.46 for MixIRL-UserSim which are close
to the optimal value 0.5 (both rankings are identical, and then
rank() is 1 constantly). This confirms that the behavior of the
IRL user model correlates very well with the expert’s behavior.

6. Conclusion and future work

This paper presents a novel approach for building user simula-
tions for dialogue systems using IRL. Preliminary experimental
results show that using IRL is possible to learn deterministic and
stochastic user simulation strategies. The dialogue iterations
generated using trained IRL user models closely correlates with
that of hand-crafted users. IRL based methods provide a unique
opportunity to learn even complex user models since they are
based on the computation of a utility function and generate
adaptive behaviors (goal-driven and not frequency-based action
selection). We recognize that the experiments are currently not
large enough and the user simulation is primarily reflecting the
data similar to other methods. Even if not demonstrating yet
the full potentiality of the approach, the experimental results
provide evidence that the method is worth being investigated

further. Since IRL user simulation can generalize from data it
provides an opportunity for schemes such as co-adaptation of
dialogue manager and user simulator.

In future work, we want to measure the generalization capa-
bilities of the method as well as the co-adaptation phenomenon
when the dialogue system changes. We also mean to measure
the quality of RL-based dialogue management policies learned
using IRL user simulation. This may reveal the effectiveness
of IRL user simulation when compared to other approaches for
user modeling. And it would be also very interesting to explore
the possibility of evaluating if not quantifying the performance
of other user simulations using the reward function of human
user retrieved by IRL [9]. We will also investigate batch meth-
ods for IRL [18].

7. References

[11 W. Eckert, E. Levin, and R. Pieraccini, “User Modeling for Spo-
ken Dialogue System Evaluation,” in Proc. of ASRU, 1997, pp.
80-87.

[2] J. Schatzmann, K. Weilhammer, M. Stuttle, and S. Young, “A
survey of statistical user simulation techniques for reinforcement-
learning of dialogue management strategies,” Knowledge Engi-
neering Review, vol. 21(2), pp. 97-126, 2006.

[3] O. Pietquin and T. Dutoit, “A probabilistic framework for dialog
simulation and optimal strategy learning,” IEEE Transactions on
Audio, Speech & Language Processing, 14(2): 589-599, 2006.

[4] J. Schatzmann, B. Thomson, K. Weilhammer, H. Ye, and
S. Young., “Agenda-based User Simulation for Bootstrapping a
POMDP Dialogue System,” in Proc. of HLT/NAACL, 2007.

[5] K. Georgila, J. Henderson, and O. Lemon, “Learning User Sim-
ulations for Information State Update Dialogue Systems,” in Eu-
rospeech, 2005.

[6] O. Pietquin and R. Beaufort, “Comparing ASR Modeling Meth-
ods for Spoken Dialogue Simulation and Optimal Strategy Learn-
ing,” in Proc. of Eurospeech’05, 2005, pp. 861-864.

[7]1 O. Pietquin and T. Dutoit, “Dynamic Bayesian Networks for NLU
Simulation with Application to Dialog Optimal Strategy Learn-
ing,” in Proc. of ICASSP’06, 2006, pp. 49-52.

[8] O. Lemon and O. Pietquin, “Machine learning for spoken dia-
logue systems,” in Proc. of InterSpeech’07, Belgium, 2007.

[9] O. Pietquin and H. Hastie, “A survey on metrics for the evaluation
of user simulations,” Knowledge Engineering Review, 2011.

[10] R.S. Sutton and A. G. Barto, Reinforcement Learning: An Intro-
duction, 3rd ed. The MIT Press, March 1998.

[11] P. Abbeel and A. Y. Ng, “Apprenticeship learning via inverse re-
inforcement learning,” in Proc. of ICML, 2004.

[12] A. Y. Ng and S. Russell, “Algorithms for inverse reinforcement
learning,” in Proc. of ICML, 2000.

[13] R. Bellman, “A markovian decision process,” Journal of Mathe-
matics and Mechanics, vol. 6, pp. 679-684, 1957.

[14] O.Lemon, K. Georgila, J. Henderson, and M. Stuttle, “An ISU di-
alogue system exhibiting reinforcement learning of dialogue poli-
cies: generic slot-filling in the TALK in-car system,” in Proc. of
EACL’06, Morristown, NJ, USA, 2006.

[15] S.Larssonand D. R. Traum, “Information state and dialogue man-
agement in the TRINDI dialogue move engine toolkit,” Natural
Language Engineering, vol. 6, pp 323-340, 2000.

[16] M. G. Lagoudakis and R. Parr, “Least-squares policy iteration,”
Journal of Machine Learning Research, vol. 4, pp. 1107-1149,
2003.

[17] J. Schatzmann, M. N. Stuttle, K. Weilhammer, and S. Young, “Ef-
fects of the user model on simulation-based learning of dialogue
strategies,” in Proc. of ASRU’05, Puerto Rico, 2005.

[18] E. Klein, M. Geist, and O. Pietquin, “Batch, Off-policy and
Model-Free Apprenticeship Learning,” in IJCAI-ALIHT Work-
shop 2011.

